Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neurosci Methods ; 409: 110207, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38944128

RESUMEN

BACKGROUND: Real-valued mutual information (MI) has been used in spatial functional network connectivity (FNC) to measure high-order and nonlinear dependence between spatial maps extracted from magnitude-only functional magnetic resonance imaging (fMRI). However, real-valued MI cannot fully capture the group differences in spatial FNC from complex-valued fMRI data with magnitude and phase dependence. METHODS: We propose a complete complex-valued MI method according to the chain rule of MI. We fully exploit the dependence among magnitudes and phases of two complex-valued signals using second and fourth-order joint entropies, and propose to use a Gaussian copula transformation with a lower bound property to avoid inaccurate estimation of joint probability density function when computing the joint entropies. RESULTS: The proposed method achieves more accurate MI estimates than the two histogram-based (normal and symbolic approaches) and kernel density estimation methods for simulated signals, and enhances group differences in spatial functional network connectivity for experimental complex-valued fMRI data. COMPARISON WITH EXISTING METHODS: Compared with the simplified complex-valued MI and real-valued MI, the proposed method yields higher MI estimation accuracy, leading to 17.4 % and 145.5 % wider MI ranges, and more significant connectivity differences between healthy controls and schizophrenia patients. A unique connection between executive control network (EC) and right frontal parietal areas, and three additional connections mainly related to EC are detected than the simplified complex-valued MI. CONCLUSIONS: With capability in quantifying MI fully and accurately, the proposed complex-valued MI is promising in providing qualified FNC biomarkers for identifying mental disorders such as schizophrenia.

2.
Clin Transl Oncol ; 25(10): 2772-2782, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37095423

RESUMEN

The mechanism of deleted in lymphocytic leukemia 2 (DLEU2)-long non-coding RNA in tumors has become a major point of interest in recent research related to the occurrence and development of a variety of tumors. Recent studies have shown that the long non-coding RNA DLEU2 (lncRNA-DLEU2) can cause abnormal gene or protein expression by acting on downstream targets in cancers. At present, most lncRNA-DLEU2 play the role of oncogenes in different tumors, which are mostly associated with tumor characteristics, such as proliferation, migration, invasion, and apoptosis. The data thus far show that because lncRNA-DLEU2 plays an important role in most tumors, targeting abnormal lncRNA-DLEU2 may be an effective treatment strategy for early diagnosis and improving the prognosis of patients. In this review, we integrated lncRNA-DLEU2 expression in tumors, its biological functions, molecular mechanisms, and the utility of DLEU2 as an effective diagnostic and prognostic marker of tumors. This study aimed to provide a potential direction for the diagnosis, prognosis, and treatment of tumors using lncRNA-DLEU2 as a biomarker and therapeutic target.


Asunto(s)
Leucemia Linfoide , MicroARNs , ARN Largo no Codificante , Humanos , Biomarcadores , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Leucemia Linfoide/genética , MicroARNs/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
3.
Clin. transl. oncol. (Print) ; 25(10): 2772-2782, oct. 2023. tab, ilus
Artículo en Inglés | IBECS (España) | ID: ibc-225058

RESUMEN

The mechanism of deleted in lymphocytic leukemia 2 (DLEU2)-long non-coding RNA in tumors has become a major point of interest in recent research related to the occurrence and development of a variety of tumors. Recent studies have shown that the long non-coding RNA DLEU2 (lncRNA-DLEU2) can cause abnormal gene or protein expression by acting on downstream targets in cancers. At present, most lncRNA-DLEU2 play the role of oncogenes in different tumors, which are mostly associated with tumor characteristics, such as proliferation, migration, invasion, and apoptosis. The data thus far show that because lncRNA-DLEU2 plays an important role in most tumors, targeting abnormal lncRNA-DLEU2 may be an effective treatment strategy for early diagnosis and improving the prognosis of patients. In this review, we integrated lncRNA-DLEU2 expression in tumors, its biological functions, molecular mechanisms, and the utility of DLEU2 as an effective diagnostic and prognostic marker of tumors. This study aimed to provide a potential direction for the diagnosis, prognosis, and treatment of tumors using lncRNA-DLEU2 as a biomarker and therapeutic target (AU)


Asunto(s)
Humanos , Leucemia Linfoide/genética , MicroARNs/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Biomarcadores de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA