Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.067
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 182(3): 734-743.e5, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32643603

RESUMEN

COVID-19, caused by SARS-CoV-2, is a virulent pneumonia, with >4,000,000 confirmed cases worldwide and >290,000 deaths as of May 15, 2020. It is critical that vaccines and therapeutics be developed very rapidly. Mice, the ideal animal for assessing such interventions, are resistant to SARS-CoV-2. Here, we overcome this difficulty by exogenous delivery of human ACE2 with a replication-deficient adenovirus (Ad5-hACE2). Ad5-hACE2-sensitized mice developed pneumonia characterized by weight loss, severe pulmonary pathology, and high-titer virus replication in lungs. Type I interferon, T cells, and, most importantly, signal transducer and activator of transcription 1 (STAT1) are critical for virus clearance and disease resolution in these mice. Ad5-hACE2-transduced mice enabled rapid assessments of a vaccine candidate, of human convalescent plasma, and of two antiviral therapies (poly I:C and remdesivir). In summary, we describe a murine model of broad and immediate utility to investigate COVID-19 pathogenesis and to evaluate new therapies and vaccines.


Asunto(s)
Betacoronavirus/inmunología , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/prevención & control , Modelos Animales de Enfermedad , Pandemias/prevención & control , Neumonía Viral/patología , Neumonía Viral/prevención & control , Vacunación , Enzima Convertidora de Angiotensina 2 , Animales , COVID-19 , Chlorocebus aethiops , Infecciones por Coronavirus/virología , Evaluación Preclínica de Medicamentos/métodos , Femenino , Humanos , Interferón gamma/genética , Interferón gamma/metabolismo , Pulmón/patología , Pulmón/virología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , Neumonía Viral/virología , Receptor de Interferón alfa y beta/genética , Receptor de Interferón alfa y beta/metabolismo , SARS-CoV-2 , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/metabolismo , Organismos Libres de Patógenos Específicos , Transducción Genética , Células Vero , Carga Viral , Replicación Viral
2.
Immunity ; 57(3): 495-512.e11, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38395698

RESUMEN

Na+/K+-ATPase (NKA) plays an important role in the central nervous system. However, little is known about its function in the microglia. Here, we found that NKAα1 forms a complex with the purinergic P2X7 receptor (P2X7R), an adenosine 5'-triphosphate (ATP)-gated ion channel, under physiological conditions. Chronic stress or treatment with lipopolysaccharide plus ATP decreased the membrane expression of NKAα1 in microglia, facilitated P2X7R function, and promoted microglia inflammatory activation via activation of the NLRP3 inflammasome. Accordingly, global deletion or conditional deletion of NKAα1 in microglia under chronic stress-induced aggravated anxiety-like behavior and neuronal hyperexcitability. DR5-12D, a monoclonal antibody that stabilizes membrane NKAα1, improved stress-induced anxiety-like behavior and ameliorated neuronal hyperexcitability and neurogenesis deficits in the ventral hippocampus of mice. Our results reveal that NKAα1 limits microglia inflammation and may provide a target for the treatment of stress-related neuroinflammation and diseases.


Asunto(s)
Microglía , Receptores Purinérgicos P2X7 , Animales , Ratones , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Ansiedad , Microglía/metabolismo , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo
3.
Cell ; 167(1): 60-72.e11, 2016 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-27641503

RESUMEN

The frequency of human social and emotional disorders varies significantly between males and females. We have recently reported that oxytocin receptor interneurons (OxtrINs) modulate female sociosexual behavior. Here, we show that, in male mice, OxtrINs regulate anxiety-related behaviors. We demonstrate that corticotropin-releasing-hormone-binding protein (CRHBP), an antagonist of the stress hormone CRH, is specifically expressed in OxtrINs. Production of CRHBP blocks the CRH-induced potentiation of postsynaptic layer 2/3 pyramidal cell activity of male, but not female, mice, thus producing an anxiolytic effect. Our data identify OxtrINs as critical for modulation of social and emotional behaviors in both females and males and reveal a molecular mechanism that acts on local medial prefrontal cortex (mPFC) circuits to coordinate responses to OXT and CRH. They suggest that additional studies of the impact of the OXT/OXTR and CRHBP/CRH pathways in males and females will be important in development of gender-specific therapies.


Asunto(s)
Ansiedad/psicología , Proteínas Portadoras/metabolismo , Hormona Liberadora de Corticotropina/metabolismo , Interneuronas/metabolismo , Oxitocina/metabolismo , Corteza Prefrontal/metabolismo , Receptores de Oxitocina/metabolismo , Caracteres Sexuales , Animales , Ansiedad/metabolismo , Conducta Animal , Femenino , Potenciación a Largo Plazo , Masculino , Redes y Vías Metabólicas , Ratones , Factores Sexuales
4.
Immunity ; 50(2): 403-417.e4, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30709740

RESUMEN

The tolerogenic microenvironment of the liver is associated with impaired hepatic T cell function. Here, we examined the contribution of liver-resident natural killer (LrNK) cells, a prominent hepatic NK cell compartment, to T cell antiviral responses in the liver. The number of virus-specific T cells increased in LrNK-cell-deficient mice during both acute and chronic lymphocytic choriomeningitis virus infection. Upon infection with adenovirus, hepatic T cells from these mice produced more cytokines, which was accompanied by reduced viral loads. Transfer of LrNK cells into LrNK-cell-deficient or wild-type mice inhibited hepatic T cell function, resulting in impaired viral clearance, whereas transfer of conventional NK cells promoted T cell antiviral responses. LrNK-cell-mediated inhibition of T cell function was dependent on the PD-1-PD-L1 axis. Our findings reveal a role for LrNK cells in the regulation of T cell immunity and provide insight into the mechanisms of immune tolerance in the liver.


Asunto(s)
Antígeno B7-H1/inmunología , Células Asesinas Naturales/inmunología , Hígado/inmunología , Receptor de Muerte Celular Programada 1/inmunología , Linfocitos T/inmunología , Animales , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Hepatocitos/inmunología , Hepatocitos/metabolismo , Hepatocitos/virología , Células Asesinas Naturales/metabolismo , Hígado/metabolismo , Hígado/virología , Coriomeningitis Linfocítica/inmunología , Coriomeningitis Linfocítica/metabolismo , Coriomeningitis Linfocítica/virología , Virus de la Coriomeningitis Linfocítica/inmunología , Virus de la Coriomeningitis Linfocítica/fisiología , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Receptor de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/metabolismo , Transducción de Señal/inmunología , Linfocitos T/metabolismo , Linfocitos T/virología , Transcriptoma/genética , Transcriptoma/inmunología
5.
Cell ; 154(3): 651-63, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23911327

RESUMEN

Vessel sprouting by migrating tip and proliferating stalk endothelial cells (ECs) is controlled by genetic signals (such as Notch), but it is unknown whether metabolism also regulates this process. Here, we show that ECs relied on glycolysis rather than on oxidative phosphorylation for ATP production and that loss of the glycolytic activator PFKFB3 in ECs impaired vessel formation. Mechanistically, PFKFB3 not only regulated EC proliferation but also controlled the formation of filopodia/lamellipodia and directional migration, in part by compartmentalizing with F-actin in motile protrusions. Mosaic in vitro and in vivo sprouting assays further revealed that PFKFB3 overexpression overruled the pro-stalk activity of Notch, whereas PFKFB3 deficiency impaired tip cell formation upon Notch blockade, implying that glycolysis regulates vessel branching.


Asunto(s)
Células Endoteliales/metabolismo , Glucólisis , Neovascularización Fisiológica , Fosfofructoquinasa-2/metabolismo , Animales , Línea Celular Tumoral , Células Cultivadas , Células Endoteliales/citología , Femenino , Eliminación de Gen , Silenciador del Gen , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Fosfofructoquinasa-2/genética , Seudópodos/metabolismo , Pez Cebra
6.
Nature ; 605(7908): 146-151, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35314834

RESUMEN

Coronavirus disease 2019 (COVID-19) is especially severe in aged populations1. Vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are highly effective, but vaccine efficacy is partly compromised by the emergence of SARS-CoV-2 variants with enhanced transmissibility2. The emergence of these variants emphasizes the need for further development of anti-SARS-CoV-2 therapies, especially for aged populations. Here we describe the isolation of highly virulent mouse-adapted viruses and use them to test a new therapeutic drug in infected aged animals. Many of the alterations observed in SARS-CoV-2 during mouse adaptation (positions 417, 484, 493, 498 and 501 of the spike protein) also arise in humans in variants of concern2. Their appearance during mouse adaptation indicates that immune pressure is not required for selection. For murine SARS, for which severity is also age dependent, elevated levels of an eicosanoid (prostaglandin D2 (PGD2)) and a phospholipase (phospholipase A2 group 2D (PLA2G2D)) contributed to poor outcomes in aged mice3,4. mRNA expression of PLA2G2D and prostaglandin D2 receptor (PTGDR), and production of PGD2 also increase with ageing and after SARS-CoV-2 infection in dendritic cells derived from human peripheral blood mononuclear cells. Using our mouse-adapted SARS-CoV-2, we show that middle-aged mice lacking expression of PTGDR or PLA2G2D are protected from severe disease. Furthermore, treatment with a PTGDR antagonist, asapiprant, protected aged mice from lethal infection. PTGDR antagonism is one of the first interventions in SARS-CoV-2-infected animals that specifically protects aged animals, suggesting that the PLA2G2D-PGD2/PTGDR pathway is a useful target for therapeutic interventions.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Eicosanoides , Leucocitos Mononucleares , Ratones , Compuestos Orgánicos , Oxazoles , Piperazinas , Poliésteres , Prostaglandinas , Glicoproteína de la Espiga del Coronavirus , Sulfonamidas
7.
Plant Cell ; 36(6): 2103-2116, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38445983

RESUMEN

Bacterial pathogens deliver effectors into host cells to suppress immunity. How host cells target these effectors is critical in pathogen-host interactions. SUMOylation, an important type of posttranslational modification in eukaryotic cells, plays a critical role in immunity, but its effect on bacterial effectors remains unclear in plant cells. In this study, using bioinformatic and biochemical approaches, we found that at least 16 effectors from the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 are SUMOylated by the enzyme cascade from Arabidopsis thaliana. Mutation of SUMOylation sites on the effector HopB1 enhances its function in the induction of plant cell death via stability attenuation of a plant receptor kinase BRASSINOSTEROID INSENSITIVE 1 (BRI1)-ASSOCIATED RECEPTOR KINASE 1. By contrast, SUMOylation is essential for the function of another effector, HopG1, in the inhibition of mitochondria activity and jasmonic acid signaling. SUMOylation of both HopB1 and HopG1 is increased by heat treatment, and this modification modulates the functions of these 2 effectors in different ways in the regulation of plant survival rates, gene expression, and bacterial infection under high temperatures. Therefore, the current work on the SUMOylation of effectors in plant cells improves our understanding of the function of dynamic protein modifications in plant-pathogen interactions in response to environmental conditions.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Respuesta al Choque Térmico , Pseudomonas syringae , Sumoilación , Arabidopsis/microbiología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Muerte Celular , Ciclopentanos/metabolismo , Regulación de la Expresión Génica de las Plantas , Respuesta al Choque Térmico/genética , Interacciones Huésped-Patógeno , Calor , Células Vegetales/metabolismo , Células Vegetales/microbiología , Enfermedades de las Plantas/microbiología , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Pseudomonas syringae/patogenicidad , Pseudomonas syringae/fisiología , Transducción de Señal
8.
Nature ; 600(7889): 456-461, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34912090

RESUMEN

Commercial chemicals are used extensively across urban centres worldwide1, posing a potential exposure risk to 4.2 billion people2. Harmful chemicals are often assessed on the basis of their environmental persistence, accumulation in biological organisms and toxic properties, under international and national initiatives such as the Stockholm Convention3. However, existing regulatory frameworks rely largely upon knowledge of the properties of the parent chemicals, with minimal consideration given to the products of their transformation in the atmosphere. This is mainly due to a dearth of experimental data, as identifying transformation products in complex mixtures of airborne chemicals is an immense analytical challenge4. Here we develop a new framework-combining laboratory and field experiments, advanced techniques for screening suspect chemicals, and in silico modelling-to assess the risks of airborne chemicals, while accounting for atmospheric chemical reactions. By applying this framework to organophosphate flame retardants, as representative chemicals of emerging concern5, we find that their transformation products are globally distributed across 18 megacities, representing a previously unrecognized exposure risk for the world's urban populations. More importantly, individual transformation products can be more toxic and up to an order-of-magnitude more persistent than the parent chemicals, such that the overall risks associated with the mixture of transformation products are also higher than those of the parent flame retardants. Together our results highlight the need to consider atmospheric transformations when assessing the risks of commercial chemicals.


Asunto(s)
Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Atmósfera/química , Monitoreo del Ambiente , Retardadores de Llama/efectos adversos , Sustancias Peligrosas/análisis , Internacionalidad , Organofosfatos/efectos adversos , Aire/análisis , Contaminantes Atmosféricos/química , Contaminantes Atmosféricos/envenenamiento , Animales , Bioacumulación , Ciudades/estadística & datos numéricos , Simulación por Computador , Ecosistema , Retardadores de Llama/análisis , Retardadores de Llama/envenenamiento , Sustancias Peligrosas/efectos adversos , Sustancias Peligrosas/química , Sustancias Peligrosas/envenenamiento , Humanos , Intoxicación por Organofosfatos , Organofosfatos/análisis , Organofosfatos/química , Medición de Riesgo
9.
Nature ; 589(7843): 603-607, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33166988

RESUMEN

The ongoing coronavirus disease 2019 (COVID-19) pandemic is associated with substantial morbidity and mortality. Although much has been learned in the first few months of the pandemic, many features of COVID-19 pathogenesis remain to be determined. For example, anosmia is a common presentation, and many patients with anosmia show no or only minor respiratory symptoms1. Studies in animals infected experimentally with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of COVID-19, provide opportunities to study aspects of the disease that are not easily investigated in human patients. Although the severity of COVID-19 ranges from asymptomatic to lethal2, most experimental infections provide insights into mild disease3. Here, using K18-hACE2 transgenic mice that were originally developed for SARS studies4, we show that infection with SARS-CoV-2 causes severe disease in the lung and, in some mice, the brain. Evidence of thrombosis and vasculitis was detected in mice with severe pneumonia. Furthermore, we show that infusion of convalescent plasma from a recovered patient with COVID-19 protected against lethal disease. Mice developed anosmia at early time points after infection. Notably, although pre-treatment with convalescent plasma prevented most signs of clinical disease, it did not prevent anosmia. Thus, K18-hACE2 mice provide a useful model for studying the pathological basis of both mild and lethal COVID-19 and for assessing therapeutic interventions.


Asunto(s)
Anosmia/virología , COVID-19/fisiopatología , COVID-19/terapia , Modelos Animales de Enfermedad , SARS-CoV-2/patogenicidad , Animales , Anosmia/fisiopatología , Anosmia/terapia , Encéfalo/inmunología , Encéfalo/patología , Encéfalo/virología , COVID-19/inmunología , COVID-19/virología , Epitelio/inmunología , Epitelio/virología , Femenino , Humanos , Inmunización Pasiva , Inflamación/patología , Inflamación/terapia , Inflamación/virología , Enfermedades Pulmonares/patología , Enfermedades Pulmonares/terapia , Enfermedades Pulmonares/virología , Masculino , Ratones , Senos Paranasales/inmunología , Senos Paranasales/virología , SARS-CoV-2/crecimiento & desarrollo , SARS-CoV-2/inmunología , Resultado del Tratamiento , Sueroterapia para COVID-19
10.
PLoS Pathog ; 20(10): e1012623, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39405339

RESUMEN

It is a great challenge to isolate the broadly neutralizing antibodies (bnAbs) against foot-and-mouth disease virus (FMDV) due to its existence as seven distinct serotypes without cross-protection. Here, by vaccination of pig with FMDV serotype O and A whole virus antigens, we obtained 10 bnAbs against serotypes O, A and/or Asia1 by dissecting 216 common clonotypes of two serotype O and A specific porcine B-cell receptor (BCR) gene repertoires containing total 12720 B cell clones, indicating the induction of cross-serotype bnAbs after sequential vaccination with serotypes O and A antigens. The majority of porcine bnAbs (9/10) were derived from terminally differentiated B cells of different clonal lineages, which convergently targeted the conserved "RGDL" motif on structural protein VP1 of FMDV by mimicking receptor recognition to inhibit viral attachment to cells. Cryo-EM complex structures revealed that the other bnAb pOA-2 specifically targets a novel inter-pentamer antigen structure surrounding the viral three-fold axis, with a highly conserved determinant at residue 68 on VP2. This unique binding pattern enabled cross-serotype neutralization by destabilizing the viral particle. The evolutionary analysis of pOA-2 demonstrated its origin from an intermediate B-cell, emphasizing the crucial role of somatic hypermutations (SHMs) in balancing the breadth and potency of neutralization. However, excessive SHMs may deviate from the trajectory of broad neutralization. This study provides a strategy to uncover bnAbs against highly mutable pathogens and the cross-serotype antigenic structures to explore broadly protective FMDV vaccine.

11.
Circ Res ; 134(7): e17-e33, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38420756

RESUMEN

BACKGROUND: Microvascular complications are the major outcome of type 2 diabetes progression, and the underlying mechanism remains to be determined. METHODS: High-throughput RNA sequencing was performed using human monocyte samples from controls and diabetes. The transgenic mice expressing human CTSD (cathepsin D) in the monocytes was constructed using CD68 promoter. In vivo 2-photon imaging, behavioral tests, immunofluorescence, transmission electron microscopy, Western blot analysis, vascular leakage assay, and single-cell RNA sequencing were performed to clarify the phenotype and elucidate the molecular mechanism. RESULTS: Monocytes expressed high-level CTSD in patients with type 2 diabetes. The transgenic mice expressing human CTSD in the monocytes showed increased brain microvascular permeability resembling the diabetic microvascular phenotype, accompanied by cognitive deficit. Mechanistically, the monocytes release nonenzymatic pro-CTSD to upregulate caveolin expression in brain endothelium triggering caveolae-mediated transcytosis, without affecting the paracellular route of brain microvasculature. The circulating pro-CTSD activated the caveolae-mediated transcytosis in brain endothelial cells via its binding with low-density LRP1 (lipoprotein receptor-related protein 1). Importantly, genetic ablation of CTSD in the monocytes exhibited a protective effect against the diabetes-enhanced brain microvascular transcytosis and the diabetes-induced cognitive impairment. CONCLUSIONS: These findings uncover the novel role of circulatory pro-CTSD from monocytes in the pathogenesis of cerebral microvascular lesions in diabetes. The circulatory pro-CTSD is a potential target for the intervention of microvascular complications in diabetes.


Asunto(s)
Catepsina D , Diabetes Mellitus Tipo 2 , Monocitos , Animales , Humanos , Ratones , Encéfalo/metabolismo , Catepsina D/metabolismo , Catepsina D/farmacología , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Precursores Enzimáticos , Ratones Transgénicos , Monocitos/metabolismo , Transcitosis/fisiología
12.
EMBO Rep ; 25(10): 4594-4624, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39285245

RESUMEN

As a RIG-I-like receptor, MDA5 plays a critical role in antiviral innate immunity by acting as a cytoplasmic double-stranded RNA sensor capable of initiating type I interferon pathways. Here, we show that RNF144B specifically interacts with MDA5 and promotes K27/K33-linked polyubiquitination of MDA5 at lysine 23 and lysine 43, which promotes autophagic degradation of MDA5 by p62. Rnf144b deficiency greatly promotes IFN production and inhibits EMCV replication in vivo. Importantly, Rnf144b-/- mice has a significantly higher overall survival rate than wild-type mice upon EMCV infection. Collectively, our results identify RNF144B as a negative regulator of innate antiviral response by targeting CARDs of MDA5 and mediating autophagic degradation of MDA5.


Asunto(s)
Autofagia , Inmunidad Innata , Helicasa Inducida por Interferón IFIH1 , Proteolisis , Ubiquitinación , Helicasa Inducida por Interferón IFIH1/metabolismo , Helicasa Inducida por Interferón IFIH1/genética , Animales , Humanos , Ratones , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ratones Noqueados , Replicación Viral , Células HEK293 , Proteínas Nucleares
13.
Proc Natl Acad Sci U S A ; 120(47): e2316011120, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37967217

RESUMEN

Potassium (K) is an essential macronutrient for plant growth, and its availability in the soil varies widely, requiring plants to respond and adapt to the changing K nutrient status. We show here that plant growth rate is closely correlated with K status in the medium, and this K-dependent growth is mediated by the highly conserved nutrient sensor, target of rapamycin (TOR). Further study connected the TOR complex (TORC) pathway with a low-K response signaling network consisting of calcineurin B-like proteins (CBL) and CBL-interacting kinases (CIPK). Under high K conditions, TORC is rapidly activated and shut down the CBL-CIPK low-K response pathway through regulatory-associated protein of TOR (RAPTOR)-CIPK interaction. In contrast, low-K status activates CBL-CIPK modules that in turn inhibit TORC by phosphorylating RAPTOR, leading to dissociation and thus inactivation of the TORC. The reciprocal regulation of the TORC and CBL-CIPK modules orchestrates plant response and adaptation to K nutrient status in the environment.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Calcio/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Potasio/metabolismo , Proteínas de Unión al Calcio/metabolismo , Calcio de la Dieta , Proteínas de Plantas/metabolismo
14.
Traffic ; 24(1): 20-33, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36412210

RESUMEN

AP2S1 is the sigma 2 subunit of adaptor protein 2 (AP2) that is essential for endocytosis. In this study, we investigated the potential role of AP2S1 in intracellular processing of amyloid precursor protein (APP), which contributes to the pathogenesis of Alzheimer disease (AD) by generating the toxic ß-amyloid peptide (Aß). We found that knockdown or overexpression of AP2S1 decreased or increased the protein levels of APP and Aß in cells stably expressing human full-length APP695, respectively. This effect was unrelated to endocytosis but involved lysosomal degradation. Morphological studies revealed that silencing of AP2S1 promoted the translocalization of APP from RAB9-positive late endosomes (LE) to LAMP1-positive lysosomes, which was paralleled by the enhanced LE-lysosome fusion. In support, silencing of vacuolar protein sorting-associated protein 41 (VPS41) that is implicated in LE-lyso fusion prevented AP2S1-mediated regulation of APP degradation and translocalization. In APP/PS1 mice, an animal model of AD, AAV-mediated delivery of AP2S1 shRNA in the hippocampus significantly reduced the protein levels of APP and Aß, with the concomitant APP translocalization, LE-lyso fusion and the improved cognitive functions. Taken together, these data uncover a LE-lyso fusion mechanism in APP degradation and suggest a novel role for AP2S1 in the pathophysiology of AD.


Asunto(s)
Subunidades sigma de Complejo de Proteína Adaptadora , Enfermedad de Alzheimer , Ratones , Humanos , Animales , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/metabolismo , Endosomas/metabolismo , Lisosomas/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Complejo 2 de Proteína Adaptadora/metabolismo , Subunidades sigma de Complejo de Proteína Adaptadora/metabolismo , Proteínas de Unión al GTP rab/metabolismo
15.
Plant J ; 119(5): 2168-2180, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38990529

RESUMEN

Mass spectrometry imaging (MSI) has become increasingly popular in plant science due to its ability to characterize complex chemical, spatial, and temporal aspects of plant metabolism. Over the past decade, as the emerging and unique features of various MSI techniques have continued to support new discoveries in studies of plant metabolism closely associated with various aspects of plant function and physiology, spatial metabolomics based on MSI techniques has positioned it at the forefront of plant metabolic studies, providing the opportunity for far higher resolution than was previously available. Despite these efforts, profound challenges at the levels of spatial resolution, sensitivity, quantitative ability, chemical confidence, isomer discrimination, and spatial multi-omics integration, undoubtedly remain. In this Perspective, we provide a contemporary overview of the emergent MSI techniques widely used in the plant sciences, with particular emphasis on recent advances in methodological breakthroughs. Having established the detailed context of MSI, we outline both the golden opportunities and key challenges currently facing plant metabolomics, presenting our vision as to how the enormous potential of MSI technologies will contribute to progress in plant science in the coming years.


Asunto(s)
Espectrometría de Masas , Metabolómica , Plantas , Metabolómica/métodos , Plantas/metabolismo , Espectrometría de Masas/métodos
16.
Plant J ; 117(5): 1558-1573, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38113320

RESUMEN

Stalk lodging is a severe problem that limits maize production worldwide, although little attention has been given to its genetic basis. Here we measured rind penetrometer resistance (RPR), an effective index for stalk lodging, in a multi-parent population of 1948 recombinant inbred lines (RILs) and an association population of 508 inbred lines (AMP508). Linkage and association mapping identified 53 and 29 single quantitative trait loci (QTLs) and 50 and 19 pairs of epistatic interactions for RPR in the multi-parent population and AMP508 population, respectively. Phenotypic variation explained by all identified epistatic QTLs (up to ~5%) was much less than that explained by all single additive QTLs (up to ~33% in the multi-parent population and ~ 60% in the AMP508 population). Among all detected QTLs, only eight single QTLs explained >10% of phenotypic variation in single RIL populations. Alleles that increased RPR were enriched in tropical/subtropical (TST) groups from the AMP508 population. Based on genome-wide association studies in both populations, we identified 137 candidate genes affecting RPR, which were assigned to multiple biological processes, such as the biosynthesis of cell wall components. Sixty-six candidate genes were cross-validated by multiple methods or populations. Most importantly, 23 candidate genes were upregulated or downregulated in high-RPR lines relative to low-RPR lines, supporting the associations between candidate genes and RPR. These findings reveal the complex nature of the genetic basis underlying RPR and provide loci or candidate genes for developing elite varieties that are resistant to stalk lodging via molecular breeding.


Asunto(s)
Estudio de Asociación del Genoma Completo , Zea mays , Mapeo Cromosómico , Zea mays/genética , Fenotipo , Ligamiento Genético
17.
J Virol ; 98(1): e0151023, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38168680

RESUMEN

The Coronavirus Disease 2019 (COVID-19) pandemic continues to cause extraordinary loss of life and economic damage. Animal models of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection are needed to better understand disease pathogenesis and evaluate preventive measures and therapies. While mice are widely used to model human disease, mouse angiotensin converting enzyme 2 (ACE2) does not bind the ancestral SARS-CoV-2 spike protein to mediate viral entry. To overcome this limitation, we "humanized" mouse Ace2 using CRISPR gene editing to introduce a single amino acid substitution, H353K, predicted to facilitate S protein binding. While H353K knockin Ace2 (mACE2H353K) mice supported SARS-CoV-2 infection and replication, they exhibited minimal disease manifestations. Following 30 serial passages of ancestral SARS-CoV-2 in mACE2H353K mice, we generated and cloned a more virulent virus. A single isolate (SARS2MA-H353K) was prepared for detailed studies. In 7-11-month-old mACE2H353K mice, a 104 PFU inocula resulted in diffuse alveolar disease manifested as edema, hyaline membrane formation, and interstitial cellular infiltration/thickening. Unexpectedly, the mouse-adapted virus also infected standard BALB/c and C57BL/6 mice and caused severe disease. The mouse-adapted virus acquired five new missense mutations including two in spike (K417E, Q493K), one each in nsp4, nsp9, and M and a single nucleotide change in the 5' untranslated region. The Q493K spike mutation arose early in serial passage and is predicted to provide affinity-enhancing molecular interactions with mACE2 and further increase the stability and affinity to the receptor. This new model and mouse-adapted virus will be useful to evaluate COVID-19 disease and prophylactic and therapeutic interventions.IMPORTANCEWe developed a new mouse model with a humanized angiotensin converting enzyme 2 (ACE2) locus that preserves native regulatory elements. A single point mutation in mouse ACE2 (H353K) was sufficient to confer in vivo infection with ancestral severe acute respiratory syndrome-coronavirus-2 virus. Through in vivo serial passage, a virulent mouse-adapted strain was obtained. In aged mACE2H353K mice, the mouse-adapted strain caused diffuse alveolar disease. The mouse-adapted virus also infected standard BALB/c and C57BL/6 mice, causing severe disease. The mouse-adapted virus acquired five new missense mutations including two in spike (K417E, Q493K), one each in nsp4, nsp9, and M and a single nucleotide change in the 5' untranslated region. The Q493K spike mutation arose early in serial passage and is predicted to provide affinity-enhancing molecular interactions with mACE2 and further increase the stability and affinity to the receptor. This new model and mouse-adapted virus will be useful to evaluate COVID-19 disease and prophylactic and therapeutic interventions.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Animales , Humanos , Ratones , Regiones no Traducidas 5' , Enzima Convertidora de Angiotensina 2/genética , COVID-19/genética , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Nucleótidos , Peptidil-Dipeptidasa A/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo
18.
PLoS Pathog ; 19(11): e1011811, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37983290

RESUMEN

Foot-and-mouth disease virus (FMDV) serotype A is antigenically most variable within serotypes. The structures of conserved and variable antigenic sites were not well resolved. Here, a historical A/AF72 strain from A22 lineage and a latest A/GDMM/2013 strain from G2 genotype of Sea97 lineage were respectively used as bait antigen to screen single B cell antibodies from bovine sequentially vaccinated with A/WH/CHA/09 (G1 genotype of Sea97 lineage), A/GDMM/2013 and A/AF72 antigens. Total of 39 strain-specific and 5 broad neutralizing antibodies (bnAbs) were isolated and characterized. Two conserved antigenic sites were revealed by the Cryo-EM structures of FMDV serotype A with two bnAbs W2 and W125. The contact sites with both VH and VL of W125 were closely around icosahedral threefold axis and covered the B-C, E-F, and H-I loops on VP2 and the B-B knob and H-I loop on VP3; while contact sites with only VH of W2 concentrated on B-B knob, B-C and E-F loops on VP3 scattering around the three-fold axis of viral particle. Additional highly conserved epitopes also involved key residues of VP158, VP1147 and both VP272 / VP1147 as determined respectively by bnAb W153, W145 and W151-resistant mutants. Furthermore, the epitopes recognized by 20 strain-specific neutralization antibodies involved the key residues located on VP3 68 for A/AF72 (11/20) and VP3 175 position for A/GDMM/2013 (9/19), respectively, which revealed antigenic variation between different strains of serotype A. Analysis of antibody-driven variations on capsid of two virus strains showed a relatively stable VP2 and more variable VP3 and VP1. This study provided important information on conserve and variable antigen structures to design broad-spectrum molecular vaccine against FMDV serotype A.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Animales , Bovinos , Anticuerpos Neutralizantes , Serogrupo , Anticuerpos Antivirales , Anticuerpos ampliamente neutralizantes/genética , Epítopos , Proteínas de la Cápside/genética , Anticuerpos Monoclonales
19.
Plant Physiol ; 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39222356

RESUMEN

Maize (Zea mays L.) kernel development is a complex and dynamic process involving cell division and differentiation, into a variety of cell types. Epigenetic modifications, including DNA methylation, play a pivotal role in regulating this process. N6-methyladenosine modification is a universal and dynamic post-transcriptional epigenetic modification that is involved in the regulation of plant development. However, the role of N6-methyladenosine in maize kernel development remains unknown. In this study, we have constructed transcriptome-wide profiles for maize kernels at various stages of early development. Utilizing a combination of MeRIP-seq and RNA-seq analysis, we identified a total of 11,170, 10,973, 11,094, 11,990, 12,203 and 10,893 N6-methyladenosine peaks in maize kernels at 0, 2, 4, 6, 8, and 12 days after pollination, respectively. These N6-methyladenosine modifications were primarily deposited at the 3'-UTRs and were associated with the conserved motif-UGUACA. Additionally, we found that conserved N6-methyladenosine modification are involved in the regulation of genes that are ubiquitously expressed during kernel development. Further analysis revealed that N6-methyladenosine peak intensity was negatively correlated with the mRNA abundance of these ubiquitously expressed genes. Meanwhile, we employed phylogenetic analysis to predict potential regulatory proteins involved in maize kernels development and identified several that participate in the regulation of N6-methyladenosine modifications. Collectively, our results suggest the existence of a novel post-transcriptional epigenetic modification mechanism involved in the regulation of maize kernels development, thereby providing a novel perspective for maize molecular breeding.

20.
Cereb Cortex ; 34(1)2024 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-38037387

RESUMEN

Previous studies have suggested that ischemic stroke can result in white matter fiber injury and modifications in the structural brain network. However, the relationship with balance function scores remains insufficiently explored. Therefore, this study aims to explore the alterations in the microstructural properties of brain white matter and the topological characteristics of the structural brain network in postischemic stroke patients and their potential correlations with balance function. We enrolled 21 postischemic stroke patients and 21 age, sex, and education-matched healthy controls (HC). All participants underwent balance function assessment and brain diffusion tensor imaging. Tract-based spatial statistics (TBSS) were used to compare the fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity of white matter fibers between the two groups. The white matter structural brain network was constructed based on the automated anatomical labeling atlas, and we conducted a graph theory-based analysis of its topological properties, including global network properties and local node properties. Additionally, the correlation between the significant structural differences and balance function score was analyzed. The TBSS results showed that in comparison to the HC, postischemic stroke patients exhibited extensive damage to their whole-brain white matter fiber tracts (P < 0.05). Graph theory analysis showed that in comparison to the HC, postischemic stroke patients exhibited statistically significant reductions in the values of global efficiency, local efficiency, and clustering coefficient, as well as an increase in characteristic path length (P < 0.05). In addition, the degree centrality and nodal efficiency of some nodes in postischemic stroke patients were significantly reduced (P < 0.05). The white matter fibers of the entire brain in postischemic stroke patients are extensively damaged, and the topological properties of the structural brain network are altered, which are closely related to balance function. This study is helpful in further understanding the neural mechanism of balance function after ischemic stroke from the white matter fiber and structural brain network topological properties.


Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Sustancia Blanca , Humanos , Sustancia Blanca/diagnóstico por imagen , Imagen de Difusión Tensora/métodos , Encéfalo/diagnóstico por imagen , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA