Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
J Environ Sci (China) ; 139: 170-181, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38105045

RESUMEN

The nanoscale zinc oxide (n-ZnO) was used in food packages due to its superior antibacterial activity, resulting in potential intake of n-ZnO through the digestive system, wherein n-ZnO interacted with saliva. In recent, facet engineering, a technique for controlling the exposed facets, was applied to n-ZnO, whereas risk of n-ZnO with specific exposed facets in saliva was ignored. ZnO nanoflakes (ZnO-0001) and nanoneedles (ZnO-1010) with the primary exposed facets of {0001} and {1010} respectively were prepared in this study, investigating stability and toxicity of ZnO-0001 and ZnO-1010 in synthetic saliva. Both ZnO-0001 and ZnO-1010 partially transformed into amorphous Zn3(PO4)2 within 1 hr in the saliva even containing orgnaic components, forming a ZnO-Zn3(PO4)2 core-shell structure. Nevertheless, ZnO-1010 relative to ZnO-0001 would likely transform into Zn3(PO4)2, being attributed to superior dissolution of {1010} facet due to its lower vacancy formation energy (1.15 eV) than {0001} facet (3.90 eV). The toxicity of n-ZnO to Caco-2 cells was also dependent on the primary exposed facet; ZnO-0001 caused cell toxicity through oxidative stress, whereas ZnO-1010 resulted in lower cells viability than ZnO-0001 through oxidative stress and membrane damage. Density functional theory calculations illustrated that ·O2- was formed and released on {1010} facet, yet O22- instead of ·O2- was generated on {0001} facet, leading to low oxidative stress from ZnO-0001. All findings demonstrated that stability and toxicity of n-ZnO were dependent on the primary exposed facet, improving our understanding of health risk of nanomaterials.


Asunto(s)
Óxido de Zinc , Humanos , Óxido de Zinc/toxicidad , Óxido de Zinc/química , Células CACO-2 , Saliva , Estrés Oxidativo
2.
Environ Sci Technol ; 57(47): 18462-18472, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36633968

RESUMEN

Per- and polyfluoroalkyl substances (PFASs), including perfluorohexanesulfonic acid (PFHxS), as emerging persistent organic pollutants widely detected in drinking water, have drawn increasing concern. The PFHxS contamination of drinking water always results from direct and indirect sources, especially the secondary generations through environmental transformations of precursors. However, the mechanism of the transformation of precursors to PFHXS during the drinking water treatment processes remains unclear. Herein, the potential precursors and formation mechanisms of PFHxS were explored during drinking water disinfection. Simultaneously, the factors affecting PFHxS generation were also examined. This study found PFHxS could be generated from polyfluoroalkyl sulfonamide derivatives during chlorination and chloramination. The fate and yield of PFHxS varied from different precursors and disinfection processes. In particular, monochloramine more favorably formed PFHxS. Several perfluoroalkyl oxidation products and decarboxylation intermediates were detected and identified in the chloraminated samples using Fourier-transform ion cyclotron resonance mass spectrometry. Combined with density functional theory calculations, the results indicated that the indirect oxidation via the attack of the nitrogen atom in sulfonamide groups might be the dominant pathway for generating PFHxS during chloramination, and the process could be highly affected by the monochloramine dose, pH, and temperature. This study provides important evidence of the secondary formation of PFHxS during drinking water disinfection and scientific support for chemical management of PFHxS and PFHxS-related compounds.


Asunto(s)
Desinfectantes , Agua Potable , Contaminantes Químicos del Agua , Purificación del Agua , Agua Potable/análisis , Contaminantes Químicos del Agua/análisis , Desinfección , Sulfonamidas/análisis , Halogenación , Purificación del Agua/métodos , Sulfanilamida/análisis , Desinfectantes/análisis
3.
Phys Chem Chem Phys ; 25(38): 25899-25924, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37746773

RESUMEN

Semiconductor photocatalysis has become an increasing area of interest for use in water treatment methods. This review systematically presents the recent developments of emerging semiconductor photocatalysis system and their application in the removal of water pollutants. A brief overview of the semiconductor photocatalysis mechanism involved with the generation of reactive oxygen species (ROS) is provided first. Then a detailed explanation of the development of TiO2-based, g-C3N4-based, and bismuth-based semiconductor materials and their applications in the degradation of water pollutants are highlighted with recent illustrative examples. Furthermore, the future prospects of semiconductor photocatalysis for water treatment are critically analyzed.

4.
Environ Sci Technol ; 56(12): 8338-8349, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35675530

RESUMEN

The outbreak of the novel coronavirus 2019 (COVID-19) pandemic has resulted in the increased human consumption of medicines. Antibiotics are of great concern due to their adverse effects, such as increased bacterial resistance and dysbiosis of gut microbiota. Nevertheless, very little is known about the changes in self-medication with antibiotics during the COVID-19 pandemic and the resultant potential health risks. Herein, we examined the concentration profiles of some commonly used antibiotics in human urine collected from several geographical regions in China between 2020 and 2021. Antibiotics were found in 99.2% of the urine samples at concentrations ranging from not detected (nd) to 357 000 (median: 10.2) ng/mL. During the COVID-19 pandemic, concentrations of urinary antibiotics were remarkably higher than those found either before the pandemic or in the smooth period of the pandemic. Moreover, elevated levels of antibiotics were determined in urine samples from the regions with more confirmed cases. The exposure assessment showed that hazard index values >1 were determined in 35.2% of people. These findings show that human exposure to antibiotics increased during the COVID-19 pandemic, and further research is imperative to identify the public health risks.


Asunto(s)
COVID-19 , Pandemias , Antibacterianos , COVID-19/epidemiología , China/epidemiología , Humanos , SARS-CoV-2
5.
Ecotoxicol Environ Saf ; 246: 114187, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36244173

RESUMEN

The use of nanoscale zinc oxide (n-ZnO) in the personal care products would cause interactions between n-ZnO and human sweat. Facet engineering has been applied to n-ZnO to improve its activity. Nevertheless, it is not clear whether the exposed facet would affect transformation of n-ZnO in sweat. Herein, we prepared ZnO nanoneedles with the dominant (1010) non-polar facet (i.e., ZnO-1010) and ZnO nanoflakes with the dominant (0001) polar facet (i.e., ZnO-0001), respectively. We found that n-ZnO can undergo chemical transformation in the simulated sweat within 168 h or 24 h, transforming into amorphous materials and Zn3(PO4)20.4 H2O and/or Na(ZnPO4)·H2O. Given the rate constant (e.g., 0.093 h-1 for ZnO-0001 vs. 0.033 h-1 for ZnO-1010) of ZnO depletion and components of the precipitate from the simulated sweat, nevertheless, the transformation is highly dependent on the dominant exposed facet of n-ZnO. The ZnO-0001 relative to ZnO-1010 would likely undergo chemical transformation, demonstrating that the (0001) polar facet compared to (1010) non-polar facet had a superior activity to the dihydrogen phosphate anions in the simulated sweat, which is supported by density functional theory calculations. The chemical transformation can affect the antibacterial activity of n-ZnO to E. coli, moderating the toxicity due to a great decrease in the concentration of the dissolved zinc. In total, our findings provided insights into the facet-dependent transformation for n-ZnO in the simulated sweat, improving our understanding of potential risk of n-ZnO.


Asunto(s)
Óxido de Zinc , Humanos , Óxido de Zinc/toxicidad , Escherichia coli , Sudor , Antibacterianos/farmacología , Fosfatos/farmacología
6.
Anal Chem ; 93(4): 1962-1968, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33439629

RESUMEN

Nanoscale silver (n-Ag) including silver nanoparticles (Ag-NPs), silver chloride nanoparticles (AgCl-NPs), and silver sulfide nanoparticles (Ag2S-NPs) and their corresponding ionic counterpart, namely, dissolved Ag, may coexist in soils. X-ray absorption near edge spectroscopy (XANES) is used to elucidate the speciation of n-Ag in soils, whereas it possesses drawbacks like high costs, rare availability of the instrument, and providing semiquantitative data. We developed a new method for the identification and speciation of n-Ag in soils and sediments based on a sequential extraction technique coupled with inductively coupled plasma optical emission spectrometry. Extraction conditions were first evaluated, establishing the optimal extraction procedure; Ag-NPs, AgCl-NPs, and dissolved Ag in soil were simultaneously extracted by using an aqueous solution of 10 mM tetrasodium pyrophosphate, followed by selective isolation and quantification via AgCl-NPs dissolution (4.45 M aqueous ammonia), centrifugation (Ag-NPs), and detection. The Ag2S-NPs remaining in the soil were then extracted with Na2S solution at pH 7.0 through selective complexation. Optimal recoveries of Ag-NPs, AgCl-NPs, Ag2S-NPs, and dissolved Ag were 99.1 ± 2.4%, 112.0 ± 3.4%, 96.4 ± 4.0%, and 112.2 ± 4.1%, respectively. The method was validated to investigate the speciation of n-Ag in soils and sediments, exhibiting the distribution of Ag-NPs, AgCl-NPs, Ag2S-NPs, and dissolved Ag in each sample, wherein Ag2S-NPs, the major species of n-Ag, accounted for 35.42-68.87% of the total Ag. The results of n-Ag speciation in soil are comparable to those obtained through the linear combination fitting of XANES. This method thus is a powerful, yet convenient, substitute for XANES to understand the speciation of n-Ag in complex solid matrices.

7.
Environ Res ; 189: 109892, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32678737

RESUMEN

Microplastics (MPs) as a type of emerging contaminant in the environment have attracted extensive attentions in recent years, and understanding the impacts of MPs on soil biodiversity and functioning are thus increasingly urgent. Nevertheless, few studies were performed to investigate potential effects of MPs on decay of soil organic pollutants in particular pesticides and enzyme activities. Herein, three types of MPs including polystyrene fragments (PS-50) and polyvinyl chloride beads (PVC-42000 and PVC-10) were added to soil at environmentally relevant concentrations (0.2 and 1.0%) to study their impacts on dissipation of thiacloprid and activities of urease, acid phosphatase, invertase and catalase. MPs exhibited negligible impacts on thiacloprid dissipation regardless of MPs type and content, being probably attributed to the unaltered bioavailability of thiacloprid in soil even after an addition of MPs, which was documented by using the hydroxypropyl-ß- cyclodextrin (HPCD) extraction method. Batch sorption experiments also exhibited the comparable adsorption capacity of thiacloprid to soil with and without MPs, along with Kf valuses of 3.44-3.77. Besides, MPs exerted negligible effects on enzyme activities of soil. Taken together, this study showed negligible impacts of MPs at environmentally relevant concentrations on thiacloprid dissipation and enzyme activity, expanding our knowledge on impacts of MPs at the environmentally relevant concentrations on pesticide dissipation in soil.


Asunto(s)
Contaminantes del Suelo , Suelo , Microplásticos , Neonicotinoides , Plásticos , Contaminantes del Suelo/análisis , Tiazinas
8.
Environ Sci Technol ; 53(15): 9091-9101, 2019 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-31264863

RESUMEN

Covalent triazine frameworks (CTFs) with high adsorption potential and photocatalytic ability features are expected to be designed as a new class of adsorbents that can regenerate themselves just by harnessing sunlight. To simultaneously improve both the adsorption and photocatalytic regeneration performance, a defect-abundant CTF-m was designed and tuned effectively by varying the lengths of benzene ring chains incorporated into the CTF backbone. It has been demonstrated that two kinds of defects in terms of broken benzene rings and pyrrole nitrogen were newly generated, other than the normal benzene rings and triazine units in the CTF-m skeleton. Benefiting from these defects, the adsorption sites with high energy for adsorbing volatile aromatic pollutants were significantly increased, which are reflected by higher saturated adsorption capacities of CTF-m (3.026 mmol/g for benzene (BEN), 1.490 mmol/g for naphthalene (NAP), and 0.863 mmol/g for phenol (PHE)) compared with those of CTF-1 and CTF-2. Furthermore, these defects narrowed the band structure and facilitated the separation of photogenerated charge carries, thus promoting photocatalytic regeneration. The percentage of CTF-m regenerated was still higher than 90% in the fourth cycle. These experimental results, together with the density functional theory (DFT) studies, soundly corroborated that the defects could optimize the adsorption and regeneration property of CTF-m. The present work highlights the potential of fabrication of defective CTFs as solar-driven self-cleaning adsorbents to remove pollutants from water.


Asunto(s)
Contaminantes Ambientales , Luz Solar , Adsorción , Triazinas , Agua
9.
Mikrochim Acta ; 186(8): 494, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31267250

RESUMEN

This study describes a universal fluorometric method for sensitive detection of analytes by using aptamers. It is based on the use of graphene oxide (GO) and cryonase-assisted signal amplification. GO is a strong quencher of FAM-labeled nucleic acid probes, while cryonase digests all types of nucleic acid probes. This makes the platform widely applicable to analytes for which the corresponding aptamers are available. Theophylline and ATP were chosen as model analytes. In the absence of targets, dye-labeled aptamers are in a flexible single strand state and adsorb on the GO. As a result, the probes are non-fluorescent due to the efficient quenching of dyes by GO. Upon the addition of a specific target, the aptamer/target complex desorbed from the GO surface and the probe becomes fluorescent. The released complex will immediately become a substrate for cryonase digestion and subsequently releasing the target to bind to another aptamer to initiate the next round of cleavage. This cyclic reaction will repeat again and again until all the related-probes are consumed and all fluorophores light up, resulting in significant fluorescent signal amplification. The detection limits are 47 nM for theophylline and 22.5 nM for ATP. This is much better than that of known methods. The assay requires only mix-and-measure steps that can be accomplished rapidly. In our perception, the detection scheme holds great promise for the design enzyme-aided amplification mechanisms for use in bioanalytical methods. Graphical abstract A cryonase-assisted signal amplification (CASA) method has been developed by using graphene oxide (GO) conjugated with a fluorophore-labeled aptamer for fluorescence signal generation. It has a large scope because it may be applied to numerous analytes.


Asunto(s)
Adenosina Trifosfato/análisis , Aptámeros de Nucleótidos/química , Técnicas Biosensibles , Grafito/química , Sondas de Ácido Nucleico/química , Teofilina/análisis , Adenosina Trifosfato/química , Fluorescencia , Teofilina/química
10.
Environ Sci Technol ; 51(14): 7920-7927, 2017 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-28608678

RESUMEN

Silver sulfide nanoparticles (Ag2SNPs) are considered to be stable in the environment due to the extreme low solubility of Ag2S (Ksp: 6.3 × 10-50). Little is known about the stability of Ag2SNPs in surface water disinfected with aqueous chlorine, one of the globally most used disinfectants. Our results suggested that both uncoated and polyvinylpyrrolidone (PVP)-coated Ag2SNPs (100 µg/L) underwent dissolution in surface water disinfected with aqueous chlorine at a dose of 4 mg/L, showing the highest dissolved silver ion concentrations of 22.3 and 10.5 µg/L within 45 min, respectively. The natural organic matter (NOM) and dissolved oxygen (DO) posed effects on the Ag2SNPs dissolution by chlorine; NOM accelerated Ag2SNPs dissolution while DO reduced the rate and extent of Ag2SNPs dissolution. We further demonstrated that Ag2SNPs dissolution was primarily attributed to active oxidative substances including hydroxyl radical and H2O2 originating from the hypochlorite oxidation. Additionally, water containing Ag2SNPs disinfected with hypochlorite showed stronger interference on the zebra fish (Danio rerio) embryo hatching than Ag2SNPs and hypochlorite on their own. This work documented that Ag2SNPs could undergo dissolution in surface water through hypochlorite oxidation, posing potential risks to aquatic organisms, and therefore showed new insights into the stability of Ag2SNPs in natural environment.


Asunto(s)
Nanopartículas del Metal/química , Compuestos de Plata/química , Animales , Peróxido de Hidrógeno , Ácido Hipocloroso , Plata , Solubilidad , Agua
11.
Environ Sci Technol ; 50(24): 13342-13350, 2016 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-27993063

RESUMEN

Nanosilver (nAg) has been repeatedly demonstrated to end up as silver sulfide nanoparticles (Ag2SNPs), but little is known about the potential transformations of Ag2SNPs in natural environments that are very important for comprehensive assessments of nAg risks to human and environmental health. Here we show that Ag2SNPs can release tiny amounts of silver ion via cation exchange reactions between Ag(I) and Fe(III) in the dark, while in the light dramatic dissolution of Ag2SNP occurs, which is mainly attributed to the Ag2SNP oxidation by the hydroxyl radical formed during the reduction of Fe(III) to Fe(II) in water under sunlit conditions. However, silver ions are subsequently reduced to nAg in the light due to the strong reducing power of Fe(II). Thus, the formation of nAg from Ag2SNPs in the presence of Fe(III) under light conditions proceeds through a two-step reaction mechanism, the photoinduced and Fe(III)-dependent dissolution of Ag2SNPs, followed by the reduction of silver ions to nAg by Fe(II). The formation of nAg from Ag2SNPs is also validated in environmental waters under light conditions. It is thus concluded that photoinduced Fe(III)/Fe(II) redox cycling can drive the formation of nAg from Ag2SNPs in natural waters. These findings suggest that the previous consensus about the stability of Ag2SNPs in aquatic environments should be reconsidered.


Asunto(s)
Compuestos Férricos , Nanopartículas del Metal , Oxidación-Reducción , Plata/farmacología , Agua
12.
Environ Sci Technol ; 50(1): 188-96, 2016 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-26606372

RESUMEN

The stability of engineered nanomaterials in a natural aquatic environment has drawn much attention over the past few years. Silver sulfide nanoparticles (Ag2S-NPs) are generally assumed to be stable in a natural environment as a result of their physicochemical property; however, it may vary depending upon environmental conditions. Here, we investigated whether and how the environmentally relevant factors including light irradiation, solution pH, inorganic salts, dissolved organic matter (DOM), and dissolved oxygen (DO) individually and in combination influenced the stability of Ag2S-NPs in an aquatic environment. We presented for the first time that transformation of Ag2S-NPs can indeed occur in the aqueous system with an environmentally relevant concentration of Fe(3+) under simulated solar irradiation and natural sunlight within a short time (96 h), along with significant changes in morphology and dissolution. The photoinduced transformation of Ag2S-NPs in the presence of Fe(3+) can be dramatically influenced by solution pH, Ca(2+)/Na(+), Cl(-)/SO4(2-), DOM, and DO. Moreover, Ag2S-NP dissolution increased within 28 h, followed rapid decline in the next 68 h, which may be a result of the reconstitution of small Ag2S-NPs. Taken together, this work is of importance to comprehensively evaluate the stability of Ag2S-NPs in an aquatic environment, improving our understanding of their potential risks to human and environmental health.


Asunto(s)
Compuestos Férricos/química , Nanopartículas del Metal , Compuestos de Plata/química , Contaminantes Químicos del Agua/química , Cationes , Sustancias Húmicas , Nanopartículas del Metal/química , Nanopartículas del Metal/efectos de la radiación , Luz Solar
13.
Environ Sci Technol ; 50(12): 6327-33, 2016 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-27228366

RESUMEN

Silver-based nanoparticles (Ag-b-NPs) emitted by wastewater treatment plants (WWTPs) are considered to be widely present in the natural environment. However, there is much that is unknown about the effect of WWTP effluent on the occurrence of Ag-b-NPs in surface waters. On the basis of field analysis of representative WWTPs in Germany, we demonstrate that more than 96.4% of Ag-b-NPs from wastewater influent are removed through WWTPs, even though influent contains Ag-b-NP concentrations of tens to hundreds ng L(-1), resulting in effluent Ag-b-NP concentrations of 0.7-11.1 ng L(-1) over the seasons. The estimated flux of Ag-b-NPs associated with WWTPs effluent discharge is ∼33 kg y(-1) in Germany. WWTPs effluent increases Ag-b-NP levels of the River Isar to 2.0-8.6 ng L(-1), while remarkable decreases are observed at sites ∼1.5 km downstream of each discharge point, and Ag-b-NP levels then keep stable (0.9-2.3 ng L(-1)) until the next discharge point, showing subtle differences in Ag-b-NP levels between the river and reference lakes without industrial sources and WWTPs effluent discharge. Our results demonstrate that WWTPs effluent can exert a clear influence on the occurrence of Ag-b-NPs in surface waters.


Asunto(s)
Plata , Aguas Residuales , Monitoreo del Ambiente , Nanopartículas , Eliminación de Residuos Líquidos , Contaminantes Químicos del Agua
14.
Environ Sci Technol ; 49(4): 2486-95, 2015 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-25625586

RESUMEN

Sulfidation is considered as a natural antidote to toxicity of metallic nanoparticles (NPs). The detoxification contribution from sulfidation, however, may vary depending on sulfidation mechanisms. Here we present the dissolution-precipitation instead of direct solid-state-shell mechanism to illustrate the process of CuO-NPs conversion to CuS-NPs in aqueous solutions. Accordingly, the CuS-NPs at environmentally relevant concentrations showed much stronger interference on Japanese medaka (Oryzias latipes) embryo hatching than CuO-NPs, which was probably due to elevated free copper ions released from CuS-NPs, leading to significant increase in oxidative stress and causing toxicity in embryos. The larval length was significantly reduced by CuS-NPs, however, no other obviously abnormal morphological features were identified in the hatched larvae. Co-introduction of a metal ion chelator [ethylene diamine tetraacetic acid (EDTA)] could abolish the hatching inhibition induced by CuS-NPs, indicating free copper ions released from CuS-NPs play an important role in hatching interference. This work documents for the first time that sulfidation as a natural antidote to metallic NPs is being overestimated, which has far reaching implications for risk assessment of metallic NPs in aquatic environment.


Asunto(s)
Cobre/química , Cobre/toxicidad , Nanopartículas del Metal/toxicidad , Oryzias/embriología , Sulfuros/química , Animales , Antídotos , Estrés Oxidativo
16.
ACS Nano ; 18(9): 7253-7266, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38380803

RESUMEN

Pseudomonas aeruginosa (P. aeruginosa), a drug-resistant Gram-negative pathogen, is listed among the "critical" group of pathogens by the World Health Organization urgently needing efficacious antibiotics in the clinics. Nanomaterials especially silver nanoparticles (AgNPs) due to the broad-spectrum antimicrobial activity are tested in antimicrobial therapeutic applications. Pathogens rapidly develop resistance to AgNPs; however, the health threat from antibiotic-resistant pathogens remains challenging. Here we present a strategy to prevent bacterial resistance to silver nanomaterials through imparting chirality to silver nanoclusters (AgNCs). Nonchiral AgNCs with high efficacy against P. aeruginosa causes heritable resistance, as indicated by a 5.4-fold increase in the minimum inhibitory concentration (MIC) after 9 repeated passages. Whole-genome sequencing identifies a Rhs mutation related to the wall of Gram-negative bacteria that possibly causes morphology changes in resistance compared to susceptible P. aeruginosa. Nevertheless, AgNCs with laevorotary chirality (l-AgNCs) induce negligible resistance even after 40 repeated passages and maintain a superior antibacterial efficiency at the MIC. l-AgNCs also show high cytocompatibility; negligible cytotoxicity to mammalian cells including JB6, H460, HEK293, and RAW264.7 is observed even at 30-fold MIC. l-AgNCs thus are examined as an alternative to levofloxacin in vivo, healing wound infections of P. aeruginosa efficaciously. This work provides a potential opportunity to confront the rising threat of antimicrobial resistance by developing chiral nanoclusters.


Asunto(s)
Antiinfecciosos , Nanopartículas del Metal , Animales , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Plata/farmacología , Plata/uso terapéutico , Nanopartículas del Metal/uso terapéutico , Células HEK293 , Pseudomonas aeruginosa , Pruebas de Sensibilidad Microbiana , Mamíferos
17.
J Hazard Mater ; 464: 132954, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-37972496

RESUMEN

Short chain chlorinated paraffins (SCCPs) are ubiquitous persistent organic pollutants. They have been widely detected in plant-based foods and might cause adverse impacts on humans. Nevertheless, uptake and accumulation mechanisms of SCCPs in plants remain unclear. In this study, the soil culture data indicated that SCCPs were strongly absorbed by roots (root concentration factor, RCF>1) yet limited translocated to shoots (translocation factor<1). The uptake mechanism was explored by hydroponic exposure, showing that hydrophobicity and molecular size influenced the root uptake and translocation of SCCPs. RCFs were significantly correlated with logKow values and molecular weights in a parabolic curve relationship. Besides, it was extremely difficult for SCCPs to translocate from shoots back to roots via phloem. An active energy-dependent process was proposed to be involved in the root uptake of SCCPs, which was supported by the uptake inhibition by the low temperature and metabolic inhibitor. Though SCCPs at environmentally relevant concentrations had no negative impacts on root morphology and chlorophyll contents, it caused obvious changes in cellular ultrastructure of root tip cells and induced a significant increase in superoxide dismutase activity. This information may be beneficial to moderate crop contamination by SCCPs, and to remedy soils polluted by SCCPs with plants.


Asunto(s)
Hidrocarburos Clorados , Triticum , Humanos , Parafina/química , Monitoreo del Ambiente , Hidrocarburos Clorados/análisis , Transporte Biológico , Suelo/química , China
18.
Environ Sci Technol ; 47(13): 7317-23, 2013 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-23750458

RESUMEN

The majority of pure silver nanoparticles in consumer products are likely released into sewer systems and usually end up in wastewater treatment plants (WWTPs). Research investigating the reduction in nanoscale silver particles (n-Ag-Ps) has focused on the biological treatment process, generally in controlled laboratory experiments. This study, analyzing the field-collected samples from nine municipal WWTPs in Germany, is the first to evaluate the reduction in n-Ag-Ps by mechanical and biological treatments in sequence in WWTPs. Additionally, the concentration of n-Ag-Ps in effluent was determined through two different methods that are presented here: novel ionic exchange resin (IER) and cloud point extraction (CPE) methods. The n-Ag-Ps concentrations in influent were all low (<1.5 µg/L) and decreased (average removal efficiency of ∼35%) significantly after mechanical treatment, indicating that the mechanical treatment contributes to the n-Ag-Ps removal. Afterward, more than 72% of the remaining n-Ag-Ps in the semi-treated wastewater (i.e., wastewater after mechanical treatment) were reduced by biological treatment. Together, these processes reduced 95% of the n-Ag-Ps that entered WWTPs, which resulted in low concentration of n-Ag-Ps in the effluents (<12 ng/L). For a WWTP with 520,000 t/d treatment capacity, we estimated that the daily n-Ag-Ps load in effluent discharge equated to about 4.4 g/d. Obviously, WWTPs are not potential point sources for n-Ag-Ps in the aquatic environment.


Asunto(s)
Nanopartículas del Metal/análisis , Plata/análisis , Aguas Residuales/análisis , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Alemania , Eliminación de Residuos Líquidos
19.
ACS Nano ; 17(10): 8851-8865, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37145866

RESUMEN

Oral exposure is known as the primary way for silver nanoparticles (AgNPs), which are commonly used as food additives or antibacterial agents in commercial products, to enter the human body. Although the health risk of AgNPs has been a concern and extensively researched over the past few decades, there are still numerous knowledge gaps that need to be filled to disclose what AgNPs experience in the gastrointestinal tract (GIT) and how they cause oral toxicity. In order to gain more insight into the fate of AgNPs in the GIT, the main gastrointestinal transformation of AgNPs, including aggregation/disaggregation, oxidative dissolution, chlorination, sulfuration, and corona formation, is first described. Second, the intestinal absorption of AgNPs is presented to show how AgNPs interact with epithelial cells and cross the intestinal barrier. Then, more importantly, we make an overview of the mechanisms underlying the oral toxicity of AgNPs in light of recent advances as well as the factors affecting the nano-bio interactions in the GIT, which have rarely been thoroughly elaborated in published literature. At last, we emphatically discuss the issues that need to be addressed in the future to answer the question "How does oral exposure to AgNPs cause detrimental effects on the human body?".


Asunto(s)
Nanopartículas del Metal , Plata , Humanos , Nanopartículas del Metal/toxicidad , Tracto Gastrointestinal , Aditivos Alimentarios
20.
Anal Chem ; 84(10): 4340-9, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22494142

RESUMEN

A new two-step extraction procedure is proposed for separation and preconcentration of gold nanoparticles (Au-NPs) from aqueous samples. First, Au-NPs are loaded onto a reversed phase C-18 (RP-C18) column, and then ligand-assisted extraction into chloroform is performed. 1-Dodecanethiol (1-DDT, 5 mM) was used as selective ligand for quantitative extraction under ultrasonic condition. Parameters of the extraction procedure, such as sample volume, organic solvent, concentration and nature of the ligand, ultrasonication time, pH of the sample, and different coating as well as sizes of Au-NPs were investigated in regard to the extraction efficiency of Au-NPs. The optimized procedure allows separation and preconcentration of the Au-NPs with an enrichment factor of up to 250 assuring no changes in size and/or shape of the NPs. This was proved by investigation of the particles by UV-vis spectrometry and transmission electron microscopy (TEM). Furthermore, the presence of potentially interfering other metal nanoparticles (M-NPs) and dissolved organic matter (DOM) was studied. Observed minor recoveries of Au-NPs in DOM model solutions were overcome by hydrogen peroxide pretreatment up to a DOM concentration of about 4 mg/L. Feasibility of the proposed method was proved by application of the optimized procedure to 5 real water samples. Recoveries of Au-NPs in the real waters spiked in a concentration range from 0.15 to 5100 µg/L obtained by this method varied from 68.4% to 99.4%. Consequently, the proposed approach has great potential for the analysis of M-NPs in environmental waters.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA