Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Small ; 19(33): e2301444, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37086140

RESUMEN

Due to the scarce of lithium resources, potassium-ion batteries (PIBs) have attracted extensive attention due to their similar electrochemical properties to lithium-ion batteries (LIBs) and more abundant potassium resources. Even though there is considerable progress in SbBi alloy anode for LIBs and PIBs, most studies are focused on the morphology/structure tuning, while the inherent physical features of alloy composition's effect on the electrochemical performance are rarely investigated. Herein, combined the nanonization, carbon compounding, and alloying with composition regulation, the anode of nitrogen-doped carbon-coated Sbx Bi1-x (Sbx Bi1-x @NC) with a series of tuned chemical compositions is designed as an ideal model. The density functional theory (DFT) calculation and experimental investigation results show that the K+ diffusion barrier is lower and the path is easier to carry out when element Bi dominates the potassiation reaction, which is also the reason for better circulation. The optimized Sb0.25 Bi0.75 @NC shows an excellent cycling performance with a reversible specific capacity of 301.9 mA h g-1 after 500 cycles at 0.1 A g-1 . Meanwhile, the charge-discharge mechanism is intuitively invetigated and analyzed by in situ X-ray diffraction (XRD) and transmission electron microscopy (TEM) in detail. Such an alloy-type anode synthesis approach and in situ observation method provide an adjustable strategy for the designing and investigating of PIB anodes.

2.
Sensors (Basel) ; 23(4)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36850587

RESUMEN

Automatically extracting urban buildings from remote sensing images has essential application value, such as urban planning and management. Gaofen-7 (GF-7) provides multi-perspective and multispectral satellite images, which can obtain three-dimensional spatial information. Previous studies on building extraction often ignored information outside the red-green-blue (RGB) bands. To utilize the multi-dimensional spatial information of GF-7, we propose a dual-stream multi-scale network (DMU-Net) for urban building extraction. DMU-Net is based on U-Net, and the encoder is designed as the dual-stream CNN structure, which inputs RGB images, near-infrared (NIR), and normalized digital surface model (nDSM) fusion images, respectively. In addition, the improved FPN (IFPN) structure is integrated into the decoder. It enables DMU-Net to fuse different band features and multi-scale features of images effectively. This new method is tested with the study area within the Fourth Ring Road in Beijing, and the conclusions are as follows: (1) Our network achieves an overall accuracy (OA) of 96.16% and an intersection-over-union (IoU) of 84.49% for the GF-7 self-annotated building dataset, outperforms other state-of-the-art (SOTA) models. (2) Three-dimensional information significantly improved the accuracy of building extraction. Compared with RGB and RGB + NIR, the IoU increased by 7.61% and 3.19% after using nDSM data, respectively. (3) DMU-Net is superior to SMU-Net, DU-Net, and IEU-Net. The IoU is improved by 0.74%, 0.55%, and 1.65%, respectively, indicating the superiority of the dual-stream CNN structure and the IFPN structure.

3.
Nano Lett ; 22(12): 4784-4791, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35649094

RESUMEN

A significant challenge exists in obtaining chiral nanostructures that are amenable to both solution-phase self-assembly and solid-phase preservation, which enable the observation of unveiled optical responses impacted by the dynamic or static conformation and the incident excitations. Here, to meet this demand, we employed DNA origami technology to create quasi-planar chiral satellite-core nanoparticle superstructures with an intermediate geometry between the monolayer and the double layer. We disentangled the complex chiral mechanisms, which include planar chirality, 3D chirality, and induced chirality transfer, through combined theoretical studies and thorough experimental measurements of both solution- and solid-phase samples. Two distinct states of optical responses were demonstrated by the dynamic and static conformations, involving a split or nonsplit circular dichroism (CD) line shape. More importantly, our study on chiral nanoparticle superstructures on a substrate featuring both a dominant 2D geometry and a defined 3D represents a great leap toward the realization of colloidal chiral metasurfaces.


Asunto(s)
Oro , Nanopartículas del Metal , Dicroismo Circular , ADN/química , Oro/química , Nanopartículas del Metal/química , Conformación Molecular
4.
Opt Express ; 30(16): 29665-29679, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36299136

RESUMEN

The detection of acetone in the gaseous form in exhaled breath using an integrated sensor can provide an effective tool for disease diagnostics as acetone is a marker for monitoring human metabolism. An on-chip acetone gas sensor based on the principle of Mach-Zehnder interferometer is proposed and demonstrated. The sensing arm of the device is activated with a composite film of polyethyleneimine and amido-graphene oxide as the gas-sensitive adsorption layer. The composite film demonstrates good selectivity to acetone gas, can be used repeatedly, and is stable in long-term use. Room temperature operation has been demonstrated for the sensor with high sensitivity under a 20 ppm acetone environment. The detection limit can reach 0.76 ppm, making it feasible to be used for the clinical diagnosis of diabetes and the prognosis of heart failure.


Asunto(s)
Acetona , Técnicas Biosensibles , Humanos , Límite de Detección , Polietileneimina , Gases
5.
Appl Opt ; 60(13): 3964-3970, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33983335

RESUMEN

By analyzing Newton's rings, often encountered in interferometry, the parameters of spherical surfaces such as the rings' center and the curvature radius can be estimated. First, the classical convolutional neural networks, visual geometry group (VGG) network and U-Net, are applied to parameter estimation of Newton's rings. After these models are trained, the rings' center and curvature radius can be obtained simultaneously. Compared with previous analysis methods of Newton's rings, it is shown that the proposed method has higher precision, better immunity to noise, and lower time consumption. For a Newton's rings pattern of ${{640}} \times {{480}}$ pixels comprising ${-}{{5}}\;{\rm{dB}}$ Gaussian noise or 60% salt-and-pepper noise, the parameters can be estimated by the VGG model in 0.01 s, the error of the rings' center is less than one pixel, and the error of curvature radius is lower than 0.5%.

6.
Chem Commun (Camb) ; 60(46): 5890-5911, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38775203

RESUMEN

Metal halide perovskites (MHP) emerged as highly promising materials for photocatalysis, offering significant advancements in the degradation of soluble and airborne pollutants, as well as the transformation of functional organic compounds. This comprehensive review focuses on recent developments in MHP-based photocatalysts, specifically examining two major categories: lead-based (such as CsPbBr3) and lead-free variants (e.g. Cs2AgBiX6, Cs3Bi2Br9 and others). While the review briefly discusses the contributions of MHPs to hydrogen (H2) production and carbon dioxide (CO2) reduction, the main emphasis is on the design principles that determine the effectiveness of perovskites in facilitating organic reactions and degrading hazardous chemicals through oxidative transformations. Furthermore, the review addresses the key factors that influence the catalytic efficiency of perovskites, including charge recombination, reaction mechanisms involving free radicals, hydroxyl ions, and other ions, as well as phase transformation and solvent compatibility. By offering a comprehensive overview, this review aims to serve as a guide for the design of MHP-based photocatalysis and shed light on the common challenges faced by the scientific community in the domain of organic transformations.

7.
Adv Mater ; 36(7): e2306756, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37819771

RESUMEN

A typical Tesla thermomagnetic engine employs a solid magnetic wheel to convert thermal energy into mechanical energy, while thermomagnetic convection in ferrofluid is still challenging to observe because it is a volume convection that occurs in an enclosed space. Using a water-based ferrofluid, a liquid Tesla thermomagnetic engine is demonstrated and reports the observation of thermomagnetic convection on a free surface. Both types of fluid motions are driven by light and observed by simply placing ferrofluid on a cylindrical magnet. The surface thermomagnetic convection on the free surface is made possible by eliminating the Marangoni effect, while the spinning of the liquid wheel is achieved through the solid-like behavior of the ferrofluid under a strong magnetic field. Increasing the magnetic field reveals a transition from simple thermomagnetic convection to a combination of the central spin of the spiky wheel surrounded by thermomagnetic convection in the outer region of the ferrofluid. The coupling between multiple ferrofluid wheels through a fluid bridge is further demonstrated. These demonstrations not only unveil the unique properties of ferrofluid but also provide a new platform for studying complex fluid dynamics and thermomagnetic convection, opening up exciting opportunities for light-controlled fluid actuation and soft robotics.

8.
PeerJ ; 11: e15197, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37038472

RESUMEN

Non-coding RNAs (ncRNAs) are RNAs that do not encode proteins but play important roles in regulating cellular processes. Multiple studies over the past decade have demonstrated the role of microRNAs (miRNAs) in cancer, in which some miRNAs can act as biomarkers or provide therapy target. Accumulating evidence also points to the importance of long non-coding RNAs (lncRNAs) in regulating miRNA-mRNA networks. An increasing number of ncRNAs have been shown to be involved in the regulation of cellular processes, and dysregulation of ncRNAs often heralds disease. As the population ages, the incidence of neurodegenerative diseases is increasing, placing enormous pressure on global health systems. Given the excellent performance of ncRNAs in early cancer screening and treatment, here we attempted to aggregate and analyze the regulatory functions of ncRNAs in neuronal development and disease. In this review, we summarize current knowledge on ncRNA taxonomy, biogenesis, and function, and discuss current research progress on ncRNAs in relation to neuronal development, differentiation, and neurodegenerative diseases.


Asunto(s)
MicroARNs , Enfermedades Neurodegenerativas , ARN Largo no Codificante , Humanos , MicroARNs/genética , ARN Largo no Codificante/genética , ARN no Traducido/genética , Biomarcadores , Enfermedades Neurodegenerativas/genética
9.
Front Plant Sci ; 14: 1246717, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37915513

RESUMEN

Introduction: The accurate extraction of navigation paths is crucial for the automated navigation of agricultural robots. Navigation line extraction in complex environments such as Panax notoginseng shade house can be challenging due to factors including similar colors between the fork rows and soil, and the shadows cast by shade nets. Methods: In this paper, we propose a new method for navigation line extraction based on deep learning and least squares (DL-LS) algorithms. We improve the YOLOv5s algorithm by introducing MobileNetv3 and ECANet. The trained model detects the seven-fork roots in the effective area between rows and uses the root point substitution method to determine the coordinates of the localization base points of the seven-fork root points. The seven-fork column lines on both sides of the plant monopoly are fitted using the least squares method. Results: The experimental results indicate that Im-YOLOv5s achieves higher detection performance than other detection models. Through these improvements, Im-YOLOv5s achieves a mAP (mean Average Precision) of 94.9%. Compared to YOLOv5s, Im-YOLOv5s improves the average accuracy and frame rate by 1.9% and 27.7%, respectively, and the weight size is reduced by 47.9%. The results also reveal the ability of DL-LS to accurately extract seven-fork row lines, with a maximum deviation of the navigation baseline row direction of 1.64°, meeting the requirements of robot navigation line extraction. Discussion: The results shows that compared to existing models, this model is more effective in detecting the seven-fork roots in images, and the computational complexity of the model is smaller. Our proposed method provides a basis for the intelligent mechanization of Panax notoginseng planting.

10.
J Infect Public Health ; 16(4): 542-550, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36801634

RESUMEN

OBJECTIVE: To investigate T cell immunoreceptor with Ig and ITIM domain (TIGIT), V-domain Ig suppressor of T cell activation (VISTA), and lymphocyte-activation gene-3 (LAG-3) expression in pathological tissue of human papillomavirus (HPV)-infected cervical cancer (CC) patients and their relationship with patient prognosis. METHODS: Clinical data of 175 patients with HPV-infected CC were collected retrospectively. Tumor tissue sections were stained immunohistochemically for TIGIT, VISTA, and LAG-3. The Kaplan-Meier method calculated patient survival. Univariate and multivariate Cox proportional hazards models analyzed all potential risk factors for survival. RESULTS: When combined positive score (CPS)= 1 was used as the cut-off value, the Kaplan-Meier survival curve showed that the progression-free survival (PFS) and overall survival (OS) of patients with positive expression of TIGIT and VISTA are shorter (both p < 0.05). Univariate COX regression analysis showed that the positive expression of TIGIT and VISTA are related to patient PFS and OS (both HR>1.0 and p < 0.05). Multivariate COX regression analysis showed that TIGIT-positive patients had shorter OS and VISTA-positive patients had shorter PFS (both HR>1.0 and p < 0.05). There is no significant correlation between LAG-3 expression and PFS or OS. When CPS= 10 was used as the cut-off value, Kaplan-Meier survival curve showed that TIGIT-positive patients had shorter OS (p = 0.019). Univariate COX regression analysis showed that TIGIT-positive expression was associated with the OS of patients (HR=2.209, CI: 1.118-4.365, p = 0.023). However, multivariate COX regression analysis showed that TIGIT expression was not associated significantly with OS. There was no significant correlation between VISTA and LAG-3 expression and PFS or OS. CONCLUSION: TIGIT and VISTA are associated closely with HPV-infected CC prognosis and are effective biomarkers.


Asunto(s)
Infecciones por Papillomavirus , Neoplasias del Cuello Uterino , Femenino , Humanos , Proteínas de Punto de Control Inmunitario , Virus del Papiloma Humano , Estudios Retrospectivos , Infecciones por Papillomavirus/complicaciones , Relevancia Clínica , Pronóstico , Receptores Inmunológicos
11.
ACS Appl Mater Interfaces ; 15(50): 58994-59004, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38079597

RESUMEN

In various countries worldwide, the issue of wastewater contamination poses a significant threat due to its intricate composition of heavy metals, organic dyes, and microorganisms, thereby complicating the purification process. Consequently, researchers have expressed considerable interest in materials capable of eliminating organic, heavy metal, and microbial pollutants. This study focuses on the fabrication of a water purification membrane (PDA/ZnO-NWs/PVDF) with a hierarchical structure and the ability to remove multiple pollutants. The membrane was created by modifying poly(vinylidene fluoride) (PVDF) nanofiber with zinc oxide nanowires (ZnO-NWs) and reinforcing it with polydopamine (PDA). The experimental results demonstrate that the PDA/ZnO-NWs/PVDF membrane exhibits a range of functionalities, including long-lasting superhydrophilicity, Cu(II) adsorption, photocatalytic degradation, and antibacterial ability. The manipulation of the DA synthesis procedure allows for the adjustment of the wettability, adsorption, and photocatalytic and antibacterial activities of the PDA/ZnO-NWs/PVDF composite. According to the Langmuir isotherm, the maximum Cu(II) adsorption capacity of the PDA/ZnO-NWs/PVDF membrane is determined to be 65.75 mg/g, which is significantly higher (27.26 mg/g) than that of the ZnO-NWs/PVDF membrane (38.49 mg/g). The PDA/ZnO-NWs/PVDF composite exhibited a notable degradation capacity toward rhodamine B under natural sunlight, reaching a maximum of 5.97 mg/g. Additionally, the degradation rate achieved during daylight hours was as high as 90.42%. Furthermore, the antibacterial efficacy of the PDA/ZnO-NWs/PVDF composite against both Gram-positive and Gram-negative bacteria approached 100%. This work presents a promising approach for the treatment of wastewater containing various coexisting contaminants.


Asunto(s)
Contaminantes Ambientales , Metales Pesados , Nanofibras , Nanocables , Óxido de Zinc , Aguas del Alcantarillado , Antibacterianos/farmacología , Antibacterianos/química , Óxido de Zinc/química , Nanocables/química , Nanofibras/química , Aguas Residuales , Bacterias Gramnegativas , Bacterias Grampositivas , Bacterias , Colorantes
12.
Front Plant Sci ; 14: 1320980, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38259918

RESUMEN

Botryosphaeria dothidea infects hundreds of woody plants and causes a severe economic loss to apple production. In this study, we characterized BdLM1, a protein from B. dothidea that contains one LysM domain. BdLM1 expression was dramatically induced at 6 h post-inoculation in wounded apple fruit, strongly increased at 7 d post-inoculation (dpi), and peaked at 20 dpi in intact shoots. The knockout mutants of BdLM1 had significantly reduced virulence on intact apple shoots (20%), wounded apple shoots (40%), and wounded apple fruit (40%). BdLM1 suppressed programmed cell death caused by the mouse protein BAX through Agrobacterium-mediated transient expression in Nicotiana benthamiana, reduced H2O2 accumulation and callose deposition, downregulated resistance gene expression, and promoted Phytophthora nicotianae infection in N. benthamiana. Moreover, BdLM1 inhibited the active oxygen burst induced by chitin and flg22, bound chitin, and protected fungal hyphae against degradation by hydrolytic enzymes. Taken together, our results indicate that BdLM1 is an essential LysM effector required for the full virulence of B. dothidea and that it inhibits plant immunity. Moreover, BdLM1 could inhibit chitin-triggered plant immunity through a dual role, i.e., binding chitin and protecting fungal hyphae against chitinase hydrolysis.

13.
ACS Nano ; 16(5): 7116-7143, 2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35511058

RESUMEN

Reliable and efficient continuous-wave (CW) lasers have been intensively pursued in the field of optoelectronic integrated circuits. Metal perovskites have emerged as promising gain materials for solution-processed laser diodes. Recently, the performance of CW perovskite lasers has been improved with the optimization of material and device levels. Nevertheless, the realization of CW pumped perovskite lasers is still hampered by thermal runaway, unwanted parasitic species, and poor long-term stability. This review starts with the charge carrier recombination dynamics and fundamentals of CW lasing in perovskites. We examine the potential strategies that can be used to improve the performance of perovskite CW lasers from the materials to device levels. We also propose the open challenges and future opportunities in developing high-performance and stable CW pumped perovskite lasers.

14.
ACS Appl Mater Interfaces ; 13(1): 816-826, 2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33395248

RESUMEN

Sodium vanadate NaV6O15 (NVO) is one of the most promising cathode materials for sodium-ion batteries because of its low cost and high theoretical capacity. Nevertheless, NVO suffers from fast capacity fading and poor rate capability. Herein, a novel free-standing NVO/multiwalled carbon nanotube (MWCNT) composite film cathode was synthesized and designed by a simple hydrothermal method followed by a dispersion technique with high safety and low cost. The kinetics analysis based on cyclic voltammetry measurements reveals that the intimate integration of the MWCNT 3D porous conductive network with the 3D pillaring tunnel structure of NVO nanorods enhances the Na+ intercalation pseudocapacitive behavior, thus leading to exceptional rate capability and long lifespan. Furthermore, the NVO/MWCNT composite exhibits excellent structural stability during the charge/discharge process. With these benefits, the composite delivers a high discharge capacity of 217.2 mA h g-1 at 0.1 A g-1 in a potential region of 1.5-4.0 V. It demonstrates a superior rate capability of 123.7 mA h g-1 at 10 A g-1. More encouragingly, it displays long lifespan; impressively, 96% of the initial capacity is retained at 5 A g-1 for over 500 cycles. Our work presents a promising strategy for developing electrode materials with a high rate capability and a long cycle life.

15.
ACS Nano ; 15(10): 16357-16367, 2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34546029

RESUMEN

Plasmonic metasurfaces with the photothermal effect have been increasingly investigated for optofluidics. Meanwhile, along with the expanding application of circularly polarized light, a growing number of investigations on chiral plasmonic metasurfaces have been conducted. However, few studies have explored the chirality and the thermal-induced convection of such systems simultaneously. This paper aims to theoretically investigate the dynamics of the thermally induced fluid convection of a chiral plasmonic metasurface. The proposed metasurface exhibits giant circular dichroism in absorption and thus leads to a strong photothermal effect. On the basis of the multiphysical analysis, including optics, thermodynamics, and hydrodynamics, we propose a concept of chiral spectroscopy termed optofluidic circular dichroism. Our results show that different fluid velocities of thermally induced convection appear around a chiral plasmonic metasurface under different circularly polarized excitation. The chiral fluid convection is induced by an asymmetric heat distribution generated by absorbed photons in the plasmonic heater. This concept can be potentially used to induce chiral fluid convection utilizing the chiral photothermal effect. Our proposed structure can potentially be used in various optofluidics applications related to biochemistry, clinical biology, and so on.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA