Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 600(7890): 727-730, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34912120

RESUMEN

Human epidermal growth factor receptor 2 (HER2, also known as ERBB2) amplification or overexpression occurs in approximately 20% of advanced gastric or gastro-oesophageal junction adenocarcinomas1-3. More than a decade ago, combination therapy with the anti-HER2 antibody trastuzumab and chemotherapy became the standard first-line treatment for patients with these types of tumours4. Although adding the anti-programmed death 1 (PD-1) antibody pembrolizumab to chemotherapy does not significantly improve efficacy in advanced HER2-negative gastric cancer5, there are preclinical6-19 and clinical20,21 rationales for adding pembrolizumab in HER2-positive disease. Here we describe results of the protocol-specified first interim analysis of the randomized, double-blind, placebo-controlled phase III KEYNOTE-811 study of pembrolizumab plus trastuzumab and chemotherapy for unresectable or metastatic, HER2-positive gastric or gastro-oesophageal junction adenocarcinoma22 ( https://clinicaltrials.gov , NCT03615326). We show that adding pembrolizumab to trastuzumab and chemotherapy markedly reduces tumour size, induces complete responses in some participants, and significantly improves objective response rate.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Receptor de Muerte Celular Programada 1 , Receptor ErbB-2 , Neoplasias Gástricas , Trastuzumab , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/patología , Anticuerpos Monoclonales Humanizados/farmacología , Anticuerpos Monoclonales Humanizados/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Unión Esofagogástrica/efectos de los fármacos , Unión Esofagogástrica/patología , Humanos , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor ErbB-2/antagonistas & inhibidores , Receptor ErbB-2/metabolismo , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología , Trastuzumab/farmacología , Trastuzumab/uso terapéutico
2.
Proc Natl Acad Sci U S A ; 121(15): e2321116121, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38557176

RESUMEN

Multidrug resistance (MDR) is a major factor in the failure of many forms of tumor chemotherapy. Development of a specific ligand for MDR-reversal would enhance the intracellular accumulation of therapeutic agents and effectively improve the tumor treatments. Here, an aptamer was screened against a doxorubicin (DOX)-resistant human hepatocellular carcinoma cell line (HepG2/DOX) via cell-based systematic evolution of ligands by exponential enrichment. A 50 nt truncated sequence termed d3 was obtained with high affinity and specificity for HepG2/DOX cells. Multidrug resistance protein 1 (MDR1) is determined to be a possible recognition target of the selected aptamer. Aptamer d3 binding was revealed to block the MDR of the tumor cells and increase the accumulation of intracellular anticancer drugs, including DOX, vincristine, and paclitaxel, which led to a boost to the cell killing of the anticancer drugs and lowering their survival of the tumor cells. The aptamer d3-mediated MDR-reversal for effective chemotherapy was further verified in an in vivo animal model, and combination of aptamer d3 with DOX significantly improved the suppression of tumor growth by treating a xenograft HepG2/DOX tumor in vivo. This work demonstrates the feasibility of a therapeutic DNA aptamer as a tumor MDR-reversal agent, and combination of the selected aptamer with chemotherapeutic drugs shows great potential for liver cancer treatments.


Asunto(s)
Antineoplásicos , Resistencia a Antineoplásicos , Animales , Humanos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Resistencia a Múltiples Medicamentos , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Quimioterapia Combinada , Línea Celular Tumoral
3.
BMC Geriatr ; 24(1): 407, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714958

RESUMEN

BACKGROUND: Quality of life of osteoporosis patients had caused widespread concern, due to high incidence and difficulty to cure. Scale specifics for osteoporosis and suitable for Chinese cultural background lacked. This study aimed to develop an osteoporosis scale in Quality of Life Instruments for Chronic Diseases system, namely QLICD-OS (V2.0). METHODS: Procedural decision-making approach of nominal group, focus group and modular approach were adopted. Our scale was developed based on experience of establishing scales at home and abroad. In this study, Quality of life measurements were performed on 127 osteoporosis patients before and after treatment to evaluate the psychometric properties. Validity was evaluated by qualitative analysis, item-domain correlation analysis, multi-scaling analysis and factor analysis; the SF-36 scale was used as criterion to carry out correlation analysis for criterion-related validity. The reliability was evaluated by the internal consistency coefficients Cronbach's α, test-retest reliability Pearson correlation r. Paired t-tests were performed on data of ​​the scale before and after treatment, with Standardized Response Mean (SRM) being calculated to evaluate the responsiveness. RESULTS: The QLICD-OS, composed of a general module (28 items) and an osteoporosis-specific module (14 items), had good content validity. Correlation analysis and factor analysis confirmed the construct, with the item having a strong correlation (most > 0.40) with its own domains/principle components, and a weak correlation (< 0.40) with other domains/principle components. Correlation coefficient between the similar domains of QLICD-OS and SF-36 showed reasonable criterion-related validity, with all coefficients r being greater than 0.40 exception of physical function of SF-36 and physical domain of QLICD-OS (0.24). Internal consistency reliability of QLICD-OS in all domains was greater than 0.7 except the specific module. The test-retest reliability coefficients (Pearson r) in all domains and overall score are higher than 0.80. Score changes after treatment were statistically significant, with SRM ranging from 0.35 to 0.79, indicating that QLICD-OS could be rated as medium responsiveness. CONCLUSION: As the first osteoporosis-specific quality of life scale developed by the modular approach in China, the QLICD-OS showed good reliability, validity and medium responsiveness, and could be used to measure quality of life in osteoporosis patients.


Asunto(s)
Osteoporosis , Calidad de Vida , Humanos , Calidad de Vida/psicología , Femenino , Masculino , Osteoporosis/psicología , Osteoporosis/diagnóstico , Anciano , Enfermedad Crónica , Persona de Mediana Edad , Encuestas y Cuestionarios/normas , Reproducibilidad de los Resultados , Psicometría/métodos , Psicometría/instrumentación , Psicometría/normas , Anciano de 80 o más Años
4.
Zhongguo Zhong Yao Za Zhi ; 49(1): 185-196, 2024 Jan.
Artículo en Zh | MEDLINE | ID: mdl-38403351

RESUMEN

This study investigated the effect of trametenolic acid(TA) on the migration and invasion of human hepatocellular carcinoma HepG2.2.15 cells by using Ras homolog gene family member C(RhoC) as the target and probed into the mechanism, aiming to provide a basis for the utilization of TA. The methyl thiazolyl tetrazolium(MTT) assay was employed to examine the proliferation of HepG2.2.15 cells exposed to TA, and scratch and Transwell assays to examine the cell migration and invasion. The pull down assay was employed to determine the impact of TA on RhoC GTPase activity. Western blot was employed to measure the effect of TA on the transport of RhoC from cytoplasm to cell membrane and the expression of RhoC/Rho-associated kinase 1(ROCK1)/myosin light chain(MLC)/matrix metalloprotease 2(MMP2)/MMP9 pathway-related proteins. RhoC was over-expressed by transient transfection of pcDNA3.1-RhoC. The changes of F-actin in the cytoskeleton were detected by Laser confocal microscopy. In addition, the changes of cell migration and invasion, expression of proteins in the RhoC/ROCK1/MLC/MMP2/MMP9 pathway, and RhoC GTPase activity were detected. The subcutaneously transplanted tumor model of BALB/c nude mice and the low-, medium-, and high-dose(40, 80, and 120 mg·kg~(-1), respectively) TA groups were established and sorafenib(20 mg·kg~(-1)) was used as the positive control. The tumor volume and weight in each group were measured, and the expression of related proteins in the tumor tissue was determined by Western blot. The results showed that TA inhibited the proliferation of HepG2.2.15 cells in a concentration-dependent manner, with the IC_(50) of 66.65 and 23.09 µmol·L~(-1) at the time points of 24 and 48 h, respectively. The drug administration groups had small tumors with low mass. The tumor inhibition rates of sorafenib and low-, medium-and high-dose TA were 62.23%, 26.48%, 55.45%, and 62.36%, respectively. TA reduced migrating and invading cells and inhibited RhoC protein expression and RhoC GTPase activity in a concentration-dependent manner, dramatically reducing RhoC and membrane-bound RhoC GTPase. The expression of ROCK1, MLC, p-MLC, MMP2, and MMP9 downstream of RhoC can be significantly inhibited by TA, as confirmed in both in vitro and in vivo experiments. After HepG2.2.15 cells were transfected with pcDNA3.1-RhoC to overexpress RhoC, TA down-regulated the protein levels of RhoC, ROCK1, MLC, p-MLC, MMP2, and MMP9 and decreased the activity of RhoC GTPase, with the inhibition level comparable to that before overexpression. In summary, TA can inhibit the migration and invasion of HepG2.2.15 cells. It can inhibit the RhoC/ROCK1/MLC/MMP2/MMP9 signaling pathway by suppressing RhoC GTPase activity and down-regulating RhoC expression. This study provides a new idea for the development of autophagy modulators targeting HSP90α to block the proliferation and inhibit the invasion and migration of hepatocellular carcinoma cells via multiple targets of active components in traditional Chinese medicines.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Ratones , Humanos , Proteína rhoC de Unión a GTP/metabolismo , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Metaloproteinasa 9 de la Matriz/metabolismo , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Quinasas Asociadas a rho/genética , Quinasas Asociadas a rho/metabolismo , Sorafenib , Ratones Desnudos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Línea Celular Tumoral , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Movimiento Celular , Proliferación Celular
5.
Proc Natl Acad Sci U S A ; 117(10): 5394-5401, 2020 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-32094176

RESUMEN

As a prototype of genomics-guided precision medicine, individualized thiopurine dosing based on pharmacogenetics is a highly effective way to mitigate hematopoietic toxicity of this class of drugs. Recently, NUDT15 deficiency was identified as a genetic cause of thiopurine toxicity, and NUDT15-informed preemptive dose reduction was quickly adopted in clinical settings. To exhaustively identify pharmacogenetic variants in this gene, we developed massively parallel NUDT15 function assays to determine the variants' effect on protein abundance and thiopurine cytotoxicity. Of the 3,097 possible missense variants, we characterized the abundance of 2,922 variants and found 54 hotspot residues at which variants resulted in complete loss of protein stability. Analyzing 2,935 variants in the thiopurine cytotoxicity-based assay, we identified 17 additional residues where variants altered NUDT15 activity without affecting protein stability. We identified structural elements key to NUDT15 stability and/or catalytical activity with single amino acid resolution. Functional effects for NUDT15 variants accurately predicted toxicity risk alleles in patients treated with thiopurines with far superior sensitivity and specificity compared to bioinformatic prediction algorithms. In conclusion, our massively parallel variant function assays identified 1,152 deleterious NUDT15 variants, providing a comprehensive reference of variant function and vastly improving the ability to implement pharmacogenetics-guided thiopurine treatment individualization.


Asunto(s)
Antimetabolitos/administración & dosificación , Antimetabolitos/toxicidad , Mercaptopurina/administración & dosificación , Mercaptopurina/toxicidad , Variantes Farmacogenómicas , Pirofosfatasas/genética , Alelos , Sustitución de Aminoácidos , Relación Dosis-Respuesta a Droga , Determinación de Punto Final , Estabilidad de Enzimas , Células HEK293 , Humanos , Mutación Missense , Medicina de Precisión , Conformación Proteica en Hélice alfa/genética , Pirofosfatasas/química , Riesgo
6.
Analyst ; 147(22): 5203-5209, 2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36255234

RESUMEN

Mesenchymal stem cells (MSCs) mainly found in the bone marrow of adult mammals demonstrate unique capacities of differentiating into multiple cell lineages and undifferentiated MSCs are considered an ideal source of seed cells for cell therapy and tissue engineering. However, MSCs are heterogeneous and not abundant in bone marrow, and there are few specific markers for these cells currently. Therefore, new methods to isolate and characterize MSCs are urgently required. To address the problem, we successfully developed a high-specificity aptamer, called Apt-W2, to specifically recognize mouse bone marrow mesenchymal stem cells (mBMSCs). We synthesized Apt-W2 modified magnetic beads (Apt-W2-MBs) and used them as bait to fish out the MSCs from mouse bone marrow accurately by magnetic-activated cell sorting (MACS). Next, the sorted cells could break free from the Apt-W2-MBs by the competition of C-W2 (complementary strands of Apt-W2). As a result, the sorted cells were intact, and maintained the stem cell phenotype and good proliferative ability. Simultaneously, the sorted cells showed high pluripotency to differentiate into osteoblasts, chondrocytes, and adipocytes. More importantly, the Apt-W2-MB cocktail showed a fine capture performance for MSCs (∼88.33%). This new methodological approach can greatly facilitate MSC isolation efficiently and intactly, thereby enhancing the rate of in vitro differentiation of MSC-derived cells for the emerging field of tissue engineering and regenerative medicine. This new instrumental application of aptamers is an important innovation that achieved both high efficiency and nondestructive cell sorting, opening the door to novel cell sorting approaches.


Asunto(s)
Aptámeros de Nucleótidos , Células Madre Mesenquimatosas , Ratones , Animales , Médula Ósea , Diferenciación Celular , Células de la Médula Ósea , Células Cultivadas , Proliferación Celular , Mamíferos
7.
Pediatr Blood Cancer ; 69(4): e29490, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34866312

RESUMEN

INTRODUCTION: There are clinical reports that the incorporation of dasatinib may increase the frequency of osteonecrosis in acute lymphoblastic leukemia (ALL) treatment regimens. No rigorous testing of this hypothesis is available to guide clinicians. METHODS: We tested whether oral dasatinib increased the frequency of dexamethasone-induced osteonecrosis in a murine model and tested its effects on dexamethasone's antileukemic efficacy in a murine BCR-ABL+ model of ALL. RESULTS: Dasatinib did not change the frequency of osteonecrosis (p = .99) nor of arteriopathy (p = .36) in dexamethasone-treated mice when given at dosages that achieved clinically relevant steady-state dasatinib plasma concentrations of 53.1 ng/ml (95% CI: 43.5-57.3 ng/ml). These dasatinib exposures were not associated with increased dexamethasone plasma exposure in nonleukemia-bearing mice. These same dosages were not associated with any decrement in antileukemic efficacy of dexamethasone in a responsive BCR-ABL+ model of ALL. CONCLUSIONS: Based on the results of our preclinical murine studies, we conclude that dasatinib is unlikely to increase the osteonecrotic effects of dexamethasone in ALL regimens.


Asunto(s)
Osteonecrosis , Leucemia-Linfoma Linfoblástico de Células Precursoras , Animales , Dasatinib , Dexametasona/uso terapéutico , Modelos Animales de Enfermedad , Proteínas de Fusión bcr-abl , Humanos , Ratones , Osteonecrosis/inducido químicamente , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico
8.
Anal Chem ; 93(41): 13919-13927, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34619958

RESUMEN

The development of multifunctional nanoplatforms that integrate both diagnostic and therapeutic functions has always been extremely desirable and challenging in the cancer combat. Here, we report an endogenous miRNA-activated DNA nanomachine (EMDN) in living cells for concurrent sensitive miRNA imaging and activatable gene silencing. EMDN is constructed by interval hybridization of two functional DNA monomers (R/HP and F) to a DNA nanowire generated by hybridization chain reaction. After the target cell-specific transportation of EMDN, intracellular let-7a miRNA initiates the DNA nanomachine by DNA strand displacement cascades, resulting in an amplified fluorescence resonance energy-transfer signal and the release of many free HP sequences. The restoration of HP hairpin structures further activates the split-DNAzyme to identify and cleave the EGR-1 mRNA to realize gene silencing therapy. The proposed EMDN shows efficient cell internalization, good biological stability, rapid reaction kinetics, and the ability to avoid false-positive signals, thus ensuring reliable miRNA imaging in living cells. Meanwhile, the controlled activation of the split-DNAzyme activity regulated by the intracellular specific miRNA may be promising in the precise treatment of cancer. Collectively, this strategy provides a valuable nanoplatform for early clinical diagnosis and activatable gene therapy of tumors.


Asunto(s)
ADN Catalítico , MicroARNs , ADN/genética , ADN Catalítico/metabolismo , Silenciador del Gen , MicroARNs/genética , Hibridación de Ácido Nucleico
9.
Anal Chem ; 93(19): 7369-7377, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33960774

RESUMEN

Cancer has become one of the most common diseases with high mortality in humans. Early and accurate diagnosis of cancer is of great significance to enhance the survival rate of patients. Therefore, effective molecular ligands capable of selectively recognizing cancer are urgently needed. In this work, we identified a new DNA aptamer named SW1 by tissue-based systematic evolution of ligands by exponential enrichment (tissue-SELEX), in which cancerous liver tissue sections were used as the positive control and adjacent normal liver tissue sections were used as the negative control. Taking immobilized liver cancer SMMC-7721 cells as the research object, aptamer SW1 exhibited excellent affinity with a Kd value of 123.62 ± 17.53 nM, and its binding target was preliminarily determined as a non-nucleic acid substance in the nucleus. Moreover, tissue imaging results showed that SW1 explicitly recognized cancerous liver tissues with a high detection rate of 72.7% but displayed a low detection rate to adjacent normal tissues. In addition to liver cancer cells and tissues, aptamer SW1 has been demonstrated to recognize various other types of cancer cells and tissues. Furthermore, SW1-A, an optimized aptamer of SW1, maintained its excellent affinity toward liver cancer cells and tissues. Collectively, these results indicate that SW1 possesses great potential for use as an effective molecular probe for clinical diagnosis of cancer.


Asunto(s)
Aptámeros de Nucleótidos , Neoplasias , Humanos , Ligandos , Sondas Moleculares , Neoplasias/diagnóstico por imagen , Técnica SELEX de Producción de Aptámeros
10.
Haematologica ; 106(8): 2095-2101, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32675219

RESUMEN

Recent clinical trials in children with acute lymphoblastic leukemia (ALL) indicate that severe hypertriglyceridemia (> 1000 mg/dL) during therapy is associated with increased frequency of symptomatic osteonecrosis. Interventions to lower triglycerides have been considered, but there have been no pre-clinical studies investigating impact of lowering triglycerides on osteonecrosis risk, nor whether such interventions interfere with the antileukemic efficacy of ALL treatment. We utilized our clinically relevant mouse model of dexamethasone-induced osteonecrosis to determine if fenofibrate decreased osteonecrosis. To test whether fenofibrate affected the antileukemic efficacy of dexamethasone, we utilized a BCR-ABL+ model of ALL. Serum triglycerides were reduced with fenofibrate throughout treatment, with the most pronounced 4.5-fold decrease at week 3 (p<1x10-6). Both frequency (33% versus 74%, p=0.006) and severity (median necrosis score of 0 versus 75; p=6x10-5) of osteonecrosis were reduced with fenofibrate. Fenofibrate had no impact on BCR-ABL+ ALL survival (p=0.65) nor on the antileukemic properties of dexamethasone (p=0.49). These data suggest that lowering triglycerides with fenofibrate reduces dexamethasone-induced osteonecrosis while maintaining antileukemic efficacy, and thus may be considered for clinical trials.


Asunto(s)
Fenofibrato , Osteonecrosis , Leucemia-Linfoma Linfoblástico de Células Precursoras , Animales , Dexametasona , Proteínas de Fusión bcr-abl , Ratones , Osteonecrosis/inducido químicamente , Osteonecrosis/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Triglicéridos
11.
Blood ; 131(22): 2466-2474, 2018 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-29572377

RESUMEN

Thiopurines (eg, 6-mercaptopurine [MP]) are highly efficacious antileukemic agents, but they are also associated with dose-limiting toxicities. Recent studies by us and others have identified inherited NUDT15 deficiency as a novel genetic cause of thiopurine toxicity, and there is a strong rationale for NUDT15-guided dose individualization to preemptively mitigate adverse effects of these drugs. Using CRISPR-Cas9 genome editing, we established a Nudt15-/- mouse model to evaluate the effectiveness of this strategy in vivo. Across MP dosages, Nudt15-/- mice experienced severe leukopenia, rapid weight loss, earlier death resulting from toxicity, and more bone marrow hypocellularity compared with wild-type mice. Nudt15-/- mice also showed excessive accumulation of a thiopurine active metabolite (ie, DNA-incorporated thioguanine nucleotides [DNA-TG]) in an MP dose-dependent fashion, as a plausible cause of increased toxicity. MP dose reduction effectively normalized systemic exposure to DNA-TG in Nudt15-/- mice and largely eliminated Nudt15 deficiency-mediated toxicity. In 95 children with acute lymphoblastic leukemia, MP dose adjustment also directly led to alteration in DNA-TG levels, the effects of which were proportional to the degree of NUDT15 deficiency. Using leukemia-bearing mice with concordant Nudt15 genotype in leukemia and host, we also confirmed that therapeutic efficacy was preserved in Nudt15-/- mice receiving a reduced MP dose compared with Nudt15+/+ counterparts exposed to a standard dose. In conclusion, we demonstrated that NUDT15 genotype-guided MP dose individualization can preemptively mitigate toxicity without compromising therapeutic efficacy.


Asunto(s)
Antimetabolitos Antineoplásicos/uso terapéutico , Leucemia/tratamiento farmacológico , Mercaptopurina/uso terapéutico , Hidrolasas Diéster Fosfóricas/genética , Animales , Antimetabolitos Antineoplásicos/administración & dosificación , Antimetabolitos Antineoplásicos/toxicidad , Sistemas CRISPR-Cas , Niño , Cálculo de Dosificación de Drogas , Evaluación Preclínica de Medicamentos , Eliminación de Gen , Edición Génica , Genotipo , Humanos , Leucemia/genética , Leucemia/patología , Mercaptopurina/administración & dosificación , Mercaptopurina/toxicidad , Ratones , Ratones Noqueados , Pirofosfatasas/genética
12.
Eur J Clin Pharmacol ; 76(3): 383-391, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31873765

RESUMEN

PURPOSE: The aim of the present study was to evaluate the safety, pharmacokinetic (PK) and pharmacodynamic (PD) properties of remimazolam besylate following single ascending dose (SAD) and continuous infusion in healthy Chinese volunteers. METHODS: This was a randomized phase I study conducted in two parts. Part I was a double-blind, placebo- and midazolam-controlled, SAD study among healthy Chinese participants with a remimazolam dose of 0.025-0.4 mg/kg. Part II was an open-label, midazolam-controlled, continuous infusion study. Bispectral index (BIS) monitoring and Modified Observers Assessment of Alertness and Sedation (MOAA/S) score assessment were used to assess the PD properties. RESULTS: The half-life range of remimazolam was from 34.1 ± 8.1 to 59.8 ± 20.5 min in the SAD study. The sedation function was initially observed at the dose of 0.05 mg/kg remimazolam. Doses of ≥ 0.075 mg/kg exerted a peak sedation effect within 1-2 min after injection, resulting in a deeper and more rapid sedation. In the 2 h continuous infusion, remimazolam showed a deeper sedation and more rapid recovery than midazolam. For general anesthesia, an induction dosage of 0.2 mg/kg/min and a maintenance dosage of 1 mg/kg/h can achieve a satisfactory efficacy effect. CONCLUSIONS: Remimazolam was safe and well tolerated in healthy Chinese participants. Based on the phase I clinical study, we suggest that remimazolam besylate demonstrates greater sedation and quicker recovery from sedation than midazolam.


Asunto(s)
Benzodiazepinas/efectos adversos , Benzodiazepinas/farmacocinética , Relación Dosis-Respuesta a Droga , Adulto , Pueblo Asiatico , Benzodiazepinas/uso terapéutico , Método Doble Ciego , Femenino , Voluntarios Sanos , Humanos , Hipnóticos y Sedantes/efectos adversos , Hipnóticos y Sedantes/farmacocinética , Hipnóticos y Sedantes/uso terapéutico , Infusiones Intravenosas/métodos , Masculino , Midazolam/efectos adversos , Midazolam/farmacocinética , Midazolam/uso terapéutico , Adulto Joven
13.
Genet Epidemiol ; 41(6): 498-510, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28580727

RESUMEN

Gene set enrichment analysis (GSEA) aims at identifying essential pathways, or more generally, sets of biologically related genes that are involved in complex human diseases. In the past, many studies have shown that GSEA is a very useful bioinformatics tool that plays critical roles in the innovation of disease prevention and intervention strategies. Despite its tremendous success, it is striking that conclusions of GSEA drawn from isolated studies are often sparse, and different studies may lead to inconsistent and sometimes contradictory results. Further, in the wake of next generation sequencing technologies, it has been made possible to measure genome-wide isoform-specific expression levels, calling for innovations that can utilize the unprecedented resolution. Currently, enormous amounts of data have been created from various RNA-seq experiments. All these give rise to a pressing need for developing integrative methods that allow for explicit utilization of isoform-specific expression, to combine multiple enrichment studies, in order to enhance the power, reproducibility, and interpretability of the analysis. We develop and evaluate integrative GSEA methods, based on two-stage procedures, which, for the first time, allow statistically efficient use of isoform-specific expression from multiple RNA-seq experiments. Through simulation and real data analysis, we show that our methods can greatly improve the performance in identifying essential gene sets compared to existing methods that can only use gene-level expression.


Asunto(s)
Bases de Datos Genéticas , Regulación de la Expresión Génica , Isoformas de Proteínas/genética , Algoritmos , Neoplasias de la Mama/genética , Simulación por Computador , Femenino , Humanos , Modelos Genéticos , Isoformas de Proteínas/metabolismo , Curva ROC , Reproducibilidad de los Resultados
14.
Anal Chem ; 90(10): 6131-6137, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29696967

RESUMEN

Cell-surface glycosylation contains abundant biological information that reflects cell physiological state, and it is of great value to image cell-surface glycosylation to elucidate its functions. Here we present a hybridization chain reaction (HCR)-based multifluorescence resonance energy transfer (multi-FRET) method for specific imaging of cell-surface glycosylation. By installing donors through metabolic glycan labeling and acceptors through aptamer-tethered nanoassemblies on the same glycoconjugate, intramolecular multi-FRET occurs due to near donor-acceptor distance. Benefiting from amplified effect and spatial flexibility of the HCR nanoassemblies, enhanced multi-FRET imaging of specific cell-surface glycosylation can be obtained. With this HCR-based multi-FRET method, we achieved obvious contrast in imaging of protein-specific GalNAcylation on 7211 cell surfaces. In addition, we demonstrated the general applicability of this method by visualizing the protein-specific sialylation on CEM cell surfaces. Furthermore, the expression changes of CEM cell-surface protein-specific sialylation under drug treatment was accurately monitored. This developed imaging method may provide a powerful tool in researching glycosylation functions, discovering biomarkers, and screening drugs.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Imagen Óptica , Aptámeros de Nucleótidos/química , Línea Celular Tumoral , Glicoconjugados/química , Glicosilación , Células Hep G2 , Humanos , Polisacáridos/química , Polisacáridos/metabolismo , Propiedades de Superficie
15.
Proc Natl Acad Sci U S A ; 112(16): 5231-6, 2015 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-25848011

RESUMEN

Acute kidney injury (AKI) is a potentially fatal syndrome characterized by a rapid decline in kidney function caused by ischemic or toxic injury to renal tubular cells. The widely used chemotherapy drug cisplatin accumulates preferentially in the renal tubular cells and is a frequent cause of drug-induced AKI. During the development of AKI the quiescent tubular cells reenter the cell cycle. Strategies that block cell-cycle progression ameliorate kidney injury, possibly by averting cell division in the presence of extensive DNA damage. However, the early signaling events that lead to cell-cycle activation during AKI are not known. In the current study, using mouse models of cisplatin nephrotoxicity, we show that the G1/S-regulating cyclin-dependent kinase 4/6 (CDK4/6) pathway is activated in parallel with renal cell-cycle entry but before the development of AKI. Targeted inhibition of CDK4/6 pathway by small-molecule inhibitors palbociclib (PD-0332991) and ribociclib (LEE011) resulted in inhibition of cell-cycle progression, amelioration of kidney injury, and improved overall survival. Of additional significance, these compounds were found to be potent inhibitors of organic cation transporter 2 (OCT2), which contributes to the cellular accumulation of cisplatin and subsequent kidney injury. The unique cell-cycle and OCT2-targeting activities of palbociclib and LEE011, combined with their potential for clinical translation, support their further exploration as therapeutic candidates for prevention of AKI.


Asunto(s)
Lesión Renal Aguda/tratamiento farmacológico , Puntos de Control del Ciclo Celular , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Proteínas de Transporte de Catión Orgánico/antagonistas & inhibidores , Lesión Renal Aguda/patología , Aminopiridinas/farmacología , Aminopiridinas/uso terapéutico , Animales , Puntos de Control del Ciclo Celular/efectos de los fármacos , Cisplatino , Quinasa 4 Dependiente de la Ciclina/metabolismo , Quinasa 6 Dependiente de la Ciclina/metabolismo , Modelos Animales de Enfermedad , Activación Enzimática/efectos de los fármacos , Células HEK293 , Células HeLa , Humanos , Túbulos Renales/efectos de los fármacos , Túbulos Renales/enzimología , Túbulos Renales/patología , Ratones , Proteínas de Transporte de Catión Orgánico/deficiencia , Proteínas de Transporte de Catión Orgánico/metabolismo , Transportador 2 de Cátion Orgánico , Piperazinas/farmacología , Piperazinas/uso terapéutico , Sustancias Protectoras/farmacología , Sustancias Protectoras/uso terapéutico , Purinas/farmacología , Purinas/uso terapéutico , Piridinas/farmacología , Piridinas/uso terapéutico , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/uso terapéutico
16.
Pediatr Blood Cancer ; 64(8)2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28409853

RESUMEN

BACKGROUND: Plerixafor, a reversible CXCR4 antagonist, inhibits interactions between leukemic blasts and the bone marrow stromal microenvironment and may enhance chemosensitivity. A phase 1 trial of plerixafor in combination with intensive chemotherapy in children and young adults with relapsed or refractory acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), and myelodysplastic syndrome (MDS) was performed to determine a tolerable and biologically active dose. PROCEDURE: Plerixafor was administered daily for 5 days at four dose levels (6, 9, 12, and 15 mg/m2 /dose) followed 4 hr later by high-dose cytarabine (every 12 hr) and etoposide (daily). RESULTS: Nineteen patients (13 with AML, 5 with ALL, 1 with MDS) were treated. The most common grade 3 or greater nonhematologic toxicities attributable to plerixafor were febrile neutropenia and hypokalemia. There were no dose-limiting toxicities (DLTs). Plerixafor exposure increased with increasing dose levels and clearance was similar on days 1 and 5. Eighteen patients were evaluable for response. Two patients achieved complete remission (CR) and one patient achieved CR with incomplete hematologic recovery (CRi): all three had AML. No responses were seen in patients with ALL or MDS. Plerixafor mobilized leukemic blasts into the peripheral blood in 14 of 16 evaluable patients (median 3.4-fold increase), and the degree of mobilization correlated with surface CXCR4 expression. CONCLUSIONS: Plerixafor, in combination with high-dose cytarabine and etoposide, was well tolerated in children and young adults with relapsed/refractory acute leukemias and MDS. While biologic responses were observed, clinical responses in this heavily pretreated cohort were modest.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Compuestos Heterocíclicos/administración & dosificación , Síndromes Mielodisplásicos/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Adolescente , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Bencilaminas , Niño , Preescolar , Ciclamas , Citarabina/administración & dosificación , Citarabina/efectos adversos , Etopósido/administración & dosificación , Etopósido/efectos adversos , Femenino , Compuestos Heterocíclicos/efectos adversos , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Masculino , Recurrencia Local de Neoplasia/tratamiento farmacológico , Receptores CXCR4/antagonistas & inhibidores , Resultado del Tratamiento , Adulto Joven
17.
Arch Virol ; 161(2): 449-54, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26577902

RESUMEN

In the present study, we describe the laboratory workflow and the clinical validation of a novel multiplex real-time PCR-based HPV assay in China. The cross-sectional validation analysis showed that this assay worked well for detection of 14 HR-HPV types and identification of HPV 16 and 18 in a single sensitive assay that is suitable for both clinical usage and high-throughput cervical screening purposes. We predict that this accurate, high-throughput and low-cost HPV assay can greatly reduce the heavy economic burden of HPV detection in China.


Asunto(s)
Genotipo , Técnicas de Genotipaje/métodos , Papillomaviridae/clasificación , Papillomaviridae/aislamiento & purificación , Infecciones por Papillomavirus/diagnóstico , Infecciones por Papillomavirus/virología , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , China , Estudios Transversales , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Papillomaviridae/genética
18.
Planta ; 241(6): 1363-79, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25682102

RESUMEN

MAIN CONCLUSION: Comparative and association analyses of the proteome and transcriptome for pear fruit development were conducted for the first time in this study. Pear fruit development involves complex physiological and biochemical processes, but there is still little knowledge available at proteomic and transcriptomic levels, which would be helpful for understanding the molecular mechanisms of fruit development and quality in pear. In our study, three important stages, including early development (S4-22), middle development (S6-27), and near ripening (S8-30), were investigated in 'Dangshansuli' by isobaric tags for relative and absolute quantitation (iTRAQ) labeling technology, identifying a total of 1,810 proteins during pear fruit development. The association analysis of proteins and transcript expression revealed 1,724, 1,722, and 1,718 associated proteins identified in stages S4-22, S6-27, and S8-30, respectively. A total of 237, 318, and 425 unique proteins were identified as differentially expressed during S4-22 vs S6-27, S6-27 vs S8-30, S4-22 vs S8-30, respectively, and the corresponding correlation coefficients of the overall differentially expressed proteins and transcripts data were 0.6336, 0.4113, and 0.7049. The phenylpropanoid biosynthesis pathway, which is related to lignin formation of pear fruit, was identified as a significantly enriched pathway during early stages of fruit development. Finally, a total of 35 important differentially expressed proteins related to fruit quality were identified, including three proteins related to sugar formation, seven proteins related to aroma synthesis, and sixteen proteins related to the formation of lignin. In addition, qRT-PCR verification provided further evidence to support differentially expressed gene selection. This study is the first to reveal protein and associated mRNA variations in pear during fruit development and quality conformation, and identify key genes and proteins helpful for future functional genomics studies, and provides gene resources for improvement of pear quality.


Asunto(s)
Frutas/crecimiento & desarrollo , Frutas/genética , Genes de Plantas , Proteoma/metabolismo , Proteómica/métodos , Pyrus/crecimiento & desarrollo , Pyrus/genética , Análisis por Conglomerados , Frutas/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Anotación de Secuencia Molecular , Fenotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pyrus/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los Resultados , Transcriptoma/genética
19.
Evol Dev ; 16(2): 101-9, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24617989

RESUMEN

The ejaculates of most internally fertilizing species consists of both sperm and seminal fluid proteins. Seminal fluid proteins have been studied largely in relation to their post-mating effects on female reproductive physiology, and predominantly in genomically well-characterized species. Seminal fluids can also play important roles in sperm maturation and performance. In the field cricket Teleogryllus oceanicus the viability of ejaculated sperm increases as males age, as does their competitive fertilization success. Here, using quantitative proteomics and quantitative real-time PCR, we document ontogenetic changes in seminal fluid protein abundance and in seminal fluid gene expression. We identified at least nine proteins that changed in abundance in the seminal fluid of crickets as they aged. Gene expression was quantified for five seminal fluid protein genes, and in four of these gene expression changed as males aged. These ontogenetic changes were associated with a general increase in the size of the male accessory glands. Several of the seminal fluid proteins that we have identified are novel, and some have BLAST matches to proteins implicated in sperm function. Our data suggest that age related changes in competitive fertilization success may be dependent on seminal fluid chemistry.


Asunto(s)
Gryllidae/genética , Proteínas de Insectos/genética , Proteínas de Plasma Seminal/genética , Animales , Expresión Génica , Gryllidae/crecimiento & desarrollo , Masculino , Proteoma/análisis , Espermatozoides/química , Espermatozoides/metabolismo
20.
Adv Healthc Mater ; 13(16): e2304436, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38335308

RESUMEN

An imbalance in reactive oxygen species (ROS) levels in tumor cells can result in the accumulation of lipid peroxide (LPO) which can induce ferroptosis. Moreover, elevated ROS levels in tumors present a chance to develop ROS-based cancer therapeutics including photodynamic therapy (PDT) and ferroptosis. However, their anticancer efficacies are compromised by insufficient oxygen levels and inherent cellular ROS regulatory mechanism. Herein, a cell membrane-targeting photosensitizer, TBzT-CNQi, which can generate 1O2, •OH, and O2 •- via type I/II process to induce a high level of LPO for potent ferroptosis and photodynamic therapy is developed. The FSP1 inhibitor (iFSP1) is incorporated with TBzT-CNQi to downregulate FSP1 expression, lower the intracellular CoQ10 content, induce a high level of LPO, and activate initial tumor immunogenic ferroptosis. In vitro and in vivo experiments demonstrate that the cell membrane-targeting type I/II PDT combination with FSP1 inhibition can evoke strong ICD and activate the immune response, which subsequently promotes the invasion of CD8+ T cells infiltration, facilitates the dendritic cell maturation, and decreases the tumor infiltration of tumor-associated macrophages. The study indicates that the combination of cell membrane-targeting type I/II PDT and FSP1 inhibition holds promise as a potential strategy for ferroptosis-enhanced photodynamic immunotherapy of hypoxia tumors.


Asunto(s)
Ferroptosis , Fotoquimioterapia , Fármacos Fotosensibilizantes , Proteína de Unión al Calcio S100A4 , Ferroptosis/efectos de los fármacos , Fotoquimioterapia/métodos , Animales , Ratones , Humanos , Proteína de Unión al Calcio S100A4/metabolismo , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Línea Celular Tumoral , Membrana Celular/metabolismo , Inmunoterapia/métodos , Especies Reactivas de Oxígeno/metabolismo , Femenino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA