Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Mater ; 23(2): 182-188, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38182809

RESUMEN

Multiferroic materials, particularly those possessing simultaneous electric and magnetic orders, offer a platform for design technologies and to study modern physics. Despite the substantial progress and evolution of multiferroics, one priority in the field remains to be the discovery of unexplored materials, especially those offering different mechanisms for controlling electric and magnetic orders1. Here we demonstrate the simultaneous thermal control of electric and magnetic polarizations in quasi-two-dimensional halides (K,Rb)3Mn2Cl7, arising from a polar-antipolar transition, as evidenced using both X-ray and neutron powder diffraction data. Our density functional theory calculations indicate a possible polarization-switching path including a strong coupling between the electric and magnetic orders in our halide materials, suggesting a magnetoelectric coupling and a situation not realized in oxide analogues. We expect our findings to stimulate the exploration of non-oxide multiferroics and magnetoelectrics to open access to alternative mechanisms, beyond conventional electric and magnetic control, for coupling ferroic orders.

2.
Am J Physiol Heart Circ Physiol ; 326(3): H832-H844, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38305752

RESUMEN

Cardiac aging is a multifaceted process that encompasses structural and functional alterations culminating in heart failure. As the elderly population continues to expand, there is a growing urgent need for interventions to combat age-related cardiac functional decline. Noncoding RNAs have emerged as critical regulators of cellular and biochemical processes underlying cardiac disease. This review summarizes our current understanding of how noncoding RNAs function in the heart during aging, with particular emphasis on mechanisms of RNA modification that control their activity. Targeting noncoding RNAs as potential novel therapeutics in cardiac aging is also discussed.


Asunto(s)
Insuficiencia Cardíaca , ARN Largo no Codificante , Humanos , Anciano , ARN Largo no Codificante/genética , ARN no Traducido/genética , Corazón , Envejecimiento/genética , Insuficiencia Cardíaca/genética
3.
Small ; : e2404065, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949396

RESUMEN

Fe3O4 is barely taken into account as an electrocatalyst for oxygen reduction reaction (ORR), an important reaction for metal-air batteries and fuel cells, due to its sluggish catalytic kinetics and poor electron conductivity. Herein, how strain engineering can be employed to regulate the local electronic structure of Fe3O4 for high ORR activity is reported. Compressively strained Fe3O4 shells with 2.0% shortened Fe─O bond are gained on the Fe/Fe4N cores as a result of lattice mismatch at the interface. A downshift of the d-band center occurs for compressed Fe3O4, leading to weakened chemisorption energy of oxygenated intermediates, and lower reaction overpotential. The compressed Fe3O4 exhibits greatly enhanced electrocatalytic ORR activity with a kinetic current density of 27 times higher than that of pristine one at 0.80 V (vs reversible hydrogen electrode), as well as potential application in zinc-air batteries. The findings provide a new strategy for tuning electronic structures and improving the catalytic activity of other metal catalysts.

4.
Opt Express ; 32(4): 5770-5782, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38439295

RESUMEN

In this work, we propose an analytical expression for calculating the transverse mode instability (TMI) threshold power, which clearly shows the role of various fiber parameters and system parameters. The TMI threshold expression is obtained by solving the heat conduction equation and the nonlinear coupling equation using the fundamental mode fitted by Gaussian functions. The calculation results of the proposed TMI threshold expression are consistent with the experimental phenomena and simulation results from the well-recognized theoretical model. The influence of some special parameters on the TMI threshold and the power scaling is also investigated. This work will be helpful for fiber design and TMI mitigation of high-power fiber lasers.

5.
Circ Res ; 130(12): 1994-2014, 2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35679366

RESUMEN

Acute and chronic animal models of exercise are commonly used in research. Acute exercise testing is used, often in combination with genetic, pharmacological, or other manipulations, to study the impact of these manipulations on the cardiovascular response to exercise and to detect impairments or improvements in cardiovascular function that may not be evident at rest. Chronic exercise conditioning models are used to study the cardiac phenotypic response to regular exercise training and as a platform for discovery of novel pathways mediating cardiovascular benefits conferred by exercise conditioning that could be exploited therapeutically. The cardiovascular benefits of exercise are well established, and, frequently, molecular manipulations that mimic the pathway changes induced by exercise recapitulate at least some of its benefits. This review discusses approaches for assessing cardiovascular function during an acute exercise challenge in rodents, as well as practical and conceptual considerations in the use of common rodent exercise conditioning models. The case for studying feeding in the Burmese python as a model for exercise-like physiological adaptation is also explored.


Asunto(s)
Boidae , Condicionamiento Físico Animal , Animales , Boidae/genética , Fenómenos Fisiológicos Cardiovasculares , Modelos Animales , Condicionamiento Físico Animal/fisiología , Roedores
6.
Angew Chem Int Ed Engl ; 63(14): e202319091, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38308095

RESUMEN

Aqueous zinc-ion batteries are regarded as promising and efficient energy storage systems owing to remarkable safety and satisfactory capacity. Nevertheless, the instability of zinc metal anodes, characterized by issues such as dendrite growth and parasitic side reactions, poses a significant barrier to widespread applications. Herein, we address this challenge by designing a localized conjugated structure comprising a cyclic polyacrylonitrile polymer (CPANZ), induced by a Zn2+-based Lewis acid (zinc trifluoromethylsulfonate) at a temperature of 120 °C. The CPANZ layer on the Zn anode, enriched with appropriate pyridine nitrogen-rich groups (conjugated cyclic -C=N-), exhibits a notable affinity for Zn2+ with ample deposition sites. This zincophilic skeleton not only serves as a protective layer to guide the deposition of Zn2+ but also functions as proton channel blocker, regulating the proton flux to mitigate the hydrogen evolution. Additionally, the strong adhesion strength of the CPANZ layer guarantees its sustained protection to the Zn metal during long-term cycling. As a result, the modified zinc electrode demonstrates long cycle life and high durability in both half-cell and pouch cells. These findings present a feasible approach to designing high performance aqueous anodes by introducing a localized conjugated layer.

7.
Circulation ; 146(5): 412-426, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35862076

RESUMEN

BACKGROUND: The human heart has limited capacity to generate new cardiomyocytes and this capacity declines with age. Because loss of cardiomyocytes may contribute to heart failure, it is crucial to explore stimuli of endogenous cardiac regeneration to favorably shift the balance between loss of cardiomyocytes and the birth of new cardiomyocytes in the aged heart. We have previously shown that cardiomyogenesis can be activated by exercise in the young adult mouse heart. Whether exercise also induces cardiomyogenesis in aged hearts, however, is still unknown. Here, we aim to investigate the effect of exercise on the generation of new cardiomyocytes in the aged heart. METHODS: Aged (20-month-old) mice were subjected to an 8-week voluntary running protocol, and age-matched sedentary animals served as controls. Cardiomyogenesis in aged hearts was assessed on the basis of 15N-thymidine incorporation and multi-isotope imaging mass spectrometry. We analyzed 1793 cardiomyocytes from 5 aged sedentary mice and compared these with 2002 cardiomyocytes from 5 aged exercised mice, followed by advanced histology and imaging to account for ploidy and nucleation status of the cell. RNA sequencing and subsequent bioinformatic analyses were performed to investigate transcriptional changes induced by exercise specifically in aged hearts in comparison with young hearts. RESULTS: Cardiomyogenesis was observed at a significantly higher frequency in exercised compared with sedentary aged hearts on the basis of the detection of mononucleated/diploid 15N-thymidine-labeled cardiomyocytes. No mononucleated/diploid 15N-thymidine-labeled cardiomyocyte was detected in sedentary aged mice. The annual rate of mononucleated/diploid 15N-thymidine-labeled cardiomyocytes in aged exercised mice was 2.3% per year. This compares with our previously reported annual rate of 7.5% in young exercised mice and 1.63% in young sedentary mice. Transcriptional profiling of young and aged exercised murine hearts and their sedentary controls revealed that exercise induces pathways related to circadian rhythm, irrespective of age. One known oscillating transcript, however, that was exclusively upregulated in aged exercised hearts, was isoform 1.4 of regulator of calcineurin, whose regulation and functional role were explored further. CONCLUSIONS: Our data demonstrate that voluntary running in part restores cardiomyogenesis in aged mice and suggest that pathways associated with circadian rhythm may play a role in physiologically stimulated cardiomyogenesis.


Asunto(s)
Miocitos Cardíacos , Condicionamiento Físico Animal , Animales , Calcineurina/metabolismo , Humanos , Lactante , Ratones , Miocitos Cardíacos/citología , Timidina/metabolismo
8.
Circulation ; 145(16): 1218-1233, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35114812

RESUMEN

BACKGROUND: The heart grows in response to pathological and physiological stimuli. The former often precedes cardiomyocyte loss and heart failure; the latter paradoxically protects the heart and enhances cardiomyogenesis. The mechanisms underlying these differences remain incompletely understood. Although long noncoding RNAs (lncRNAs) are important in cardiac development and disease, less is known about their roles in physiological hypertrophy or cardiomyogenesis. METHODS: RNA sequencing was applied to hearts from mice after 8 weeks of voluntary exercise-induced physiological hypertrophy and cardiomyogenesis or transverse aortic constriction for 2 or 8 weeks to induce pathological hypertrophy or heart failure. The top lncRNA candidate was overexpressed in hearts with adeno-associated virus vectors and inhibited with antisense locked nucleic acid-GapmeRs to examine its function. Downstream effectors were identified through promoter analyses and binding assays. The functional roles of a novel downstream effector, dachsous cadherin-related 2 (DCHS2), were examined through transgenic overexpression in zebrafish and cardiac-specific deletion in Cas9-knockin mice. RESULTS: We identified exercise-regulated cardiac lncRNAs, called lncExACTs. lncExACT1 was evolutionarily conserved and decreased in exercised hearts but increased in human and experimental heart failure. Cardiac lncExACT1 overexpression caused pathological hypertrophy and heart failure; lncExACT1 inhibition induced physiological hypertrophy and cardiomyogenesis, protecting against cardiac fibrosis and dysfunction. lncExACT1 functioned by regulating microRNA-222, calcineurin signaling, and Hippo/Yap1 signaling through DCHS2. Cardiomyocyte DCHS2 overexpression in zebrafish induced pathological hypertrophy and impaired cardiac regeneration, promoting scarring after injury. In contrast, murine DCHS2 deletion induced physiological hypertrophy and promoted cardiomyogenesis. CONCLUSIONS: These studies identify lncExACT1-DCHS2 as a novel pathway regulating cardiac hypertrophy and cardiomyogenesis. lncExACT1-DCHS2 acts as a master switch toggling the heart between physiological and pathological growth to determine functional outcomes, providing a potentially tractable therapeutic target for harnessing the beneficial effects of exercise.


Asunto(s)
Proteínas Relacionadas con las Cadherinas/metabolismo , Insuficiencia Cardíaca , MicroARNs , ARN Largo no Codificante , Animales , Cardiomegalia/metabolismo , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/genética , MicroARNs/metabolismo , Miocitos Cardíacos/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Pez Cebra/genética
9.
J Am Chem Soc ; 145(28): 15572-15580, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37409766

RESUMEN

Electrochemical coupling between carbon and nitrogen species to generate high-value C-N products, including urea, presents significant economic and environmental potentials for addressing the energy crisis. However, this electrocatalysis process still suffers from limited mechanism understanding due to the complex reaction networks, which restricts the development of electrocatalysts beyond trial-and-error practices. In this work, we aim to improve the understanding of the C-N coupling mechanism. This goal was achieved by constructing the activity and selectivity landscape on 54 MXene surfaces by density functional theory (DFT) calculations. Our results show that the activity of the C-N coupling step is largely determined by the *CO adsorption strength (Ead-CO), while the selectivity relies more on the co-adsorption strength of *N and *CO (Ead-CO and Ead-N). Based on these findings, we propose that an ideal C-N coupling MXene catalyst should satisfy moderate *CO and stable *N adsorption. Through the machine learning-based approach, data-driven formulas for describing the relationship between Ead-CO and Ead-N with atomic physical chemistry features were further identified. Based on the identified formula, 162 MXene materials were screened without time-consuming DFT calculations. Several potential catalysts were predicted with good C-N coupling performance, such as Ta2W2C3. The candidate was then verified by DFT calculations. This study has incorporated machine learning methods for the first time to provide an efficient high-throughput screening method for selective C-N coupling electrocatalysts, which could be extended to a wider range of electrocatalytic reactions to facilitate green chemical production.

10.
J Am Chem Soc ; 145(26): 14335-14344, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37342888

RESUMEN

Design for highly selective catalysts for CO2 electroreduction to multicarbon (C2+) fuels is pressing and important. There is, however, presently a poor understanding of selectivity toward C2+ species. Here we report for the first time a method of judiciously combined quantum chemical computations, artificial-intelligence (AI) clustering, and experiment for development of a model for the relationship between C2+ product selectivity and composition of oxidized Cu-based catalysts. We 1) evidence that the oxidized Cu surface more significantly facilitates C-C coupling, 2) confirm the critical potential condition(s) for this oxidation state under different metal doping components via ab initio thermodynamics computation, 3) establish an inverted-volcano relationship between experimental Faradaic efficiency and critical potential using multidimensional scaling (MDS) results based on physical properties of dopant elements, and 4) demonstrate design for electrocatalysts to selectively generate C2+ product(s) through a co-doping strategy of early and late transition metals. We conclude that a combination of theoretical computation, AI clustering, and experiment can be used to practically establish relationships between descriptors and selectivity for complex reactions. Findings will benefit researchers in designing electroreduction conversions of CO2 to multicarbon C2+ products.

11.
J Am Chem Soc ; 145(11): 6410-6419, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36913199

RESUMEN

Sustainable conversion of plastic waste to mitigate environmental threats and reclaim waste value is important. Ambient-condition photoreforming is practically attractive to convert waste to hydrogen (H2); however, it has poor performance because of mutual constraint between proton reduction and substrate oxidation. Here, we realize a cooperative photoredox using defect-rich chalcogenide nanosheet-coupled photocatalysts, e.g., d-NiPS3/CdS, to give an ultrahigh H2 evolution of ∼40 mmol gcat-1 h-1 and organic acid yield up to 78 µmol within 9 h, together with excellent stability beyond 100 h in photoreforming of commercial waste plastic poly(lactic acid) and poly(ethylene terephthalate). Significantly, these metrics represent one of the most efficient plastic photoreforming reported. In situ ultrafast spectroscopic studies confirm a charge transfer-mediated reaction mechanism in which d-NiPS3 rapidly extracts electrons from CdS to boost H2 evolution, favoring hole-dominated substrate oxidation to improve overall efficiency. This work opens practical avenues for converting plastic waste into fuels and chemicals.

12.
J Am Chem Soc ; 145(40): 21807-21816, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37770040

RESUMEN

Perovskite oxides ABO3 continue to be a major focus in materials science. Of particular interest is the interplay between A and B cations as exemplified by intersite charge transfer (ICT), which causes novel phenomena including negative thermal expansion and metal-insulator transition. However, the ICT properties were achieved and optimized by cationic substitution or ordering. Here we demonstrate an anionic approach to induce ICT using an oxyhydride perovskite, EuVO2H, which has alternating layers of EuH and VO2. A bulk EuVO2H behaves as a ferromagnetic insulator with a relatively high transition temperature (TC) of 10 K. However, the application of external pressure to the EuIIVIIIO2H bulk or compressive strain from the substrate in the thin films induces ICT from the EuIIH layer to the VIIIO2 layer due to the extended empty V dxy orbital. The ICT phenomenon causes the VO2 layer to become conductive, leading to an increase in TC that is dependent on the number of carriers in the dxy orbitals (up to a factor of 4 for 10 nm thin films). In addition, a large perpendicular magnetic anisotropy appears with the ICT for the films of <100 nm, which is unprecedented in materials with orbital-free Eu2+, opening new perspectives for applications. The present results provide opportunities for the acquisition of novel functions by alternating transition metal/rare earth layers with heteroanions.

13.
BMC Med ; 21(1): 153, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-37076872

RESUMEN

BACKGROUND: A large proportion of pulmonary embolism (PE) heritability remains unexplained, particularly among the East Asian (EAS) population. Our study aims to expand the genetic architecture of PE and reveal more genetic determinants in Han Chinese. METHODS: We conducted the first genome-wide association study (GWAS) of PE in Han Chinese, then performed the GWAS meta-analysis based on the discovery and replication stages. To validate the effect of the risk allele, qPCR and Western blotting experiments were used to investigate possible changes in gene expression. Mendelian randomization (MR) analysis was employed to implicate pathogenic mechanisms, and a polygenic risk score (PRS) for PE risk prediction was generated. RESULTS: After meta-analysis of the discovery dataset (622 cases, 8853 controls) and replication dataset (646 cases, 8810 controls), GWAS identified 3 independent loci associated with PE, including the reported loci FGG rs2066865 (p-value = 3.81 × 10-14), ABO rs582094 (p-value = 1.16 × 10-10) and newly reported locus FABP2 rs1799883 (p-value = 7.59 × 10-17). Previously reported 10 variants were successfully replicated in our cohort. Functional experiments confirmed that FABP2-A163G(rs1799883) promoted the transcription and protein expression of FABP2. Meanwhile, MR analysis revealed that high LDL-C and TC levels were associated with an increased risk of PE. Individuals with the top 10% of PRS had over a fivefold increased risk for PE compared to the general population. CONCLUSIONS: We identified FABP2, related to the transport of long-chain fatty acids, contributing to the risk of PE and provided more evidence for the essential role of metabolic pathways in PE development.


Asunto(s)
Pueblos del Este de Asia , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Embolia Pulmonar , Humanos , China/epidemiología , Pueblos del Este de Asia/genética , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo/métodos , Genotipo , Polimorfismo de Nucleótido Simple/genética , Embolia Pulmonar/epidemiología , Embolia Pulmonar/etnología , Embolia Pulmonar/genética , Factores de Riesgo
14.
Small ; 19(44): e2301327, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37415572

RESUMEN

The systematical understanding of metal-dependent activity in electrocatalyzing oxygen reduction reaction (ORR), a vital reaction with sluggish kinetics for zinc-air batteries, remains quite unclear. An atomic and spatial engineering modulating ORR activity over hollow carbon quasi-sphere (HCS) confined in a series of single M-N (M = Cu, Mn, Ni) sites is reported here. Based on the theoretical prediction and experimental validation, Cu-N4 site with the lowest overpotential shows a better ORR kinetics than Mn-N4 and Ni-N4 . The ORR activity of single-atom Cu center can be further improved by decreasing the coordination number of N to two, namely Cu-N2 , due to the enhancement of electrons with lower coordination structure. Benefitting from the unique spatial confinement effect of the HCS structure in modulating electronic feature of active sites, the Cu-N2 site confined in HCS also delivers highly improved ORR kinetics and activity relative to that on planner graphene. Additionally, the best catalyst holds excellent promise in the application of zinc-air batteries. The findings will pave a new way to atomically and electronically tune active sites with high efficiency for other single-atom catalysts.

15.
J Hum Genet ; 68(12): 805-812, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37537391

RESUMEN

Genome-wide association studies (GWAS) have identified numerous risk loci for venous thromboembolism (VTE), but it is challenging to decipher the underlying mechanisms. We employed an integrative analytical pipeline to transform genetic associations to identify novel plasma proteins for VTE. Proteome-wide association studies (PWAS) were determined by functional summary-based imputation leveraging data from a genome-wide association analysis (14,429 VTE patients, 267,037 controls), blood proteomes (1348 cases), followed by Mendelian randomization, Bayesian colocalization, protein-protein interaction, and pathway enrichment analysis. Twenty genetically regulated circulating protein abundances (F2, F11, ABO, PLCG2, LRP4, PLEK, KLKB1, PROC, KNG1, THBS2, SERPINA1, RARRES2, CEL, GP6, SERPINE2, SERPINA10, OBP2B, EFEMP1, F5, and MSR1) were associated with VTE. Of these 13 proteins demonstrated Mendelian randomized correlations. Six proteins (F2, F11, PLEK, SERPINA1, RARRES2, and SERPINE2) had strong support in colocalization analysis. Utilizing multidimensional data, this study suggests PLEK, SERPINA1, and SERPINE2 as compelling proteins that may provide key hints for future research and possible diagnostic and therapeutic targets for VTE.


Asunto(s)
Tromboembolia Venosa , Humanos , Tromboembolia Venosa/genética , Proteoma/genética , Estudio de Asociación del Genoma Completo/métodos , Análisis de la Aleatorización Mendeliana , Teorema de Bayes , Serpina E2/genética , Proteínas Sanguíneas/genética , Polimorfismo de Nucleótido Simple , Proteínas de la Matriz Extracelular/genética
16.
Opt Express ; 31(15): 24423-24436, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37475270

RESUMEN

In this work, the impact of fiber bending and mode content on transverse mode instability (TMI) is investigated. Based on a modified stimulated thermal Rayleigh scattering (STRS) model considering the gain competition between transverse modes, we theoretically detailed the TMI threshold under various mode content and bending conditions in few-mode fibers. Our theoretical calculations demonstrate that larger bending diameters increase the high order mode (HOM) components in the amplifier, which in turn reduces the frequency-shifted Stokes LP11o mode due to the inter-mode gain competition mechanism, thus improving the TMI threshold of few-mode amplifiers. The experimental results agree with the simulation. Finally, by optimizing the bending, an 8.38 kW output tandem pumped fiber amplifier is obtained with a beam quality M2 of 1.8. Both TMI and stimulated Raman scattering (SRS) are well suppressed at the maximum power. This work provides a comprehensive analysis of the TMI in few-mode amplifiers and offers a practical method to realize high-power high-brightness fiber lasers.

17.
Inorg Chem ; 62(21): 8219-8231, 2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37191263

RESUMEN

An effective approach to synthesize polycrystalline Ni-Co-Mo sulfide (NiCoMoS) is developed through doping engineering coupled with chemical transformation. The polycrystalline NiCoMoS with enriched active edge sites is designed and fabricated on a Ni foam (NF) via a facile hydrothermal calcination and post-sulfidation approach, where the polycrystalline NiCoMoO4 precursor is elaborately prepared by doping Co ions into the NiMoO4 lattice and subsequently in-situ-converted into NiCoMoS with 3D architectures of ordered nanoneedle arrays. Benefiting from the unique 3D structure and synergistic effects of each component, the optimized needle-like NiCoMoS(2.0) arraying on a NF as a self-standing electrode exhibits superior electrochemical performances with a high specific charge (920.0 C g-1 at 1.0 A g-1), excellent rate capability, and good long-term stability. Furthermore, the assembled NiCoMoS//activated carbon hybrid device presents a satisfactory supercapacitor performance, affording an energy density of 35.2 W h kg-1 at a power density of 800.0 W kg-1 and competitive long-term stability (83.8% retention at 15 A g-1 after 10,000 cycles). Such a novel strategy may pave a new route for exploring other polymetallic sulfides with enriched, exposed active edge sites for energy-related applications.

18.
Nature ; 546(7656): 124-128, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28569818

RESUMEN

Materials can be transformed from one crystalline phase to another by using an electric field to control ion transfer, in a process that can be harnessed in applications such as batteries, smart windows and fuel cells. Increasing the number of transferrable ion species and of accessible crystalline phases could in principle greatly enrich material functionality. However, studies have so far focused mainly on the evolution and control of single ionic species (for example, oxygen, hydrogen or lithium ions). Here we describe the reversible and non-volatile electric-field control of dual-ion (oxygen and hydrogen) phase transformations, with associated electrochromic and magnetoelectric effects. We show that controlling the insertion and extraction of oxygen and hydrogen ions independently of each other can direct reversible phase transformations among three different material phases: the perovskite SrCoO3-δ (ref. 12), the brownmillerite SrCoO2.5 (ref. 13), and a hitherto-unexplored phase, HSrCoO2.5. By analysing the distinct optical absorption properties of these phases, we demonstrate selective manipulation of spectral transparency in the visible-light and infrared regions, revealing a dual-band electrochromic effect that could see application in smart windows. Moreover, the starkly different magnetic and electric properties of the three phases-HSrCoO2.5 is a weakly ferromagnetic insulator, SrCoO3-δ is a ferromagnetic metal, and SrCoO2.5 is an antiferromagnetic insulator-enable an unusual form of magnetoelectric coupling, allowing electric-field control of three different magnetic ground states. These findings open up opportunities for the electric-field control of multistate phase transformations with rich functionalities.

19.
Nano Lett ; 22(11): 4475-4481, 2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35604434

RESUMEN

The low NH3 yield rate is a grand challenge for electrocatalytic N2 reduction to NH3. Herein, we report the first uranium single-atom catalyst (SAC) capable of catalyzing the electrochemical N2 reduction reaction (NRR). The uranium SAC features a low limiting potential (<0.5 V) and near-zero free energy changes for N2 adsorption and NH3 desorption. The integration of these merits enables the uranium SAC to afford an unprecedentedly high NH3 yield rate, 3-4 orders of magnitude higher than that of the Ru(0001) surface, which is widely recognized as an excellent NRR electrocatalyst. Further theoretical analysis reveals that the N2 reduction catalyzed by the uranium SAC is synergistically regulated by the d and f electrons of atomic uranium. This work proposes a promising solution (that is, atomically dispersed uranium) to the daunting challenge associated with the low NH3 yield rate, thus enabling the scalable production of NH3 via electrochemical N2 reduction.

20.
Angew Chem Int Ed Engl ; 62(9): e202216383, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36509704

RESUMEN

The design of heterogeneous catalysts is necessarily surface-focused, generally achieved via optimization of adsorption energy and microkinetic modelling. A prerequisite is to ensure the adsorption energy is physically meaningful is the stable existence of the conceived active-site structure on the surface. The development of improved understanding of the catalyst surface, however, is challenging practically because of the complex nature of dynamic surface formation and evolution under in-situ reactions. We propose therefore data-driven machine-learning (ML) approaches as a solution. In this Minireview we summarize recent progress in using machine-learning to search and predict (meta)stable structures, assist operando simulation under reaction conditions and micro-environments, and critically analyze experimental characterization data. We conclude that ML will become the new norm to lower costs associated with discovery and design of optimal heterogeneous catalysts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA