Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Am J Physiol Gastrointest Liver Physiol ; 307(5): G574-81, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25012845

RESUMEN

Physiological calcium (Ca(2+)) signals within the pancreatic acinar cell regulate enzyme secretion, whereas aberrant Ca(2+) signals are associated with acinar cell injury. We have previously identified the ryanodine receptor (RyR), a Ca(2+) release channel on the endoplasmic reticulum, as a modulator of these pathological signals. In the present study, we establish that the RyR is expressed in human acinar cells and mediates acinar cell injury. We obtained pancreatic tissue from cadaveric donors and identified isoforms of RyR1 and RyR2 by qPCR. Immunofluorescence staining of the pancreas showed that the RyR is localized to the basal region of the acinar cell. Furthermore, the presence of RyR was confirmed from isolated human acinar cells by tritiated ryanodine binding. To determine whether the RyR is functionally active, mouse or human acinar cells were loaded with the high-affinity Ca(2+) dye (Fluo-4 AM) and stimulated with taurolithocholic acid 3-sulfate (TLCS) (500 µM) or carbachol (1 mM). Ryanodine (100 µM) pretreatment reduced the magnitude of the Ca(2+) signal and the area under the curve. To determine the effect of RyR blockade on injury, human acinar cells were stimulated with pathological stimuli, the bile acid TLCS (500 µM) or the muscarinic agonist carbachol (1 mM) in the presence or absence of the RyR inhibitor ryanodine. Ryanodine (100 µM) caused an 81% and 47% reduction in acinar cell injury, respectively, as measured by lactate dehydrogenase leakage (P < 0.05). Taken together, these data establish that the RyR is expressed in human acinar cells and that it modulates acinar Ca(2+) signals and cell injury.


Asunto(s)
Células Acinares/metabolismo , Páncreas/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Células Acinares/efectos de los fármacos , Animales , Calcio/metabolismo , Carbacol/farmacología , Muerte Celular , Humanos , L-Lactato Deshidrogenasa/metabolismo , Ratones , Páncreas/citología , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Rianodina/farmacología , Canal Liberador de Calcio Receptor de Rianodina/genética , Ácido Taurolitocólico/análogos & derivados , Ácido Taurolitocólico/farmacología
2.
Arterioscler Thromb Vasc Biol ; 33(8): 1936-42, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23723375

RESUMEN

OBJECTIVE: Low-density lipoprotein (LDL) cholesterol induces endothelial dysfunction and is a major modifiable risk factor for coronary heart disease. Endothelial Kruppel-like Factor 2 (KLF2) is a transcription factor that is vital to endothelium-dependent vascular homeostasis. The purpose of this study is to determine whether and how LDL affects endothelial KLF2 expression. APPROACH AND RESULTS: LDL downregulates KLF2 expression and promoter activity in endothelial cells. LDL-induced decrease in KLF2 parallels changes in endothelial KLF2 target genes thrombomodulin, endothelial NO synthase, and plasminogen activator inhibitor-1. Pharmacological inhibition of DNA methyltransferases or knockdown of DNA methyltransferase 1 prevents downregulation of endothelial KLF2 by LDL. LDL induces endothelial DNA methyltransferase 1 expression and DNA methyltransferase activity. LDL stimulates binding of the DNA methyl-CpG-binding protein-2 and histone methyltransferase enhancer of zeste homolog 2, whereas decreases binding of the KLF2 transcriptional activator myocyte enhancing factor-2, to the KLF2 promoter in endothelial cells. Knockdown of myocyte enhancing factor-2, or mutation of the myocyte enhancing factor-2 site in the KLF2 promoter, abrogates LDL-induced downregulation of endothelial KLF2 and thrombomodulin, and KLF2 promoter activity. Similarly, knockdown of enhancer of zeste homolog 2 negates LDL-induced downregulation of KLF2 and thrombomodulin in endothelial cells. Finally, overexpression of KLF2 rescues LDL-induced clotting of platelet-rich plasma on endothelial cells. CONCLUSIONS: LDL represses endothelial KLF2 expression via DNA and histone methylation. Downregulation of KLF2 by LDL leads to a dysfunctional, hypercoagulable endothelium.


Asunto(s)
LDL-Colesterol/metabolismo , Metilación de ADN/fisiología , Células Endoteliales/fisiología , Epigénesis Genética/fisiología , Factores de Transcripción de Tipo Kruppel/metabolismo , Aterosclerosis/genética , Aterosclerosis/metabolismo , Regulación hacia Abajo/fisiología , Células Endoteliales/citología , Proteína Potenciadora del Homólogo Zeste 2 , Histonas/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Factores de Transcripción de Tipo Kruppel/genética , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Factores de Transcripción MEF2 , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Factores Reguladores Miogénicos/genética , Factores Reguladores Miogénicos/metabolismo , Fenotipo , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , Regiones Promotoras Genéticas/fisiología , Trombosis/genética , Trombosis/metabolismo , Transcripción Genética/fisiología , Vasculitis/genética , Vasculitis/metabolismo
3.
Nat Med ; 23(3): 361-367, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28191886

RESUMEN

The voltage-gated cardiac Na+ channel (Nav1.5), encoded by the SCN5A gene, conducts the inward depolarizing cardiac Na+ current (INa) and is vital for normal cardiac electrical activity. Inherited loss-of-function mutations in SCN5A lead to defects in the generation and conduction of the cardiac electrical impulse and are associated with various arrhythmia phenotypes. Here we show that sirtuin 1 deacetylase (Sirt1) deacetylates Nav1.5 at lysine 1479 (K1479) and stimulates INa via lysine-deacetylation-mediated trafficking of Nav1.5 to the plasma membrane. Cardiac Sirt1 deficiency in mice induces hyperacetylation of K1479 in Nav1.5, decreases expression of Nav1.5 on the cardiomyocyte membrane, reduces INa and leads to cardiac conduction abnormalities and premature death owing to arrhythmia. The arrhythmic phenotype of cardiac-Sirt1-deficient mice recapitulated human cardiac arrhythmias resulting from loss of function of Nav1.5. Increased Sirt1 activity or expression results in decreased lysine acetylation of Nav1.5, which promotes the trafficking of Nav1.5 to the plasma membrane and stimulation of INa. As compared to wild-type Nav1.5, Nav1.5 with K1479 mutated to a nonacetylatable residue increases peak INa and is not regulated by Sirt1, whereas Nav1.5 with K1479 mutated to mimic acetylation decreases INa. Nav1.5 is hyperacetylated on K1479 in the hearts of patients with cardiomyopathy and clinical conduction disease. Thus, Sirt1, by deacetylating Nav1.5, plays an essential part in the regulation of INa and cardiac electrical activity.


Asunto(s)
Potenciales de Acción , Arritmias Cardíacas/genética , Cardiomiopatías/metabolismo , Potenciales de la Membrana , Miocardio/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Sirtuina 1/genética , Acetilación , Animales , Ecocardiografía , Electrocardiografía , Células HEK293 , Corazón/diagnóstico por imagen , Corazón/fisiopatología , Humanos , Immunoblotting , Inmunoprecipitación , Espectrometría de Masas , Ratones , Ratones Noqueados , Miocitos Cardíacos , Técnicas de Placa-Clamp , Ratas , Sirtuina 1/metabolismo
4.
J Biol Chem ; 283(42): 28401-12, 2008 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-18694937

RESUMEN

Phosphorylation of the R domain is required for cystic fibrosis transmembrane conductance regulator (CFTR) channel gating, and cAMP/protein kinase A (PKA) simulation can also elicit insertion of CFTR into the plasma membrane from intracellular compartments (Bertrand, C. A., and Frizzell, R. A. (2003) Am. J. Physiol. 285, C1-C18). We evaluated the structural basis of regulated CFTR trafficking by determining agonist-evoked increases in plasma membrane capacitance (Cm) of Xenopus oocytes expressing CFTR deletion mutants. Expression of CFTR as a split construct that omitted the R domain (Deltaamino acids 635-834) produced a channel with elevated basal current (Im) and no DeltaIm or trafficking response (DeltaCm) upon cAMP/PKA stimulation, indicating that the structure(s) required for regulated CFTR trafficking are contained within the R domain. Additional deletions showed that removal of amino acids 817-838, a 22-amino acid conserved helical region having a net charge of -9, termed NEG2 (Xie, J., Adams, L. M., Zhao, J., Gerken, T. A., Davis, P. B., and Ma, J. (2002) J. Biol. Chem. 277, 23019-23027), produced a channel with regulated gating that lacked the agonist-induced increase in CFTR trafficking. Injection of NEG2 peptides into oocytes expressing split DeltaNEG2 CFTR prior to stimulation restored the agonist-evoked DeltaCm, consistent with the concept that this sequence mediates the regulated trafficking event. In support of this idea, DeltaNEG2 CFTR escaped from the inhibition of wild type CFTR trafficking produced by overexpression of syntaxin 1A. These observations suggest that the NEG2 region at the C terminus of the R domain allows stabilization of CFTR in a regulated intracellular compartment from which it traffics to the plasma membrane in response to cAMP/PKA stimulation.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Regulación de la Expresión Génica , Animales , Membrana Celular/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Electrofisiología/métodos , Humanos , Modelos Biológicos , Oocitos/metabolismo , Fosforilación , Estructura Terciaria de Proteína , Transporte de Proteínas , Sintaxina 1/química , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA