Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(20): e2219588120, 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37155894

RESUMEN

Aerosol microdroplets as microreactors for many important atmospheric reactions are ubiquitous in the atmosphere. pH largely regulates the chemical processes within them; however, how pH and chemical species spatially distribute within an atmospheric microdroplet is still under intense debate. The challenge is to measure pH distribution within a tiny volume without affecting the chemical species distribution. We demonstrate a method based on stimulated Raman scattering microscopy to visualize the three-dimensional pH distribution inside single microdroplets of varying sizes. We find that the surface of all microdroplets is more acidic, and a monotonic trend of pH decreasing is observed in the 2.9-µm aerosol microdroplet from center to edge, which is well supported by molecular dynamics simulation. However, bigger cloud microdroplet differs from small aerosol for pH distribution. This size-dependent pH distribution in microdroplets can be related to the surface-to-volume ratio. This work presents noncontact measurement and chemical imaging of pH distribution in microdroplets, filling the gap in our understanding of spatial pH in atmospheric aerosol.

2.
J Am Chem Soc ; 146(10): 6580-6590, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38427385

RESUMEN

The multiphase oxidation of sulfur dioxide (SO2) to form sulfate is a complex and important process in the atmosphere. While the conventional photosensitized reaction mainly explored in the bulk medium is reported to be one of the drivers to trigger atmospheric sulfate production, how this scheme functionalizes at the air-water interface (AWI) of aerosol remains an open question. Herein, employing an advanced size-controllable microdroplet-printing device, surface-enhanced Raman scattering (SERS) analysis, nanosecond transient adsorption spectrometer, and molecular level theoretical calculations, we revealed the previously overlooked interfacial role in photosensitized oxidation of SO2 in humic-like substance (HULIS) aerosol, where a 3-4 orders of magnitude increase in sulfate formation rate was speculated in cloud and aerosol relevant-sized particles relative to the conventional bulk-phase medium. The rapid formation of a battery of reactive oxygen species (ROS) comes from the accelerated electron transfer process at the AWI, where the excited triplet state of HULIS (3HULIS*) of the incomplete solvent cage can readily capture electrons from HSO3- in a way that is more efficient than that in the bulk medium fully blocked by water molecules. This phenomenon could be explained by the significantly reduced desolvation energy barrier required for reagents residing in the AWI region with an open solvent shell.

3.
Langmuir ; 40(17): 9155-9169, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38641555

RESUMEN

A lack of eco-friendly, highly active photocatalyst for peroxymonosulfate (PMS) activation and unclear environmental risks are significant challenges. Herein, we developed a double S-scheme Fe2O3/BiVO4(110)/BiVO4(010)/Fe2O3 photocatalyst to activate PMS and investigated its impact on wheat seed germination. We observed an improvement in charge separation by depositing Fe2O3 on the (010) and (110) surfaces of BiVO4. This enhancement is attributed to the formation of a dual S-scheme charge transfer mechanism at the interfaces of Fe2O3/BiVO4(110) and BiVO4(010)/Fe2O3. By introducing PMS into the system, photogenerated electrons effectively activate PMS, generating reactive oxygen species (ROS) such as hydroxyl radicals (·OH) and sulfate radicals (SO4·-). Among the tested systems, the 20% Fe2O3/BiVO4/Vis/PMS system exhibits the highest catalytic efficiency for norfloxacin (NOR) removal, reaching 95% in 40 min. This is twice the catalytic efficiency of the Fe2O3/BiVO4/PMS system, 1.8 times that of the Fe2O3/BiVO4 system, and 5 times that of the BiVO4 system. Seed germination experiments revealed that Fe2O3/BiVO4 heterojunction was beneficial for wheat seed germination, while PMS had a significant negative effect. This study provides valuable insights into the development of efficient and sustainable photocatalytic systems for the removal of organic pollutants from wastewater.


Asunto(s)
Bismuto , Compuestos Férricos , Luz , Norfloxacino , Peróxidos , Vanadatos , Vanadatos/química , Vanadatos/efectos de la radiación , Bismuto/química , Norfloxacino/química , Norfloxacino/efectos de la radiación , Catálisis/efectos de la radiación , Compuestos Férricos/química , Peróxidos/química , Procesos Fotoquímicos , Triticum/química , Triticum/efectos de la radiación
4.
Environ Sci Technol ; 58(21): 9091-9101, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38709279

RESUMEN

People of all ages consume salt every day, but is it really just salt? Plastic nanoparticles [nanoplastics (NPs)] pose an increasing environmental threat and have begun to contaminate everyday salt in consumer goods. Herein, we developed a combined surface enhanced Raman scattering (SERS) and stimulated Raman scattering (SRS) approach that can realize the filtration, enrichment, and detection of NPs in commercial salt. The Au-loaded (50 nm) anodic alumina oxide substrate was used as the SERS substrate to explore the potential types of NP contaminants in salts. SRS was used to conduct imaging and quantify the presence of the NPs. SRS detection was successfully established through standard plastics, and NPs were identified through the match of the hydrocarbon group of the nanoparticles. Simultaneously, the NPs were quantified based on the high spatial resolution and rapid imaging of the SRS imaging platform. NPs in sea salts produced in Asia, Australasia, Europe, and the Atlantic were studied. We estimate that, depending on the location, an average person could be ingesting as many as 6 million NPs per year through the consumption of sea salt alone. The potential health hazards associated with NP ingestion should not be underestimated.


Asunto(s)
Espectrometría Raman , Plásticos , Nanopartículas , Cloruro de Sodio/química
5.
Int J Mol Sci ; 25(4)2024 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-38396847

RESUMEN

Schima superba is a precious timber and fire-resistant tree species widely distributed in southern China. Currently, there is little knowledge related to its growth traits, especially with respect to molecular breeding. The lack of relevant information has delayed the development of modern breeding. The purpose is to identify probable functional genes involved in S. superba growth through whole transcriptome sequencing. In this study, a total of 32,711 mRNAs, 525 miRNAs, 54,312 lncRNAs, and 1522 circRNAs were identified from 10 S. superba individuals containing different volumes of wood. Four possible regulators, comprising three lncRNAs, one circRNA, and eleven key miRNAs, were identified from the regulatory networks of lncRNA-miRNA-mRNA and circRNA-miRNA-mRNA to supply information on ncRNAs. Several candidate genes involved in phenylpropane and cellulose biosynthesis pathways, including Ss4CL2, SsCSL1, and SsCSL2, and transcription factors, including SsDELLA2 (SsSLR), SsDELLA3 (SsSLN), SsDELLA5 (SsGAI-like2), and SsNAM1, were identified to reveal the molecular regulatory mechanisms regulating the growth traits of S. superba. The results not merely provide candidate functional genes related to S. superba growth trait and will be useful to carry out molecular breeding, but the strategy and method also provide scientists with an effective approach to revealing mechanisms behind important economic traits in other species.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Humanos , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Circular/genética , ARN Largo no Codificante/genética , Fitomejoramiento , Redes Reguladoras de Genes
6.
Environ Sci Technol ; 57(50): 21448-21458, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38047763

RESUMEN

The efficient elimination of per- and polyfluoroalkyl substances (PFASs) from the environment remains a huge challenge and requires advanced technologies. Herein, we demonstrate that perfluorooctanoic acid (PFOA) photochemical decomposition could be significantly accelerated by simply carrying out this process in microdroplets. The almost complete removal of 100 and 500 µg/L PFOA was observed after 20 min of irradiation in microdroplets, while this was achieved after about 2 h in the corresponding bulk phase counterpart. To better compare the defluorination ratio, 10 mg/L PFOA was used typically, and the defluorination rates in microdroplets were tens of times faster than that in the bulk phase reaction system. The high performances in actual water matrices, universality, and scale-up applicability were demonstrated as well. We revealed in-depth that the great acceleration is due to the abundance of the air-water interface in microdroplets, where the reactants concentration enrichment, ultrahigh interfacial electric field, and partial solvation effects synergistically promoted photoreactions responsible for PFOA decomposition, as evidenced by simulated Raman scattering microscopy imaging, vibrational Stark effect measurement, and DFT calculation. This study provides an effective approach and highlights the important roles of air-water interface of microdroplets in PFASs treatment.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Agua , Caprilatos/química , Contaminantes Químicos del Agua/química
7.
Environ Sci Technol ; 57(46): 18203-18214, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37399235

RESUMEN

The increasing prevalence of nanoplastics in the environment underscores the need for effective detection and monitoring techniques. Current methods mainly focus on microplastics, while accurate identification of nanoplastics is challenging due to their small size and complex composition. In this work, we combined highly reflective substrates and machine learning to accurately identify nanoplastics using Raman spectroscopy. Our approach established Raman spectroscopy data sets of nanoplastics, incorporated peak extraction and retention data processing, and constructed a random forest model that achieved an average accuracy of 98.8% in identifying nanoplastics. We validated our method with tap water spiked samples, achieving over 97% identification accuracy, and demonstrated the applicability of our algorithm to real-world environmental samples through experiments on rainwater, detecting nanoscale polystyrene (PS) and polyvinyl chloride (PVC). Despite the challenges of processing low-quality nanoplastic Raman spectra and complex environmental samples, our study demonstrated the potential of using random forests to identify and distinguish nanoplastics from other environmental particles. Our results suggest that the combination of Raman spectroscopy and machine learning holds promise for developing effective nanoplastic particle detection and monitoring strategies.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Plásticos , Espectrometría Raman , Algoritmos , Aprendizaje Automático , Poliestirenos , Agua
8.
J Phys Chem A ; 127(1): 250-260, 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36595358

RESUMEN

Fe(III)-oxalate complexes are ubiquitous in atmospheric environments, which can release reactive oxygen species (ROS) such as H2O2, O•2-, and OH• under light irradiation. Although Fe(III)-oxalate photochemistry has been investigated extensively, the understanding of its involvement in authentic atmospheric environments such as aerosol droplets is far from enough, since the current available knowledge has mainly been obtained in bulk-phase studies. Here, we find that the production of OH• by Fe(III)-oxalate in aerosol microdroplets is about 10-fold greater than that of its bulk-phase counterpart. In addition, in the presence of Fe(III)-oxalate complexes, the rate of photo-oxidation from SO2 to sulfate in microdroplets was about 19-fold faster than that in the bulk phase. The availability of efficient reactants and mass transfer due to droplet effects made dominant contributions to the accelerated OH• and SO42- formation. This work highlights the necessary consideration of droplet effects in atmospheric laboratory studies and model simulations.

9.
Angew Chem Int Ed Engl ; 62(27): e202304189, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37144910

RESUMEN

Solar-driven CO2 reduction reaction (CO2 RR) is largely constrained by the sluggish mass transfer and fast combination of photogenerated charge carriers. Herein, we find that the photocatalytic CO2 RR efficiency at the abundant gas-liquid interface provided by microdroplets is two orders of magnitude higher than that of the corresponding bulk phase reaction. Even in the absence of sacrificial agents, the production rates of HCOOH over WO3 ⋅ 0.33H2 O mediated by microdroplets reaches 2536 µmol h-1 g-1 (vs. 13 µmol h-1 g-1 in bulk phase), which is significantly superior to the previously reported photocatalytic CO2 RR in bulk phase reaction condition. Beyond the efficient delivery of CO2 to photocatalyst surfaces within microdroplets, we reveal that the strong electric field at the gas-liquid interface of microdroplets essentially promotes the separation of photogenerated electron-hole pairs. This study provides a deep understanding of ultrafast reaction kinetics promoted by the gas-liquid interface of microdroplets and a novel way of addressing the low efficiency of photocatalytic CO2 reduction to fuel.

10.
BMC Vet Res ; 18(1): 239, 2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35739587

RESUMEN

BACKGROUND: Hepatitis E virus (HEV), which is the leading cause of acute viral hepatitis worldwide, usually causes self-limited infections in common individuals. However, it can lead to chronic infection in immunocompromised individuals and its mechanisms remain unclear. Rabbits are the natural host of HEV, and chronic HEV infections have been observed in rabbits. Therefore, we aimed to investigate potential key genes in HEV chronicity process in rabbits. In this study, both bioinformatics and experimental analysis were performed to deepen the understanding of hub genes in HEV chronic infection in rabbits. RESULTS: Ninety-four candidate differentially expressed genes (DEGs) and the pathways they enriched were identified to be related with HEV chronicity. A total of 10 hub genes were found by protein-protein interaction (PPI) network construction. Rabbits of group P (n = 4) which showed symptoms of chronic HEV infection were selected to be compared with HEV negative rabbits (group N, n = 6). By detecting the identified hub genes in groups P and N by real-time PCR, we found that the expressions of MX1, OAS2 and IFI44 were significantly higher in group P (P < 0.05). CONCLUSIONS: In this work, we presented that MX1, OAS2 and IFI44 were significantly upregulated in HEV chronic infected rabbits, indicating that they may be involved in the pathogenesis of HEV chronicity.


Asunto(s)
Virus de la Hepatitis E , Hepatitis E , Animales , Biología Computacional , Hepatitis E/genética , Hepatitis E/veterinaria , Virus de la Hepatitis E/genética , ARN Viral , Conejos , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria
11.
Chemistry ; 26(18): 4080-4089, 2020 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-31535739

RESUMEN

It is still poorly understood how the first intermediates of CO2 reduction are formed and converted to multi-carbon products over Cu-based electrodes. Herein, Ag is used to decorate dendritic Cu and a high Faradaic efficiency (FE) for C2 H4 (25 %) is obtained on a CuAg electrode, which is about five times higher than dendritic Cu. The intermediates including *CO2 - , OH groups, Cu-CO, C-O rotation, and CHx species are investigated by in situ Raman spectroscopy. This work provides spectroscopic evidence that the first intermediate of CO2 reduction on Ag-decorated Cu is carboxylate anion *CO2 - bonded with the catalyst surface through the C and O atom. The formation and evolution process of the *CO2 - intermediate over the applied potential are investigated in depth as well. This research contributes to a better understanding of the mechanism of CO2 reduction and multi-carbon product formation pathways over Ag-decorated Cu.

12.
Environ Sci Technol ; 54(24): 15594-15603, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33095569

RESUMEN

Micro- and nanoplastics are considered one of the top pollutants that threaten the environment, aquatic life, and mammalian (including human) health. Unfortunately, the development of uncomplicated but reliable analytical methods that are sensitive to individual microplastic particles, with sizes smaller than 1 µm, remains incomplete. Here, we demonstrate the detection and identification of (single) micro- and nanoplastics by using surface-enhanced Raman spectroscopy (SERS) with Klarite substrates. Klarite is an exceptional SERS substrate; it is shaped as a dense grid of inverted pyramidal cavities made of gold. Numerical simulations demonstrate that these cavities (or pits) strongly focus incident light into intense hotspots. We show that Klarite has the potential to facilitate the detection and identification of synthesized and atmospheric/aquatic microplastic (single) particles, with sizes down to 360 nm. We find enhancement factors of up to 2 orders of magnitude for polystyrene analytes. In addition, we detect and identify microplastics with sizes down to 450 nm on Klarite, with samples extracted from ambient, airborne particles. Moreover, we demonstrate Raman mapping as a fast detection technique for submicron microplastic particles. The results show that SERS with Klarite is a facile technique that has the potential to detect and systematically measure nanoplastics in the environment. This research is an important step toward detecting nanoscale plastic particles that may cause toxic effects to mammalian and aquatic life when present in high concentrations.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Oro , Humanos , Plásticos , Poliestirenos , Espectrometría Raman , Contaminantes Químicos del Agua/análisis
13.
J Nanosci Nanotechnol ; 19(7): 4078-4082, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-30764973

RESUMEN

A popular issue of recent scientific research is the surface modification induced by plastic deformation, such as ultrasonic shot peening (USP) on workpiece surface. USP is an efficient way to improve the mechanical behavior of specimens by inducing severe plastic deformation on their surface. Nevertheless, this surface treatment induced complex microstructural evolutions, such as grain refinement and phase transformation. In this work, the microstructure and properties of 347 austenite steel samples before and after USP for 5, 10, and 15 min treatments have been investigated. The affected layers show a significant hardness increase (~450 µm in depth) on the USP treated surface, and the 10 min USP treated specimen shows the best corrosion resistance in all tested specimens. The magnetic properties and microstructures of the tested specimens show gradient evolution during deformation.

14.
PLoS One ; 19(3): e0299566, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38489279

RESUMEN

BACKGROUND: Dietary phosphorus intake may serve as a potential predictor for peripheral neuropathy (PN). While past research has predominantly focused on the relationship between dietary phosphorus and bone health, relatively little is known about its role in the nervous system, particularly its association with PN. METHODS: A cross-sectional study was conducted using data from NHANES 1999-2004. Participants were categorized into different dietary phosphorus intake groups, and the relationship between dietary phosphorus and PN was explored using multifactorial logistic regression, restricted cubic splines (RCS) analysis, and threshold effect analysis based on dietary intake. RESULTS: The final study included 7726 participants, with 1378 diagnosed with PN and 6348 without. The study revealed a U-shaped non-linear relationship between dietary calcium and magnesium intake levels and PN, indicating that both excessive and insufficient dietary phosphorus intake may increase the risk of PN. Specifically, the incidence rates in the first quintile (1.433, 95% CI: 1.080-1.901), the fourth quintile (1.284, 95% CI: 1.000-1.648), and the fifth quintile (1.533, 95% CI: 1.155-2.035) significantly higher than the second quintile, with an overall trend showing a decrease followed by an increase in incidence rates. The results of RCS and threshold effect analysis indicate that when dietary phosphorus intake is below 939.44mg, the risk of PN decreases with increasing dietary phosphorus intake. On the contrary, when dietary phosphorus intake exceeds 939.44mg, the risk of PN increases with increasing dietary phosphorus intake. CONCLUSION: This study reveals a U-shaped correlation between dietary phosphorus intake and PN. Future research should further elucidate the molecular mechanisms underlying this association, providing guidance for more scientifically informed dietary adjustments to prevent the occurrence of PN.


Asunto(s)
Enfermedades del Sistema Nervioso Periférico , Fósforo Dietético , Humanos , Estados Unidos/epidemiología , Fósforo Dietético/efectos adversos , Estudios Transversales , Encuestas Nutricionales , Dieta/efectos adversos , Fósforo
15.
Animal Model Exp Med ; 7(3): 259-274, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38860392

RESUMEN

BACKGROUND: YangshenDingzhi granules (YSDZ) are clinically effective in preventing and treating COVID-19. The present study elucidates the underlying mechanism of YSDZ intervention in viral pneumonia by employing serum pharmacochemistry and network pharmacology. METHODS: The chemical constituents of YSDZ in the blood were examined using ultra-performance liquid chromatography-quadrupole/orbitrap high-resolution mass spectrometry (UPLC-Q-Exactive Orbitrap MS). Potential protein targets were obtained from the SwissTargetPrediction database, and the target genes associated with viral pneumonia were identified using GeneCards, DisGeNET, and Online Mendelian Inheritance in Man (OMIM) databases. The intersection of blood component-related targets and disease-related targets was determined using Venny 2.1. Protein-protein interaction networks were constructed using the STRING database. The Metascape database was employed to perform enrichment analyses of Gene Ontology (GO) functions and Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathways for the targets, while the Cytoscape 3.9.1 software was utilized to construct drug-component-disease-target-pathway networks. Further, in vitro and in vivo experiments were performed to establish the therapeutic effectiveness of YSDZ against viral pneumonia. RESULTS: Fifteen compounds and 124 targets linked to viral pneumonia were detected in serum. Among these, MAPK1, MAPK3, AKT1, EGFR, and TNF play significant roles. In vitro tests revealed that the medicated serum suppressed the replication of H1N1, RSV, and SARS-CoV-2 replicon. Further, in vivo testing analysis shows that YSDZ decreases the viral load in the lungs of mice infected with RSV and H1N1. CONCLUSION: The chemical constituents of YSDZ in the blood may elicit therapeutic effects against viral pneumonia by targeting multiple proteins and pathways.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Medicamentos Herbarios Chinos , Farmacología en Red , SARS-CoV-2 , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Animales , Ratones , SARS-CoV-2/efectos de los fármacos , Mapas de Interacción de Proteínas/efectos de los fármacos , Masculino , COVID-19 , Neumonía Viral/tratamiento farmacológico , Antivirales/farmacología , Antivirales/uso terapéutico , Antivirales/farmacocinética , Humanos
16.
CNS Neurosci Ther ; 30(6): e14803, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38887168

RESUMEN

The glymphatic system is cerebrospinal fluid-brain tissue fluid exchange flow mediated by aquaporin-4 (AQP4) on the end feet of astrocytes for a system, which is capable of rapidly removing brain metabolites and thus maintaining brain homeostasis, and is known as the central immune system. Dysfunction of the glymphatic system causes accumulation of misfolded and highly phosphorylated proteins (amyloid-ß and Tau proteins), which destabilizes the proteins, and the body's neuroinflammatory factors are altered causing aging of the immune system and leading to neurodegenerative diseases. Damage to the glymphatic system and aging share common manifestations, as well as unstudied biological mechanisms that are also linked, such as mitochondria, oxidative stress, chronic inflammation, and sleep. In this paper, we first summarize the structure, function, and research methods of the glymphatic system and the relationship between the glymphatic system and the peripheral immune system, and second, sort out and summarize the factors of the glymphatic system in removing metabolites and resolving aging-related diseases and factors affecting aging, to explore its related biological mechanisms, and moreover, to provide a new way of thinking for treating or intervening aging-related diseases.


Asunto(s)
Envejecimiento , Sistema Glinfático , Humanos , Sistema Glinfático/fisiología , Sistema Glinfático/metabolismo , Envejecimiento/fisiología , Envejecimiento/metabolismo , Animales , Astrocitos/metabolismo , Encéfalo/metabolismo , Acuaporina 4/metabolismo
17.
RSC Med Chem ; 15(2): 492-505, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38389880

RESUMEN

Invasive fungal infections, with high morbidity and mortality, have become one of the most serious threats to human health. There are a few kinds of clinical antifungal drugs but large amounts of them are used, so there is an urgent need for a new structural type of antifungal drug. In this study, we carried out three rounds of structural optimisation and modification of the compound YW-01, which was obtained from the preliminary screening of the group, by using the strategy of scaffold hopping. A series of novel phenylpyrimidine CYP51 inhibitors were designed and synthesised. In vitro antifungal testing showed that target compound C6 exhibited good efficacy against seven common clinically susceptible strains, which was significantly superior to the clinical first-line drug fluconazole. Subsequently in vitro tests on metabolic stability and cytotoxicity revealed that C6 was safe and stable for hepatic microsomal function. Finally, C6 warranted further exploration as a possible novel structural type of CYP51 inhibitor.

18.
Phytomedicine ; 130: 155549, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38810551

RESUMEN

Premenstrual dysphoric disorder (PMDD) is a severe subtype of premenstrual syndrome in women of reproductive age, with its pathogenesis linked to the heightened sensitivity of type A γ -aminobutyric acid receptors (GABAAR) to neuroactive steroid hormone changes, particularly allopregnanolone (ALLO). While a low dose of fluoxetine, a classic selective serotonin reuptake inhibitor, is commonly used as a first-line drug to alleviate emotional disorders in PMDD in clinical settings, its mechanism of action is related to ALLO-GABAA receptor function. However, treating PMDD requires attention to both emotional and physical symptoms, such as pain sensitivity. This study aims to investigate the efficacy of ShuYu capsules, a traditional Chinese medicine, in simultaneously treating emotional and physical symptoms in a rat model of PMDD. Specifically, our focus centres on the midbrain periaqueductal grey (PAG), a region associated with emotion regulation and susceptibility to hyperalgesia. Considering the underlying mechanisms of ALLO-GABAA receptor function in the PAG region, we conducted a series of experiments to evaluate and define the effects of ShuYu capsules and uncover the relationship between the drug's efficacy and ALLO concentration fluctuations on GABAA receptor function in the PAG region. Our findings demonstrate that ShuYu capsules significantly improved oestrous cycle-dependant depression-like behaviour and reduced stress-induced hyperalgesia in rats with PMDD. Similar to the low dose of fluoxetine, ShuYu capsules targeted and mitigated the sharp decline in ALLO, rescued the upregulation of GABAAR subunit function, and activated PAG neurons in PMDD rats. The observed effects of ShuYu capsules suggest a central mechanism underlying PMDD symptoms, involving ALLO_GABAA receptor function in the PAG region. This study highlights the potential of traditional Chinese medicine in addressing both emotional and physical symptoms associated with PMDD, shedding light on novel therapeutic approaches for this condition.


Asunto(s)
Medicamentos Herbarios Chinos , Pregnanolona , Trastorno Disfórico Premenstrual , Ratas Sprague-Dawley , Receptores de GABA-A , Animales , Femenino , Medicamentos Herbarios Chinos/farmacología , Receptores de GABA-A/metabolismo , Pregnanolona/farmacología , Trastorno Disfórico Premenstrual/tratamiento farmacológico , Ratas , Cápsulas , Modelos Animales de Enfermedad , Síndrome Premenstrual/tratamiento farmacológico , Fluoxetina/farmacología
19.
Medicine (Baltimore) ; 102(36): e35132, 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37682125

RESUMEN

Anger and aggression are common sources of distress and impairment. There is, however, no available data on anger and aggression based on bibliometric analysis. This study uses bibliometric analysis to analyze research hotspots and trends in anger and aggression. Publications on anger and aggression within the last ten years were collected from the Web of Science Core Collection. Using descriptive bibliometrics, journals, countries, institutions, authors, references, and keywords in anger and aggression research were visually analyzed via CiteSpace. A total of 3114 articles were included, and studies on anger and aggression increased yearly. The publications are mainly from 106 countries led by the USA and 381 institutions led by Univ Penn. We identified 505 authors, where Emil F. Coccaro had the highest number of articles, while Buss A.H. was the most frequently co-cited author. AGGRESSIVE BEHAVIOR is the journal that bore most of the studies, while PLOS ONE was the most cited journal. Our analysis demonstrated that research on anger and aggression is flourishing. Behaviors of anger and aggression, risk factors, neural mechanisms, personality, and adolescence have been researched hotspots in the past ten years. Besides, victimization, drosophila melanogaster, psychopathic traits, and perpetration are emerging anger and aggression research trends.


Asunto(s)
Acoso Escolar , Drosophila melanogaster , Animales , Agresión , Ira , Bibliometría
20.
World J Clin Cases ; 11(5): 1009-1018, 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36874430

RESUMEN

BACKGROUND: Type 2 diabetes mellitus (T2DM) has been shown to be correlated with hepatocellular carcinoma (HCC) development. However, further investigation is needed to understand how T2DM characteristics affect the prognosis of chronic hepatitis B (CHB) patients. AIM: To assess the effect of T2DM on CHB patients with cirrhosis and to determine the risk factors for HCC development. METHODS: Among the 412 CHB patients with cirrhosis enrolled in this study, there were 196 with T2DM. The patients in the T2DM group were compared to the remaining 216 patients without T2DM (non-T2DM group). Clinical characteristics and outcomes of the two groups were reviewed and compared. RESULTS: T2DM was significantly related to hepatocarcinogenesis in this study (P = 0.002). The presence of T2DM, being male, alcohol abuse status, alpha-fetoprotein > 20 ng/mL, and hepatitis B surface antigen > 2.0 log IU/mL were identified to be risk factors for HCC development in the multivariate analysis. T2DM duration of more than 5 years and treatment with diet control or insulin ± sulfonylurea significantly increased the risk of hepatocarcinogenesis. CONCLUSION: T2DM and its characteristics increase the risk of HCC in CHB patients with cirrhosis. The importance of diabetic control should be emphasized for these patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA