Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.365
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 177(1): 38-44, 2019 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-30901546

RESUMEN

Innovative analytical frameworks are required to capture the complex gene-environment interactions. We investigate the insufficiency of commonly used models for disease genome analysis and suggest considering genetic interactions in complex diseases. For non-genetic factors, we study the emerging wearable technologies that have enabled quantification of physiological and environmental factors at an unprecedented breadth and depth. We propose a Bayesian framework to hierarchically model personalized gene-environmental interaction to enable precision health and medicine.


Asunto(s)
Medicina de Precisión/métodos , Medicina de Precisión/tendencias , Dispositivos Electrónicos Vestibles/tendencias , Teorema de Bayes , Epistasis Genética/genética , Interacción Gen-Ambiente , Estudio de Asociación del Genoma Completo/métodos , Humanos , Herencia Multifactorial/genética
2.
Immunity ; 57(3): 478-494.e6, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38447571

RESUMEN

Emerging evidence has revealed a direct differentiation route from hematopoietic stem cells to megakaryocytes (direct route), in addition to the classical differentiation route through a series of restricted hematopoietic progenitors (stepwise route). This raises the question of the importance of two alternative routes for megakaryopoiesis. Here, we developed fate-mapping systems to distinguish the two routes, comparing their quantitative and functional outputs. We found that megakaryocytes were produced through the two routes with comparable kinetics and quantity under homeostasis. Single-cell RNA sequencing of the fate-mapped megakaryocytes revealed that the direct and stepwise routes contributed to the niche-supporting and immune megakaryocytes, respectively, but contributed to the platelet-producing megakaryocytes together. Megakaryocytes derived from the two routes displayed different activities and were differentially regulated by chemotherapy and inflammation. Our work links differentiation route to the heterogeneity of megakaryocytes. Alternative differentiation routes result in variable combinations of functionally distinct megakaryocyte subpopulations poised for different physiological demands.


Asunto(s)
Megacariocitos , Trombopoyesis , Diferenciación Celular/genética , Células Madre Hematopoyéticas , Plaquetas
3.
Cell ; 174(6): 1361-1372.e10, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-30193110

RESUMEN

A key aspect of genomic medicine is to make individualized clinical decisions from personal genomes. We developed a machine-learning framework to integrate personal genomes and electronic health record (EHR) data and used this framework to study abdominal aortic aneurysm (AAA), a prevalent irreversible cardiovascular disease with unclear etiology. Performing whole-genome sequencing on AAA patients and controls, we demonstrated its predictive precision solely from personal genomes. By modeling personal genomes with EHRs, this framework quantitatively assessed the effectiveness of adjusting personal lifestyles given personal genome baselines, demonstrating its utility as a personal health management tool. We showed that this new framework agnostically identified genetic components involved in AAA, which were subsequently validated in human aortic tissues and in murine models. Our study presents a new framework for disease genome analysis, which can be used for both health management and understanding the biological architecture of complex diseases. VIDEO ABSTRACT.


Asunto(s)
Aneurisma de la Aorta Abdominal/patología , Genómica , Animales , Aneurisma de la Aorta Abdominal/genética , Área Bajo la Curva , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Estudio de Asociación del Genoma Completo , Humanos , Aprendizaje Automático , Ratones , Polimorfismo de Nucleótido Simple , Mapas de Interacción de Proteínas , Curva ROC , Secuenciación Completa del Genoma
4.
Nature ; 616(7955): 176-182, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36991118

RESUMEN

Repression of gene expression by protein complexes of the Polycomb group is a fundamental mechanism that governs embryonic development and cell-type specification1-3. The Polycomb repressive deubiquitinase (PR-DUB) complex removes the ubiquitin moiety from monoubiquitinated histone H2A K119 (H2AK119ub1) on the nucleosome4, counteracting the ubiquitin E3 ligase activity of Polycomb repressive complex 1 (PRC1)5 to facilitate the correct silencing of genes by Polycomb proteins and safeguard active genes from inadvertent silencing by PRC1 (refs. 6-9). The intricate biological function of PR-DUB requires accurate targeting of H2AK119ub1, but PR-DUB can deubiquitinate monoubiquitinated free histones and peptide substrates indiscriminately; the basis for its exquisite nucleosome-dependent substrate specificity therefore remains unclear. Here we report the cryo-electron microscopy structure of human PR-DUB, composed of BAP1 and ASXL1, in complex with the chromatosome. We find that ASXL1 directs the binding of the positively charged C-terminal extension of BAP1 to nucleosomal DNA and histones H3-H4 near the dyad, an addition to its role in forming the ubiquitin-binding cleft. Furthermore, a conserved loop segment of the catalytic domain of BAP1 is situated near the H2A-H2B acidic patch. This distinct nucleosome-binding mode displaces the C-terminal tail of H2A from the nucleosome surface, and endows PR-DUB with the specificity for H2AK119ub1.


Asunto(s)
Enzimas Desubicuitinizantes , Histonas , Complejo Represivo Polycomb 1 , Proteínas del Grupo Polycomb , Humanos , Microscopía por Crioelectrón , Histonas/química , Histonas/metabolismo , Nucleosomas/química , Nucleosomas/genética , Nucleosomas/metabolismo , Complejo Represivo Polycomb 1/química , Complejo Represivo Polycomb 1/metabolismo , Complejo Represivo Polycomb 1/ultraestructura , Proteínas del Grupo Polycomb/química , Proteínas del Grupo Polycomb/metabolismo , Proteínas del Grupo Polycomb/ultraestructura , Ubiquitina/metabolismo , Ubiquitina Tiolesterasa/química , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina Tiolesterasa/ultraestructura , Ubiquitinación , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Proteínas Represoras/ultraestructura , Dominio Catalítico , Enzimas Desubicuitinizantes/clasificación , Enzimas Desubicuitinizantes/metabolismo , Enzimas Desubicuitinizantes/ultraestructura , Especificidad por Sustrato , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/ultraestructura
5.
Nature ; 622(7981): 112-119, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37704727

RESUMEN

The molecular mechanisms and evolutionary changes accompanying synapse development are still poorly understood1,2. Here we generate a cross-species proteomic map of synapse development in the human, macaque and mouse neocortex. By tracking the changes of more than 1,000 postsynaptic density (PSD) proteins from midgestation to young adulthood, we find that PSD maturation in humans separates into three major phases that are dominated by distinct pathways. Cross-species comparisons reveal that human PSDs mature about two to three times slower than those of other species and contain higher levels of Rho guanine nucleotide exchange factors (RhoGEFs) in the perinatal period. Enhancement of RhoGEF signalling in human neurons delays morphological maturation of dendritic spines and functional maturation of synapses, potentially contributing to the neotenic traits of human brain development. In addition, PSD proteins can be divided into four modules that exert stage- and cell-type-specific functions, possibly explaining their differential associations with cognitive functions and diseases. Our proteomic map of synapse development provides a blueprint for studying the molecular basis and evolutionary changes of synapse maturation.


Asunto(s)
Proteómica , Sinapsis , Adolescente , Animales , Niño , Preescolar , Humanos , Lactante , Recién Nacido , Ratones , Adulto Joven , Cognición/fisiología , Espinas Dendríticas , Edad Gestacional , Macaca , Neuronas/metabolismo , Densidad Postsináptica/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Transducción de Señal , Especificidad de la Especie , Sinapsis/metabolismo , Sinapsis/fisiología
6.
PLoS Biol ; 22(8): e3002780, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39186808

RESUMEN

In animals, mitosis involves the breakdown of the nuclear envelope and the sorting of individualized, condensed chromosomes. During mitotic exit, emerging nuclei reassemble a nuclear envelope around a single mass of interconnecting chromosomes. The molecular mechanisms of nuclear reassembly are incompletely understood. Moreover, the cellular and physiological consequences of defects in this process are largely unexplored. Here, we have characterized a mechanism essential for nuclear reassembly in Drosophila. We show that Ankle2 promotes the PP2A-dependent recruitment of BAF and Lamin at reassembling nuclei, and that failures in this mechanism result in severe nuclear defects after mitosis. We then took advantage of perturbations in this mechanism to investigate the physiological responses to nuclear reassembly defects during tissue development in vivo. Partial depletion of Ankle2, BAF, or Lamin in imaginal wing discs results in wing development defects accompanied by apoptosis. We found that blocking apoptosis strongly enhances developmental defects. Blocking p53 does not prevent apoptosis but enhances defects due to the loss of a cell cycle checkpoint. Our results suggest that apoptotic and p53-dependent responses play a crucial role in safeguarding tissue development in response to sporadic nuclear reassembly defects.


Asunto(s)
Apoptosis , Núcleo Celular , Proteínas de Drosophila , Drosophila melanogaster , Mitosis , Proteína p53 Supresora de Tumor , Alas de Animales , Animales , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Apoptosis/genética , Núcleo Celular/metabolismo , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Alas de Animales/metabolismo , Alas de Animales/crecimiento & desarrollo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Membrana Nuclear/metabolismo , Laminas/metabolismo , Laminas/genética , Proteínas Nucleares
7.
Proc Natl Acad Sci U S A ; 121(17): e2314353121, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38635634

RESUMEN

Auxin regulates plant growth and development through downstream signaling pathways, including the best-known SCFTIR1/AFB-Aux/IAA-ARF pathway and several other less characterized "noncanonical" pathways. Recently, one SCFTIR1/AFB-independent noncanonical pathway, mediated by Transmembrane Kinase 1 (TMK1), was discovered through the analyses of its functions in Arabidopsis apical hook development. Asymmetric accumulation of auxin on the concave side of the apical hook triggers DAR1-catalyzed release of the C-terminal of TMK1, which migrates into the nucleus, where it phosphorylates and stabilizes IAA32/34 to inhibit cell elongation, which is essential for full apical hook formation. However, the molecular factors mediating IAA32/34 degradation have not been identified. Here, we show that proteins in the CYTOKININ INDUCED ROOT WAVING 1 (CKRW1)/WAVY GROWTH 3 (WAV3) subfamily act as E3 ubiquitin ligases to target IAA32/34 for ubiquitination and degradation, which is inhibited by TMK1c-mediated phosphorylation. This antagonistic interaction between TMK1c and CKRW1/WAV3 subfamily E3 ubiquitin ligases regulates IAA32/34 levels to control differential cell elongation along opposite sides of the apical hook.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas F-Box , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Transducción de Señal , Ubiquitinas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas F-Box/genética , Proteínas F-Box/metabolismo
8.
Blood ; 141(9): 1070-1086, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36356302

RESUMEN

Intestinal epithelial cells (IECs) are implicated in the propagation of T-cell-mediated inflammatory diseases, including graft-versus-host disease (GVHD), but the underlying mechanism remains poorly defined. Here, we report that IECs require receptor-interacting protein kinase-3 (RIPK3) to drive both gastrointestinal (GI) tract and systemic GVHD after allogeneic hematopoietic stem cell transplantation. Selectively inhibiting RIPK3 in IECs markedly reduces GVHD in murine intestine and liver. IEC RIPK3 cooperates with RIPK1 to trigger mixed lineage kinase domain-like protein-independent production of T-cell-recruiting chemokines and major histocompatibility complex (MHC) class II molecules, which amplify and sustain alloreactive T-cell responses. Alloreactive T-cell-produced interferon gamma enhances this RIPK1/RIPK3 action in IECs through a JAK/STAT1-dependent mechanism, creating a feed-forward inflammatory cascade. RIPK1/RIPK3 forms a complex with JAK1 to promote STAT1 activation in IECs. The RIPK1/RIPK3-mediated inflammatory cascade of alloreactive T-cell responses results in intestinal tissue damage, converting the local inflammation into a systemic syndrome. Human patients with severe GVHD showed highly activated RIPK1 in the colon epithelium. Finally, we discover a selective and potent RIPK1 inhibitor (Zharp1-211) that significantly reduces JAK/STAT1-mediated expression of chemokines and MHC class II molecules in IECs, restores intestinal homeostasis, and arrests GVHD without compromising the graft-versus-leukemia (GVL) effect. Thus, targeting RIPK1/RIPK3 in IECs represents an effective nonimmunosuppressive strategy for GVHD treatment and potentially for other diseases involving GI tract inflammation.


Asunto(s)
Enfermedad Injerto contra Huésped , Intestinos , Ratones , Humanos , Animales , Mucosa Intestinal/metabolismo , Inflamación/metabolismo , Antígenos de Histocompatibilidad Clase II/metabolismo , Enfermedad Injerto contra Huésped/prevención & control , Enfermedad Injerto contra Huésped/metabolismo , Homeostasis , Proteína Serina-Treonina Quinasas de Interacción con Receptores
9.
Genomics ; 116(5): 110912, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39117249

RESUMEN

Sperm undergo a series of changes in the epididymis region before acquiring the ability to move and fertilize, and the identification of genes expressed in a region-specific manner in the epididymis provides a valuable insight into functional differences between regions. We collected epididymal tissue from three yaks and cultured epithelial cells from the caput, corpus and cauda regions of the yak epididymis using the tissue block method. RNA sequencing analysis (RNA-seq) technology was used to detect gene expression in yak epididymal caput, corpus and cauda epithelial cells. The results showed that the DEGs were highest in the caput vs. corpus comparison, and lowest in the corpus vs. cauda comparison. Six DEGs were verified by real-time fluorescence quantitative PCR (qRT-PCR), consistent with transcriptome sequencing results. The significantly enriched DNA replication pathway in the caput vs. corpus was coordinated with cell proliferation, while upregulated DEGs such as POLD1 and MCM4 were found in the DNA replication pathway. The AMPK signaling pathway was found significantly enriched in the caput vs cauda, suggesting its involvement in sperm maturation and capacitation. The TGF beta signaling pathway was screened in the corpus vs cauda and is crucial for mammalian reproductive regulation. Upregulated DEGs (TGFB3, INHBA, INHBB) are involved in the TGF beta signaling pathway. This study provides a reference for culturing yak epididymal epithelial cells in vitro, and elucidates the transcriptional profiles of epithelial cells in different segments of the epididymis, revealing the regulatory and functional differences between different segments, providing basic data for exploring the molecular mechanism of yak sperm maturation and improving the reproductive capacity of high-altitude mammals.


Asunto(s)
Epidídimo , Células Epiteliales , Animales , Epidídimo/metabolismo , Epidídimo/citología , Bovinos/metabolismo , Masculino , Células Epiteliales/metabolismo , Células Epiteliales/citología , Transcriptoma , Transducción de Señal , Células Cultivadas , Maduración del Esperma/genética , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/genética
10.
Genomics ; 116(5): 110890, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38909906

RESUMEN

Previous studies have presented evidence suggesting that altitude exerts detrimental effects on reproductive processes, yet the underlying mechanism remains elusive. Our study employed two distinct goat breeds inhabiting low and high altitudes, and conducted a comparative analysis of mRNA profiles in testis tissues and the composition of gut microbiota. The results revealed a reduced testis size in high-altitude goats. RNA-seq analysis identified the presence of 214 differentially expressed genes (DEGs) in the testis. These DEGs resulted in a weakened immunosuppressive effect, ultimately impairing spermatogenesis in high-altitude goats. Additionally, 16S rDNA amplicon sequencing recognized statistically significant variations in the abundance of the genera Treponema, unidentified_Oscillospiraceae, Desulfovibrio, Butyricicoccus, Dorea, Parabacteroides between the two groups. The collective evidence demonstrated the gut and testis played a synergistic role in causing decreased fertility at high altitudes. Our research provides a theoretical basis for future investigations into the reproductive fitness of male goats.


Asunto(s)
Altitud , Microbioma Gastrointestinal , Cabras , Testículo , Animales , Cabras/microbiología , Cabras/genética , Masculino , Testículo/metabolismo , Testículo/microbiología , Transcriptoma , ARN Ribosómico 16S/genética , Espermatogénesis/genética
11.
J Cell Mol Med ; 28(7): e18200, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38506069

RESUMEN

Diabetic retinopathy (DR) is one of leading causes of vision loss in adults with increasing prevalence worldwide. Increasing evidence has emphasized the importance of gut microbiome in the aetiology and development of DR. However, the causal relationship between gut microbes and DR remains largely unknown. To investigate the causal associations of DR with gut microbes and DR risk factors, we employed two-sample Mendelian Randomization (MR) analyses to estimate the causal effects of 207 gut microbes on DR outcomes. Inputs for MR included Genome-wide Association Study (GWAS) summary statistics of 207 taxa of gut microbes (the Dutch Microbiome Project) and 21 risk factors for DR. The GWAS summary statistics data of DR was from the FinnGen Research Project. Data analysis was performed in May 2023. We identified eight bacterial taxa that exhibited significant causal associations with DR (FDR < 0.05). Among them, genus Collinsella and species Collinsella aerofaciens were associated with increased risk of DR, while the species Bacteroides faecis, Burkholderiales bacterium_1_1_47, Ruminococcus torques, Streptococcus salivarius, genus Burkholderiales_noname and family Burkholderiales_noname showed protective effects against DR. Notably, we found that the causal effect of species Streptococcus salivarius on DR was mediated through the level of host fasting glucose, a well-established risk factor for DR. Our results reveal that specific gut microbes may be causally linked to DR via mediating host metabolic risk factors, highlighting potential novel therapeutic or preventive targets for DR.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Streptococcus salivarius , Adulto , Humanos , Análisis de la Aleatorización Mendeliana , Estudio de Asociación del Genoma Completo , Ayuno , Glucosa
12.
J Cell Mol Med ; 28(8): e18234, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38520214

RESUMEN

Liver fibrosis is characterized by the activation and transformation of hepatic stellate cells (HSCs) induced by various injury factors. The degree of liver fibrosis can be significantly improved, but persistent injury factors present a significant therapeutic challenge. Hepatocytes are the most important parenchymal cell type in the liver. In this study, we explored the molecular mechanisms by which damaged liver cells activate HSCs through extracellular vesicles. We established a coculture model of LO2 and LX2 and validated its exosomal transmission activity. Subsequently, differentially expressed long noncoding RNAs (lncRNAs) were screened through RNA sequencing and their mechanisms of action as competing endogenous RNAs (ceRNAs) further confirmed using biological methods, such as FISH and luciferase assays. Damaged liver cells induced activation of LX2 and upregulation of liver fibrosis-related markers. Exosomes extracted and identified from the supernatant fraction contained differentially expressed lncRNA cytoskeleton regulator RNA (CYTOR) that competed with microRNA-125 (miR-125) for binding to glial cell line-derived neurotrophic factor (GDNF) in HSCs, in turn, promoting LX2 activation. MiR-125 could target and regulate both CYTOR and GDNF and vice versa, as verified using the luciferase assay. In an in vivo model, damaged liver extracellular vesicles induced the formation of liver fibrosis. Notably, downregulation of CYTOR within extracellular vesicles effectively inhibited liver fibrosis. The lncRNA CYTOR in exosomes of damaged liver cells is upregulated and modulates the expression of downstream GDNF through activity as a ceRNA, providing an effective mechanism for activation of HSCs.


Asunto(s)
Exosomas , MicroARNs , ARN Largo no Codificante , Humanos , Células Estrelladas Hepáticas/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Exosomas/genética , Exosomas/metabolismo , Regulación de la Expresión Génica , Hepatocitos/metabolismo , Cirrosis Hepática/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Luciferasas/metabolismo
13.
BMC Genomics ; 25(1): 51, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38212708

RESUMEN

BACKGROUND: Colorectal cancer (CRC) is one of the world's most common malignancies. Epigenetics is the study of heritable changes in characteristics beyond the DNA sequence. Epigenetic information is essential for maintaining specific expression patterns of genes and the normal development of individuals, and disorders of epigenetic modifications may alter the expression of oncogenes and tumor suppressor genes and affect the development of cancer. This study elucidates the relationship between epigenetics and the prognosis of CRC patients by developing a predictive model to explore the potential value of epigenetics in the treatment of CRC. METHODS: Gene expression data of CRC patients' tumor tissue and controls were downloaded from GEO database. Combined with the 720 epigenetic-related genes (ERGs) downloaded from EpiFactors database, prognosis-related epigenetic genes were selected by univariate cox and LASSO analyses. The Kaplan-Meier and ROC curve were used to analyze the accuracy of the model. Data of 238 CRC samples with survival data downloaded from the GSE17538 were used for validation. Finally, the risk model is combined with the clinical characteristics of CRC patients to perform univariate and multivariate cox regression analysis to obtain independent risk factors and draw nomogram. Then we evaluated the accuracy of its prediction by calibration curves. RESULTS: A total of 2906 differentially expressed genes (DEGs) were identified between CRC and control samples. After overlapping DEGs with 720 ERGs, 56 epigenetic-related DEGs (DEERGs) were identified. Combining univariate and LASSO regression analysis, the 8 epigenetic-related genes-based risk score model of CRC was established. The ROC curves and survival difference of high and low risk groups revealed the good performance of the risk score model based on prognostic biomarkers in both training and validation sets. A nomogram with good performance to predict the survival of CRC patients were established based on age, NM stage and risk score. The calibration curves showed that the prognostic model had good predictive performance. CONCLUSION: In this study, an epigenetically relevant 8-gene signature was constructed that can effectively predict the prognosis of CRC patients and provide potential directions for targeted therapies for CRC.


Asunto(s)
Neoplasias Colorrectales , Oncogenes , Humanos , Pronóstico , Nomogramas , Epigénesis Genética , Puntuación de Riesgo Genético , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/genética
14.
BMC Genomics ; 25(1): 925, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39363209

RESUMEN

BACKGROUND: Plant-specific TIFY proteins play crucial roles in regulating plant growth, development, and various stress responses. However, there is no information available about this family in Artemisia argyi, a well-known traditional medicinal plant with great economic value. RESULTS: A total of 34 AaTIFY genes were identified, including 4 TIFY, 22 JAZ, 5 PPD, and 3 ZML genes. Structural, motif scanning, and phylogenetic relationships analysis of these genes revealed that members within the same group or subgroup exhibit similar exon-intron structures and conserved motif compositions. The TIFY genes were unevenly distributed across the 15 chromosomes. Tandem duplication events and segmental duplication events have been identified in the TIFY family in A. argyi. These events have played a crucial role in the gene multiplication and compression of different subfamilies within the TIFY family. Promoter analysis revealed that most AaTIFY genes contain multiple cis-elements associated with stress response, phytohormone signal transduction, and plant growth and development. Expression analysis of roots and leaves using RNA-seq data revealed that certain AaTIFY genes showed tissue-specific expression patterns, and some AaTIFY genes, such as AaTIFY19/29, were found to be involved in regulating salt and saline-alkali stresses. In addition, RT-qPCR analysis showed that TIFY genes, especially AaTIFY19/23/27/29, respond to a variety of hormonal treatments, such as MeJA, ABA, SA, and IAA. This suggested that TIFY genes in A. argyi regulate plant growth and respond to different stresses by following different hormone signaling pathways. CONCLUSION: Taken together, our study conducted a comprehensive identification and analysis of the TIFY gene family in A. argyi. These findings suggested that TIFY might play an important role in plant development and stress responses, which laid a valuable foundation for further understanding the function of TIFY genes in multiple stress responses and phytohormone crosstalk in A. argyi.


Asunto(s)
Artemisia , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Filogenia , Proteínas de Plantas , Artemisia/genética , Artemisia/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilación de la Expresión Génica , Estrés Fisiológico/genética , Genoma de Planta , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Regiones Promotoras Genéticas , Cromosomas de las Plantas/genética
15.
BMC Genomics ; 25(1): 258, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454325

RESUMEN

The interactions between the rumen microbiota and the host are crucial for the digestive and absorptive processes of ruminants, and they are heavily influenced by the climatic conditions of their habitat. Owing to the harsh conditions of the high-altitude habitat, little is known about how ruminants regulate the host transcriptome and the composition of their rumen microbiota. Using the model species of goats, we examined the variations in the rumen microbiota, transcriptome regulation, and climate of the environment between high altitude (Lhasa, Xizang; 3650 m) and low altitude (Chengdu, Sichuan, China; 500 m) goats. The results of 16 S rRNA sequencing revealed variations in the abundance, diversity, and composition of rumen microbiota. Papillibacter, Quinella, and Saccharofermentans were chosen as potential microbes for the adaptation of Xizang goats to the harsh climate of the plateau by the Spearman correlation study of climate and microbiota. Based on rumen transcriptome sequencing analysis, 244 genes were found to be differentially expressed between Xizang goats and low-altitude goats, with 127 genes showing up-regulation and 117 genes showing down-regulation. SLC26A9, GPX3, ARRDC4, and COX1 were identified as potential candidates for plateau adaptation in Xizang goats. Moreover, the metabolism of fatty acids, arachidonic acids, pathway involving cytokines and their receptors could be essential for adaptation to plateau hypoxia and cold endurance. The expression of GPX3, a gene linked to plateau acclimatization in Xizang goats, was linked to the abundance of Anaerovibrio, and the expression of SLC26A9 was linked to the quantity of Selenomonas, according to ruminal microbiota and host Spearman correlation analysis. Our findings imply that in order to adapt harsh plateau conditions, Xizang goats have evolved to maximize digestion and absorption as well as to have a rumen microbiota suitable for the composition of their diet.


Asunto(s)
Cabras , Microbiota , Animales , Cabras/metabolismo , Transcriptoma , Rumen/metabolismo , Microbiota/genética , Adaptación Psicológica
16.
Antimicrob Agents Chemother ; : e0114824, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39382275

RESUMEN

This study aimed to develop a pharmacokinetic model of linezolid in premature neonates and evaluate and optimize the administration regimen. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to detect the blood concentration data of 54 premature neonates after intravenous administration of linezolid, and the relevant clinical data were collected. The population pharmacokinetic (PPK) model was established by nonlinear mixed effects modeling. Based on the final model parameters, the optimal administration regimen of linezolid in premature neonates with different body surface areas (BSA) was simulated and evaluated. The pharmacokinetic properties of linezolid in premature neonates are best described by a single-compartment model with primary elimination. The population typical values for apparent volume of distribution and clearance were 0.783 L and 0.154 L/h, respectively. BSA was a statistically significant covariate with clearance (CL) and volume of distribution (Vd). Monte Carlo simulations showed that the optimal administration regimen for linezolid in premature neonates was 6 mg/kg q8h for BSA 0.11 m2, 7 mg/kg q8h for BSA 0.13 m2, and 9 mg/kg q8h for BSA 0.15 m2 with minimum inhibitory concentration (MIC) ≤1 mg/L, 7 mg/kg q8h for BSA 0.11 m2, 8 mg/kg q8h for BSA 0.13 m2, and 10 mg/kg q8h for BSA 0.15 m2 with MIC = 2 mg/L. A pharmacokinetic model was developed to predict the blood concentration on linezolid in premature neonates. Based on this model, the optimal administration regimen of linezolid in premature neonates needs to be individualized according to different BSA levels.

17.
Mol Med ; 30(1): 56, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671369

RESUMEN

BACKGROUND: Ginsenoside Rh2 (G-Rh2), a steroidal compound extracted from roots of ginseng, has been extensively studied in tumor therapy. However, its specific regulatory mechanism in non-small cell lung cancer (NSCLC) is not well understood. Pyruvate dehydrogenase kinase 4 (PDK4), a central regulator of cellular energy metabolism, is highly expressed in various malignant tumors. We investigated the impact of G-Rh2 on the malignant progression of NSCLC and how it regulated PDK4 to influence tumor aerobic glycolysis and mitochondrial function. METHOD: We examined the inhibitory effect of G-Rh2 on NSCLC through I proliferation assay, migration assay and flow cytometry in vitro. Subsequently, we verified the ability of G-Rh2 to inhibit tumor growth and metastasis by constructing subcutaneous tumor and metastasis models in nude mice. Proteomics analysis was conducted to analyze the action pathways of G-Rh2. Additionally, we assessed glycolysis and mitochondrial function using seahorse, PET-CT, Western blot, and RT-qPCR. RESULT: Treatment with G-Rh2 significantly inhibited tumor proliferation and migration ability both in vitro and in vivo. Furthermore, G-Rh2 inhibited the tumor's aerobic glycolytic capacity, including glucose uptake and lactate production, through the HIF1-α/PDK4 pathway. Overexpression of PDK4 demonstrated that G-Rh2 targeted the inhibition of PDK4 expression, thereby restoring mitochondrial function, promoting reactive oxygen species (ROS) accumulation, and inducing apoptosis. When combined with sodium dichloroacetate, a PDK inhibitor, it complemented the inhibitory capacity of PDKs, acting synergistically as a detoxifier. CONCLUSION: G-Rh2 could target and down-regulate the expression of HIF-1α, resulting in decreased expression of glycolytic enzymes and inhibition of aerobic glycolysis in tumors. Additionally, by directly targeting mitochondrial PDK, it elevated mitochondrial oxidative phosphorylation and enhanced ROS accumulation, thereby promoting tumor cells to undergo normal apoptotic processes.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Ginsenósidos , Subunidad alfa del Factor 1 Inducible por Hipoxia , Neoplasias Pulmonares , Fosforilación Oxidativa , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , Ginsenósidos/farmacología , Ginsenósidos/uso terapéutico , Humanos , Animales , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Ratones , Línea Celular Tumoral , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , Glucólisis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Ratones Desnudos , Movimiento Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos
18.
Br J Haematol ; 204(6): 2351-2364, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38613241

RESUMEN

CD7-targeted chimeric antigen receptor T-cell (CAR-T) therapy has shown promising initial complete remission (CR) rates in patients with refractory or relapsed (r/r) T-cell acute lymphoblastic leukaemia and lymphoblastic lymphoma (T-ALL/LBL). To enhance the remission duration, consolidation with allogeneic haematopoietic stem cell transplantation (allo-HSCT) is considered. Our study delved into the outcomes of 34 patients with r/r T-ALL/LBL who underwent allo-HSCT after achieving CR with autologous CD7 CAR-T therapy. These were compared with 124 consecutive T-ALL/LBL patients who received allo-HSCT in CR following chemotherapy. The study revealed that both the CAR-T and chemotherapy cohorts exhibited comparable 2-year overall survival (OS) (61.9% [95% CI, 44.1-78.1] vs. 67.6% [95% CI, 57.5-76.9], p = 0.210), leukaemia-free survival (LFS) (62.3% [95% CI, 44.6-78.4] vs. 62.0% [95% CI, 51.8-71.7], p = 0.548), non-relapse mortality (NRM) rates (32.0% [95% CI, 19.0-54.0] vs. 25.3% [95% CI, 17.9-35.8], p = 0.288) and relapse incidence rates (8.8% [95% CI, 3.0-26.0] vs. 15.8% [95% CI, 9.8-25.2], p = 0.557). Patients aged ≤14 in the CD7 CAR-T group achieved high 2-year OS and LFS rates of 87.5%. Our study indicates that CD7 CAR-T therapy followed by allo-HSCT is not only effective and safe for r/r T-ALL/LBL patients but also on par with the outcomes of those achieving CR through chemotherapy, without increasing NRM.


Asunto(s)
Antígenos CD7 , Trasplante de Células Madre Hematopoyéticas , Inmunoterapia Adoptiva , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Inducción de Remisión , Adolescente , Adulto , Niño , Preescolar , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven , Inmunoterapia Adoptiva/métodos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/terapia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/mortalidad , Receptores Quiméricos de Antígenos/uso terapéutico , Recurrencia , Tasa de Supervivencia , Trasplante Homólogo , Resultado del Tratamiento
19.
Oncologist ; 29(4): 364-e578, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38366886

RESUMEN

BACKGROUND: This study aimed to assess the activity of apatinib plus toripalimab in the second line for patients with advanced gastric or esophagogastric junction cancer (GC/EGJC). METHODS: In this open-label, phase II, randomized trial, patients with advanced GC/EGJC who progressed after first-line chemotherapy were enrolled and received 250 mg apatinib per day plus 240 mg toripalimab on day 1 per 3 weeks (arm A) or physician's choice of chemotherapy (PC, arm B). The primary endpoint of this study was the 1-year survival rate. Progression-free survival (PFS), overall survival (OS), overall response rate (ORR), and safety were assessed as secondary endpoints. RESULTS: Twenty-five patients received apatinib plus toripalimab while 26 were enrolled in arm B. The 1-year survival rates of the 2 groups were 43.3% and 42.3%, respectively (P = .903). The PFS was 2.77 versus 2.33 months (P = .660). The OS was 8.30 versus 9.88 months (P = .539). An objective response was reported in 20.0% of patients in arm A compared to 26.9% in arm B (P = .368), respectively. A total of 6 (24.0%) patients experienced adverse events of grade ≥ 3 in arm A, while 9 (34.6%) patients suffered from adverse events of grade ≥ 3 in arm B. No drug-related deaths occurred in either group. CONCLUSION: Toripalimab plus apatinib treatment in second-line therapy of advanced GC/EGJC showed manageable toxicity but did not improve clinical outcomes relative to PC treatment (ClinicalTrials.gov Identifier: NCT04190745).


Asunto(s)
Anticuerpos Monoclonales Humanizados , Piridinas , Neoplasias Gástricas , Humanos , Anticuerpos Monoclonales Humanizados/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Unión Esofagogástrica , Neoplasias Gástricas/tratamiento farmacológico
20.
Anal Chem ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39253869

RESUMEN

Spiropyran-functionalized graphitic carbon nitride (MCH@g-C3N4) in acidic conditions was prepared for the first time. MCH@g-C3N4 exhibited dual-wavelength fluorescence emission with two distant bands and distinct solvatochromic behavior owing to the different molecular structures of spiropyran. A three-dimensional organic solvent decoder was fabricated for solvent identification based on the emission wavelength and fluorescence quantum yield of MCH@g-C3N4 in different polar solvents. The ratiometric fluorescence sensing of the water content in organic solvent was realized using water to induce the structural change of spiropyran. A solid-phase MCH@g-C3N4/polyvinylpyrrolidone (PVP) nanofiber mat-based sensor was prepared via cospinning MCH@g-C3N4 with hydrophilic PVP. A fluorescent humidity sensor was fabricated using a commercial syringe equipped with a stainless-steel needle (catcher) to obtain the air inside the grain heap, which enabled the accurate location of the sampling spot. The space between the syringe and piston was used as an enclosed sensing space. Thus, a simple, accurate, and intuitive visual colorimetric method for the internal humidity of a grain heap was realized by analyzing the recorded images.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA