Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Physiol Genomics ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38881429

RESUMEN

The circadian timing system and integrated stress response (ISR) systems are fundamental regulatory mechanisms that maintain body homeostasis. The central circadian pacemaker in the suprachiasmatic nucleus (SCN) governs daily rhythms through interactions with peripheral oscillators via the hypothalamus-pituitary-adrenal (HPA) axis. On the other hand, ISR signaling is pivotal for preserving cellular homeostasis in response to physiological changes. Notably, disrupted circadian rhythms are observed in cases of impaired ISR signaling. In this work, we examine the potential interplay between the central circadian system and the ISR, mainly through the SCN and HPA axis. We introduce a semi-mechanistic mathematical model to delineate the suprachiasmatic nucleus (SCN)'s capacity for indirectly perceiving physiological stress through glucocorticoid-mediated feedback from the HPA axis and orchestrating a cellular response via the ISR mechanism. Key components of our investigation include evaluating general control nonderepressible 2 (GCN2) expression in the SCN, the effect of physiological stress stimuli on the HPA axis, and the interconnected feedback between the HPA and SCN. Simulation reveals a critical role for GCN2 in linking ISR with circadian rhythms. Experimental findings have demonstrated that a Gcn2 deletion in mice leads to rapid re-entrainment of the circadian clock following jetlag, as well as to an elongation of the circadian period. These.

2.
Am J Physiol Endocrinol Metab ; 325(5): E624-E637, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37792040

RESUMEN

Nonshivering thermogenesis in rodents requires macronutrients to fuel the generation of heat during hypothermic conditions. In this study, we examined the role of the nutrient sensing kinase, general control nonderepressible 2 (GCN2) in directing adaptive thermogenesis during acute cold exposure in mice. We hypothesized that GCN2 is required for adaptation to acute cold stress via activation of the integrated stress response (ISR) resulting in liver production of FGF21 and increased amino acid transport to support nonshivering thermogenesis. In alignment with our hypothesis, female and male mice lacking GCN2 failed to adequately increase energy expenditure and veered into torpor. Mice administered a small molecule inhibitor of GCN2 were also profoundly intolerant to acute cold stress. Gcn2 deletion also impeded liver-derived FGF21 but in males only. Within the brown adipose tissue (BAT), acute cold exposure increased ISR activation and its transcriptional execution in males and females. RNA sequencing in BAT identified transcripts that encode actomyosin mechanics and transmembrane transport as requiring GCN2 during cold exposure. These transcripts included class II myosin heavy chain and amino acid transporters, critical for maximal thermogenesis during cold stress. Importantly, Gcn2 deletion corresponded with higher circulating amino acids and lower intracellular amino acids in the BAT during cold stress. In conclusion, we identify a sex-independent role for GCN2 activation to support adaptive thermogenesis via uptake of amino acids into brown adipose.NEW & NOTEWORTHY This paper details the discovery that GCN2 activation is required in both male and female mice to maintain core body temperature during acute cold exposure. The results point to a novel role for GCN2 in supporting adaptive thermogenesis via amino acid transport and actomyosin mechanics in brown adipose tissue.


Asunto(s)
Actomiosina , Temperatura Corporal , Ratones , Masculino , Femenino , Animales , Actomiosina/metabolismo , Termogénesis/genética , Hígado/metabolismo , Frío , Tejido Adiposo Pardo/metabolismo , Aminoácidos/metabolismo , Ratones Endogámicos C57BL
3.
J Nutr ; 151(4): 785-799, 2021 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-33512502

RESUMEN

BACKGROUND: Dietary sulfur amino acid restriction (SAAR) improves body composition and metabolic health across several model organisms in part through induction of the integrated stress response (ISR). OBJECTIVE: We investigate the hypothesis that activating transcription factor 4 (ATF4) acts as a converging point in the ISR during SAAR. METHODS: Using liver-specific or global gene ablation strategies, in both female and male mice, we address the role of ATF4 during dietary SAAR. RESULTS: We show that ATF4 is dispensable in the chronic induction of the hepatokine fibroblast growth factor 21 while being essential for the sustained production of endogenous hydrogen sulfide. We also affirm that biological sex, independent of ATF4 status, is a determinant of the response to dietary SAAR. CONCLUSIONS: Our results suggest that auxiliary components of the ISR, which are independent of ATF4, are critical for SAAR-mediated improvements in metabolic health in mice.


Asunto(s)
Factor de Transcripción Activador 4/metabolismo , Aminoácidos Sulfúricos/deficiencia , Factor de Transcripción Activador 4/deficiencia , Factor de Transcripción Activador 4/genética , Aminoácidos Sulfúricos/sangre , Aminoácidos Sulfúricos/metabolismo , Animales , Antioxidantes/metabolismo , Composición Corporal , ADN/biosíntesis , Dietoterapia , Femenino , Factores de Crecimiento de Fibroblastos/sangre , Factores de Crecimiento de Fibroblastos/metabolismo , Técnicas de Silenciamiento del Gen , Sulfuro de Hidrógeno/metabolismo , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Biosíntesis de Proteínas , Factores Sexuales , Estrés Fisiológico
4.
Geroscience ; 45(4): 2425-2441, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36976488

RESUMEN

Dietary sulfur amino acid restriction (SAAR) protects against diet-induced obesity, extends healthspan, and coincides with an overall reduction in hepatic protein synthesis. To explore the underpinnings of SAAR-induced slowed growth and its impact on liver metabolism and proteostasis, we resolved changes in hepatic mRNA and protein abundances and compared synthesis rates of individual liver proteins. To achieve this, adult male mice were provided deuterium-labeled drinking water while freely consuming either a regular-fat or high-fat diet that was SAA restricted. Livers from these mice and their respective dietary controls were used to conduct transcriptomic, proteomic, and kinetic proteomic analyses. We found that remodeling of the transcriptome by SAAR was largely agnostic to dietary fat content. Shared signatures included activation of the integrated stress response alongside alterations in metabolic processes impacting lipids, fatty acids, and amino acids. Changes to the proteome correlated poorly with the transcriptome, and yet, functional clustering of kinetic proteomic changes in the liver during SAAR revealed that the management of fatty acids and amino acids were altered to support central metabolism and redox balance. Dietary SAAR also strongly influenced the synthesis rates of ribosomal proteins and ribosome-interacting proteins regardless of dietary fat. Taken together, dietary SAAR alters the transcriptome and proteome in the liver to safely manage increased fatty acid flux and energy use and couples this with targeted changes in the ribo-interactome to support proteostasis and slowed growth.


Asunto(s)
Aminoácidos Sulfúricos , Proteoma , Masculino , Ratones , Animales , Proteoma/genética , Proteoma/metabolismo , Proteómica , Aminoácidos Sulfúricos/metabolismo , Hígado/metabolismo , Aminoácidos , Grasas de la Dieta/metabolismo , Ácidos Grasos
5.
Front Aging ; 3: 975129, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36091469

RESUMEN

Dietary interventions such as sulfur amino acid restriction (SAAR) target multiple drivers of aging, and show promise for preventing or delaying the onset of chronic diseases. SAAR promotes metabolic health and longevity in laboratory animals. The effects of SAAR on proteostasis remain relatively unexplored. We previously reported that SAAR promotes mitochondrial proteostatic maintenance, despite suppression of global protein synthesis, in two peripheral tissues, the liver and skeletal muscle. However, the brain, a tissue vulnerable to age-related neurodegenerative diseases due to the loss of proteostasis, has not been thoroughly studied. Therefore, we sought to reveal proteostatic responses in the brains of mice fed SAAR for 35 days. Here, we demonstrate that male C57Bl/6J mice fed two levels of SAAR maintained rates of protein synthesis in all sub-cellular fractions of the pre-frontal cortex. In comparison, rates of skeletal muscle protein synthesis in SAAR fed mice were slower than control-fed mice. To gain mechanistic insight, we examined several key nutrient/energy sensitive signaling proteins: AMP-activated protein kinase (AMPK), eukaryotic initiation factor 2 (eIF2), and ribosomal protein S6 (rpS6). SAAR had minimal to modest effects on the total abundance and phosphorylation of these proteins in both tissues. Our results indicate that the pre-frontal cortex in brain is resistant to perturbations in protein synthesis in mice fed SAAR, unlike skeletal muscle, which had a reduction in global protein synthesis. The results from this study demonstrate that proteostatic control in brain is of higher priority than skeletal muscle during dietary SAAR.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA