Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Bioorg Chem ; 147: 107396, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705108

RESUMEN

RN-9893, a TRPV4 antagonist identified by Renovis Inc., showcased notable inhibition of TRPV4 channels. This research involved synthesizing and evaluating three series of RN-9893 analogues for their TRPV4 inhibitory efficacy. Notably, compounds 1b and 1f displayed a 2.9 to 4.5-fold increase in inhibitory potency against TRPV4 (IC50 = 0.71 ± 0.21 µM and 0.46 ± 0.08 µM, respectively) in vitro, in comparison to RN-9893 (IC50 = 2.07 ± 0.90 µM). Both compounds also significantly outperformed RN-9893 in TRPV4 current inhibition rates (87.6 % and 83.2 % at 10 µM, against RN-9893's 49.4 %). For the first time, these RN-9893 analogues were profiled in an in vivo mouse model, where intraperitoneal injections of 1b or 1f at 10 mg/kg notably mitigated symptoms of acute lung injury induced by lipopolysaccharide (LPS). These outcomes indicate that compounds 1b and 1f are promising candidates for acute lung injury treatment.


Asunto(s)
Lesión Pulmonar Aguda , Bencenosulfonamidas , Sulfonamidas , Canales Catiónicos TRPV , Relación Estructura-Actividad , Canales Catiónicos TRPV/antagonistas & inhibidores , Canales Catiónicos TRPV/metabolismo , Lesión Pulmonar Aguda/tratamiento farmacológico , Sulfonamidas/química , Sulfonamidas/farmacología , Sulfonamidas/síntesis química , Animales , Ratones , Humanos , Estructura Molecular , Relación Dosis-Respuesta a Droga , Lipopolisacáridos/antagonistas & inhibidores , Lipopolisacáridos/farmacología , Masculino , Ratones Endogámicos C57BL
2.
Molecules ; 29(5)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38474611

RESUMEN

The α2A adrenergic receptor (α2A-AR) serves as a critical molecular target for sedatives and analgesics. However, α2A-AR ligands with an imidazole ring also interact with an imidazoline receptor as well as other proteins and lead to undesirable effects, motivating us to develop more novel scaffold α2A-AR ligands. For this purpose, we employed an ensemble-based ligand discovery strategy, integrating long-term molecular dynamics (MD) simulations and virtual screening, to identify new potential α2A-AR agonists with novel scaffold. Our results showed that compounds SY-15 and SY-17 exhibited significant biological effects in the preliminary evaluation of protein kinase A (PKA) redistribution assays. They also reduced levels of intracellular cyclic adenosine monophosphate (cAMP) in a dose-dependent manner. Upon treatment of the cells with 100 µM concentrations of SY-15 and SY-17, there was a respective decrease in the intracellular cAMP levels by 63.43% and 53.83%. Subsequent computational analysis was conducted to elucidate the binding interactions of SY-15 and SY-17 with the α2A-AR. The binding free energies of SY-15 and SY-17 calculated by MD simulations were -45.93 and -71.97 kcal/mol. MD simulations also revealed that both compounds act as bitopic agonists, occupying the orthosteric site and a novel exosite of the receptor simultaneously. Our findings of integrative computational and experimental approaches could offer the potential to enhance ligand affinity and selectivity through dual-site occupancy and provide a novel direction for the rational design of sedatives and analgesics.


Asunto(s)
Analgésicos , Receptores Adrenérgicos alfa 2 , Ligandos , Receptores Adrenérgicos alfa 2/metabolismo , Hipnóticos y Sedantes
3.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(2): 145-149, 2024 Feb 10.
Artículo en Zh | MEDLINE | ID: mdl-38311551

RESUMEN

OBJECTIVE: To explore the pregnancy outcome and postpartum clinical phenotype of LCR22B/C~D central 22q11.2 deletion syndrome. METHODS: For fetuses diagnosed with central 22q11.2 deletion by chromosomal microarray analysis (CMA) at the Prenatal Diagnosis Center of the Third Affiliated Hospital of Zhengzhou University from January 2019 to April 2022, their prenatal imaging, parental CMA verification, pregnancy outcomes and postpartum clinical phenotype were analyzed. RESULTS: Eight cases of central 22q11.2 deletion syndrome were included, including six cases with LCR22B~D 22q11.2 deletions and two with LCR22C~D 22q11.2 deletions. Among the six cases with LCR22B~D type 22q11.2 deletions, three had shown cardiovascular malformations (right aortic arch, ventricular septal defect, mild tricuspid regurgitation), one had shown urinary defect (right kidney heterotopia). Two cases with LCR22C~D 22q11.2 deletions showed nonspecific ultrasonographic findings, including oligohydramnios with growth restriction and nuchal skin thickening. The CMA verification showed that six cases were inherited from their parents, and five couples had chosen to continue with the pregnancy. Postpartum follow-up showed that the physical and intellectual development of all children were normal. One couple had opted to terminate the pregnancy considering the ectopic fetal right kidney. Two remaining cases had decided to terminate their pregnancies without parental verification. CONCLUSION: The central 22q11.2 deletion syndrome of the LCR22B/C~D type is different from the classical types. Its genetic information mainly comes from parents. Prenatal imaging has mainly shown cardiovascular and urinary abnormalities. Postnatal growth and intellectual development have been normal. Therefore, the couples should be provided with suffice prenatal genetic counseling.


Asunto(s)
Síndrome de DiGeorge , Enfermedades Fetales , Defectos del Tabique Interventricular , Niño , Femenino , Embarazo , Humanos , Síndrome de DiGeorge/diagnóstico , Síndrome de DiGeorge/genética , Diagnóstico Prenatal/métodos , Enfermedades Fetales/genética , Resultado del Embarazo
4.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(3): 266-270, 2024 Mar 10.
Artículo en Zh | MEDLINE | ID: mdl-38448012

RESUMEN

OBJECTIVE: To analyze ultrasonographic manifestations and genetic etiology of nine fetuses with 7q11.23 duplication syndrome. METHODS: Ultrasonographic finding, pregnancy outcome and follow-up of nine fetuses detected at the Prenatal Diagnosis Center of the Third Affiliated Hospital of Zhengzhou University from January 2017 to December 2021 were retrospectively analyzed. RESULTS: The fetuses were found to harbor a duplication in the 7q11.23 region by chromosomal microarray analysis (CMA). Among these, five had shown ventriculomegaly, including four syndromic and one non-syndromic. For the remainders, one had ventricular septal defect and mild tricuspid regurgitation, one had echogenic intracardiac focus, whilst another two were normal. Five couples had accepted parental verification, and the results confirmed that the 7q11.23 duplication carried by their fetuses were de novo in origin. Following genetic counseling, seven couples had opted to terminate their pregnancies. Two fetuses were delivered at full term, and follow-up had found no abnormalities. CONCLUSION: Prenatal ultrasonographic manifestations of fetuses with 7q11.23 duplication syndrome are variable. CMA can provide assistance for their diagnosis and genetic counseling.


Asunto(s)
Defectos del Tabique Interventricular , Diagnóstico Prenatal , Femenino , Humanos , Embarazo , Estudios Retrospectivos , Feto , Asesoramiento Genético , Síndrome
5.
Angew Chem Int Ed Engl ; : e202405653, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38764409

RESUMEN

Dithioacetals are heavily used in organic, material and medical chemistries, and exhibit huge potential to synthesize degradable or recyclable polymers. However, the current synthetic approaches of dithioacetals and polydithioacetals are overwhelmingly dependent on external catalysts and organic solvents. Herein, we disclose a catalyst- and solvent-free acetal-thiol click-like reaction for synthesizing dithioacetals and polydithioacetals. High conversion, higher than acid catalytic acetal-thiol reaction, can be achieved. High universality was confirmed by monitoring the reactions of linear and cyclic acetals (including renewable bio-sourced furan-acetal) with aliphatic and aromatic thiols, and the reaction mechanism of monomolecular nucleophilic substitution (SN1) and auto-protonation (activation) by thiol was clarified by combining experiments and density functional theory computation. Subsequently, we utilize this reaction to synthesize readily recyclable polydithioacetals. By simple heating and stirring, linear polydithioacetals with M ‾ ${\bar M}$ w of ~110 kDa were synthesized from acetal and dithiol, and depolymerization into macrocyclic dithioacetal and repolymerization into polydithioacetal can be achieved; through reactive extrusion, a semi-interpenetrating polymer dynamic network with excellent mechanical properties and continuous reprocessability was prepared from poly(vinyl butyral) and pentaerythritol tetrakis(3-mercaptopropionate). This green and high-efficient synthesis method for dithioacetals and polydithioacetals is beneficial to the sustainable development of chemistry.

6.
Angew Chem Int Ed Engl ; : e202406708, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38828797

RESUMEN

Covalent adaptable networks (CANs), leveraging the dynamic exchange of covalent bonds, emerge as a promising material to address the challenge of irreversible cross-linking in thermosetting polymers. In this work, we explore the introduction of a catalyst-free and associative C=C/C=N metathesis reaction into thermosetting polyurethanes, creating CANs with superior stability, solvent resistance, and thermal/mechanical properties. By incorporating this dynamic exchange reaction, stress-relaxation is significantly accelerated compared to imine-bond-only networks, with the rate adjustable by modifying substituents in the ortho position of the dynamic double bonds. The obtained plasticity enables recycle without altering the chemical structure or mechanical properties, and is also found to be vital for achieving shape memory functions with complex spatial structures. This metathesis reaction as a new dynamic crosslinker of polymer networks has the potential to accelerate the ongoing exploration of malleable and functional thermoset polymers.

7.
Am J Physiol Cell Physiol ; 325(5): C1228-C1243, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37721000

RESUMEN

Extracellular adenosine triphosphate (ATP) is one of the most abundant biochemical constitutes within the stem cell microenvironment and is postulated to play critical roles in cell migration. However, it is unclear whether ATP regulates the cell migration of CD34+ vascular wall-resident stem/progenitor cells (VW-SCs) and participates in angiogenesis. Therefore, the biological mechanisms of cell migration mediated by ATP was determined by in vivo subcutaneous matrigel plug assay, ex vivo aortic ring assay, in vitro transwell migration assay, and other molecular methods. In the present study, ATP dose-dependently promoted CD34+ VW-SCs migration, which was more obviously attenuated by inhibiting or knocking down P2Y2 than P2Y6. Furthermore, it was confirmed that ATP potently promoted the migration of resident CD34+ cells from cultured aortic artery rings and differentiation into endothelial cells in matrigel plugs by using inducible lineage tracing Cd34-CreERT2; R26-tdTomato mice, whereas P2Y2 and P2Y6 blocker greatly inhibited the effect of ATP. In addition, ATP enhanced the protein expression of stromal interaction molecule 1 (STIM1) on cell membrane, blocking the calcium release-activated calcium (CRAC) channel with shSTIM1 or BTP2 apparently inhibited ATP-evoked intracellular Ca2+ elevation and channel opening, thereby suppressing ATP-driven cell migration. Moreover, extracellular signal-regulated protein kinase (ERK) inhibitor PD98059 and p38 inhibitor SB203580 remarkably inhibited ERK and p38 phosphorylation, cytoskeleton rearrangement, and subsequent cell migration. Unexpectedly, it was found that knocking down STIM1 greatly inhibited ATP-triggered ERK/p38 activation. Taken together, it was suggested that P2Y2 signaled through the CRAC channel mediated Ca2+ influx and ERK/p38 pathway to reorganize the cytoskeleton and promoted the migration of CD34+ VW-SCs.NEW & NOTEWORTHY In this study, we observed that the purinergic receptor P2Y2 is critical in the regulation of vascular wall-resident CD34+ cells' migration. ATP could activate STIM1-mediated extracellular Ca2+ entry by triggering STIM1 translocation to the plasma membrane, and knockdown of STIM1 prevented ERK/p38 activation-mediated cytoskeleton rearrangement and cell migration.

8.
Cell Commun Signal ; 21(1): 173, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37430253

RESUMEN

AIMS: Vascular resident stem cells expressing stem cell antigen-1 (Sca-1+ cells) promote vascular regeneration and remodelling following injury through migration, proliferation and differentiation. The aim of this study was to examine the contributions of ATP signalling through purinergic receptor type 2 (P2R) isoforms in promoting Sca-1+ cell migration and proliferation after vascular injury and to elucidate the main downstream signalling pathways. METHODS AND RESULTS: ATP-evoked changes in isolated Sca-1+ cell migration were examined by transwell assays, proliferation by viable cell counting assays and intracellular Ca2+ signalling by fluorometry, while receptor subtype contributions and downstream signals were examined by pharmacological or genetic inhibition, immunofluorescence, Western blotting and quantitative RT-PCR. These mechanisms were further examined in mice harbouring TdTomato-labelled Sca-1+ cells with and without Sca-1+-targeted P2R knockout following femoral artery guidewire injury. Stimulation with ATP promoted cultured Sca-1+ cell migration, induced intracellular free calcium elevations primarily via P2Y2R stimulation and accelerated proliferation mainly via P2Y6R stimulation. Enhanced migration was inhibited by the ERK blocker PD98059 or P2Y2R-shRNA, while enhanced proliferation was inhibited by the P38 inhibitor SB203580. Femoral artery guidewire injury of the neointima increased the number of TdTomato-labelled Sca-1+ cells, neointimal area and the ratio of neointimal area to media area at 3 weeks post-injury, and all of these responses were reduced by P2Y2R knockdown. CONCLUSIONS: ATP induces Sca-1+ cell migration through the P2Y2R-Ca2+-ERK signalling pathway, and enhances proliferation through the P2Y6R-P38-MAPK signalling pathway. Both pathways are essential for vascular remodelling following injury. Video Abstract.


Asunto(s)
Remodelación Vascular , Lesiones del Sistema Vascular , Animales , Ratones , Proliferación Celular , Transducción de Señal , Movimiento Celular , Adenosina Trifosfato
9.
Ecotoxicol Environ Saf ; 267: 115650, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37939555

RESUMEN

Benzophenones (BPs) have wide practical applications in real human life due to its presence in personal care products, UV-filters, drugs, food packaging bags, etc. It enters the wastewater by daily routine activities such as showering, impacting the whole aquatic system, then posing a threat to human health. Due to this fact, the monitoring and removal of BPs in the environment is quite important. In the past decade, various novel analytical and removal techniques have been developed for the determination of BPs in environmental samples including wastewater, municipal landfill leachate, sewage sludge, and aquatic plants. This review provides a critical summary and comparison of the available cutting-edge pretreatment, determination and removal techniques of BPs in environment. It also focuses on novel materials and techniques in keeping with the concept of "green chemistry", and describes on challenges associated with the analysis of BPs, removal technologies, suggesting future development strategies.


Asunto(s)
Benzofenonas , Contaminantes Químicos del Agua , Humanos , Aguas Residuales , Embalaje de Alimentos , Aguas del Alcantarillado
10.
Sheng Li Xue Bao ; 75(2): 205-215, 2023 Apr 25.
Artículo en Zh | MEDLINE | ID: mdl-37089095

RESUMEN

Vascular wall-resident stem cells (VW-SCs) play a critical role in maintaining normal vascular function and regulating vascular repair. Understanding the basic functional characteristics of the VW-SCs will facilitate the study of their regulation and potential therapeutic applications. The aim of this study was to establish a stable method for the isolation, culture, and validation of the CD34+ VW-SCs from mice, and to provide abundant and reliable cell sources for further study of the mechanisms involved in proliferation, migration and differentiation of the VW-SCs under various physiological and pathological conditions. The vascular wall cells of mouse aortic adventitia and mesenteric artery were obtained by the method of tissue block attachment and purified by magnetic microbead sorting and flow cytometry to obtain the CD34+ VW-SCs. Cell immunofluorescence staining was performed to detect the stem cell markers (CD34, Flk-1, c-kit, Sca-1), smooth muscle markers (SM22, SM MHC), endothelial marker (CD31), and intranuclear division proliferation-related protein (Ki-67). To verify the multipotency of the isolated CD34+ VW-SCs, endothelial differentiation medium EBM-2 and fibroblast differentiation medium FM-2 were used. After culture for 7 days and 3 days respectively, endothelial cell markers and fibroblast markers of the differentiated cells were evaluated by immunofluorescence staining and q-PCR. Furthermore, the intracellular Ca2+ release and extracellular Ca2+ entry signaling were evaluated by TILLvisION system in Fura-2/AM loaded cells. The results showed that: (1) High purity (more than 90%) CD34+ VW-SCs from aortic adventitia and mesenteric artery of mice were harvested by means of tissue block attachment method and magnetic microbead sorting; (2) CD34+ VW-SCs were able to differentiate into endothelial cells and fibroblasts in vitro; (3) Caffeine and ATP significantly activated intracellular Ca2+ release from endoplasmic reticulum of CD34+ VW-SCs. Store-operated Ca2+ entry (SOCE) was activated by using thapsigargin (TG) applied in Ca2+-free/Ca2+ reintroduction protocol. This study successfully established a stable and efficient method for isolation, culture and validation of the CD34+ VW-SCs from mice, which provides an ideal VW-SCs sources for the further study of cardiovascular diseases.


Asunto(s)
Células Endoteliales , Células Madre , Ratones , Animales , Diferenciación Celular/fisiología , Adventicia , Fibroblastos , Células Cultivadas , Antígenos CD34/metabolismo
11.
J Mol Cell Cardiol ; 166: 63-73, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35143836

RESUMEN

Stem cell therapy may be a promising option for the treatment of vascular diseases. In recent years, significant progress has been made in stem cell research, especially in the mechanism of stem cell activation, homing and differentiation in vascular repair and reconstruction. Current research on stem cells focuses on protein expression and transcriptional networks. Ion channels are considered to be the basis for the generation of bioelectrical signals, which control the proliferation, differentiation and migration of various cell types. Although heterogeneity of multiple ion channels has been found in different types of stem cells, it is unclear whether the heterogeneous expression of ion channels is related to different cell subpopulations and/or different stages of the cell cycle. There is still a long way to go in clinical treatment by using the regulation of stem cell ion channels. In this review, we reviewed the main ion channels found on stem cells, their expression and function in stem cell proliferation, differentiation and migration, and the research status of stem cells' involvement in vascular diseases.


Asunto(s)
Células Madre , Enfermedades Vasculares , Diferenciación Celular , Proliferación Celular , Humanos , Canales Iónicos/metabolismo , Células Madre/metabolismo , Enfermedades Vasculares/terapia
12.
Anal Chem ; 94(2): 820-828, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34931817

RESUMEN

Phosphatidylethanolamines (PEs), ether-PEs, and phosphatidylserines (PSs) are glycerophospholipids harboring a primary amino group in their headgroups. They are key components of mammalian cell membranes and play pivotal roles in cell signaling and apoptosis. In this study, a liquid chromatography-mass spectrometry (LC-MS) workflow for deep profiling of PEs, ether-PEs, and PSs has been developed by integrating two orthogonal derivatizations: (1) derivatization of the primary amino group by 4-trimethylammoniumbutyryl-N-hydroxysuccinimide (TMAB-NHS) for enhanced LC separation and MS detection and (2) the Paternò-Büchi (PB) reaction for carbon-carbon double bond (C═C) derivatization and localization. Significant improvement of the limit of identification down to the C═C location has been achieved for the standards of PSs (3 nM) and ether-PEs (20 nM). This workflow facilitates an identification of more than 200 molecular species of aminophospholipids in the porcine brain, two times more than those identified without TMAB-NHS derivatization. Importantly, we discovered that the n-10 isomers in C16:1 and C18:1 of aminophospholipids showed elevated contribution among other isomers, which correlated well with an increased transcription of the corresponding desaturase (FADS2) in the human breast cancer cell line (MDA-MB-231) relative to that in the normal cell line (HMEC). The abovementioned data suggest that lipid reprograming via forming different C═C location isomers might be an alternative mechanism in cancer cells.


Asunto(s)
Neoplasias de la Mama , Animales , Línea Celular , Cromatografía Liquida , Femenino , Humanos , Isomerismo , Espectrometría de Masas , Porcinos
13.
Macromol Rapid Commun ; 43(20): e2200379, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35730398

RESUMEN

Covalent adaptable networks (CANs) exhibit recyclability such as reprocessing, but it's a challenge to address the contradiction between reprocessing rate and performance. Here, pendent aliphatic chain anhydride monoesters are innovatively introduced into epoxy CANs based on transesterification, which efficiently accelerates the reprocessing without sacrificing thermal and mechanical properties. The transesterification rate is raised on account of the flexible aliphatic chain-promoted segment movement and dynamic transfer auto-catalysis. When the carbon number reflecting the length of the pendent chain is 12, the epoxy CAN exhibits the fastest stress relaxation or reprocessing. Computation via molecular dynamics simulation demonstrates that the increased segmental mobility from the pendent aliphatic chains contributes to enhanced reprocessability. Interestingly, the crystallization of the pendent aliphatic chains maintains or even improves the thermal and mechanical properties. Thus, introducing a flexible and crystallizable aliphatic side chain is an innovative and efficient approach to accelerate dynamic reactions and network arrangement while improving performance.

14.
Macromol Rapid Commun ; 43(13): e2100777, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35018694

RESUMEN

Covalent adaptable networks (CANs) are a new type of polymers, which possess excellent performance of thermosets and reprocessability of thermoplastics. Nevertheless, it is still a challenge to realize rapid reprocessing and postadjusting (adjust properties after preparation). Herein, for the first time, a method of combining Schiff base and Diels-Alder adduct in one network is developed to achieve rapid reprocessing and postadjusting. Through the dissociation of the Diels-Alder adduct at high temperatures, the cross-link densities of the networks are reduced, thereby accelerating the rearrangement of the networks and realizing the rapid reprocessing and self-healing. Moreover, the reconnecting degree of network after dissociation of Diels-Alder adduct can be easily controlled by annealing; as a result, the properties of the obtained CANs are postadjustable. This work provides a simple and promising approach of achieving excellent reprocessing and postadjusting for CANs via the synergism of an associative dynamic chemistry with a dissociative dynamic chemistry.

15.
Int J Mol Sci ; 23(19)2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36232649

RESUMEN

Mitochondrial dysfunction in the endothelium contributes to the progression of hypertension and plays an obligatory role in modulating vascular tone. Acacetin is a natural flavonoid compound that has been shown to possess multiple beneficial effects, including vasodilatation. However, whether acacetin could improve endothelial function in hypertension by protecting against mitochondria-dependent apoptosis remains to be determined. The mean arterial pressure (MAP) in Wistar Kyoto (WKY) rats, spontaneously hypertensive rats (SHR) administered with acacetin intraperitoneally for 2 h or intragastrically for six weeks were examined. The endothelial injury was evaluated by immunofluorescent staining and a transmission electron microscope (TEM). Vascular tension measurement was performed to assess the protective effect of acacetin on mesenteric arteries. Endothelial injury in the pathogenesis of SHR was modeled in HUVECs treated with Angiotensin II (Ang II). Mitochondria-dependent apoptosis, the opening of Mitochondrial Permeability Transition Pore (mPTP) and mitochondrial dynamics proteins were determined by fluorescence activated cell sorting (FACS), immunofluorescence staining and western blot. Acacetin administered intraperitoneally greatly reduced MAP in SHR by mediating a more pronounced endothelium-dependent dilatation in mesenteric arteries, and the vascular dilatation was reduced remarkably by NG-nitro-L-arginine methyl ester (L-NAME), an inhibitor of NO synthesis. While acacetin administered intragastrically for six weeks had no apparent effect on MAP, it improved the endothelium-dependent dilatation in SHR by activating the AKT/eNOS pathway and protecting against the abnormalities of endothelium and mitochondria. Furthermore, acacetin remarkably inhibited Ang II induced apoptosis by inhibiting the increased expression of Cyclophilin D (CypD), promoted the opening of mPTP, ROS generation, ATP loss and disturbance of dynamin-related protein 1 (DRP1)/optic atrophy1 (OPA1) dynamics in HUVECs. This study suggests that acacetin protected against endothelial dysfunction in hypertension by activating the AKT/eNOS pathway and modulating mitochondrial function by targeting mPTP and DRP1/OPA1-dependent dynamics.


Asunto(s)
Flavonas , Hipertensión , Hipotensión , Animales , Ratas , Adenosina Trifosfato/metabolismo , Angiotensina II/metabolismo , Angiotensina II/farmacología , Presión Sanguínea , Peptidil-Prolil Isomerasa F , Endotelio Vascular/metabolismo , Flavonas/metabolismo , Flavonas/farmacología , Hipertensión/metabolismo , Hipotensión/metabolismo , Mitocondrias/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Especies Reactivas de Oxígeno/metabolismo , Vasodilatación
16.
J Cell Biochem ; 2021 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-33938033

RESUMEN

Thalidomide and its derivatives lenalidomide and pomalidomide, known as immunomodulatory drugs, (IMiDs) bind directly to cereblon (CRBN), a substrate receptor of an E3 ubiquitin ligase, resulting in the rapid ubiquitination and degradation of the substrate protein. With the discovery of the protein degradation mechanism of IMiDs, targeted protein degradation mediated by IMiDs via CRBN emerged and developed rapidly for the advantages of overcoming drug resistance and targeting undruggable. To date, almost all CRBN ligands are derived from thalidomide and there are few structural differences between them. Hence, we employed an accurate, effective, and rational approach to screen novel and potential CRBN ligands. In this study, we have built a molecular library by scaffold hopping with thalidomide. ADMET screening, virtual screening, and visual inspection screening were performed step-by-step to screen the molecular library and five molecules were hit. Furthermore, docking analysis and a period of 150 ns molecular dynamic (MD) simulation were performed to validate the accuracy of our screen. The docking results showed that molecular A (-10.42 kcal/mol), molecular B (-9.73 kcal/mol), molecular C (-9.25 kcal/mol), molecular D (-9.09 kcal/mol), and molecular E (-10.16 kcal/mol) have lower binding energy than thalidomide (-5.42 kcal/mol), lenalidomide (-5.74 kcal/mol), and pomalidomide (-5.51 kcal/mol). In the MD simulation, all the five screened molecules form key interactions with the active site amino acid residues (Trp380, Trp386, and Trp400) as well as the three marketed IMiDs. Besides, we found and explained that Pro352 was positive for ligand binding to CRBN and Glu377 in reverse, which has not been reported before. We believe that our findings and those five molecules can serve as further optimization of CRBN ligands and development of proteolysis targeting chimeras.

17.
Langmuir ; 37(27): 8083-8094, 2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34171189

RESUMEN

The mechanical properties of cells are harmless biomarkers for cell identification and disease diagnosis. Although many systems have been developed to evaluate the static mechanical properties of cells for biomedical research, their robustness, effectiveness, and cost do not meet clinical requirements or the experiments with a large number of cell samples. In this paper, we propose an approach for on-chip cell mechanical characterization by analyzing the dynamic behavior of cells as they pass through multiple constrictions. The proposed serpentine microfluidic channel consisted of 20 constrictions connected in series and divided into five rows for tracking cell dynamic behavior. Assisted by computer vision, the squeezing time of each cell through five rows of constrictions was automatically collected and filtered to evaluate the cell's mechanical deformability. We observed a decreasing passage time and increasing dynamic deformability of the cells as they passed through the multiple constrictions. The deformability increase rate of the HeLa cells was eight times greater than that of MEF cells. Moreover, the weak correlation between the deformability increase rate and the cell size indicated that cell recognition based on measuring the deformability increase rate could hardly be affected by the cell size variation. These findings showed that the deformability increase rate of the cell under on-chip sequential squeezing as a new index has great potential in cancer cell recognition.


Asunto(s)
Microfluídica , Tamaño de la Célula , Células HeLa , Humanos
18.
Gerontology ; 67(3): 323-337, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33752204

RESUMEN

INTRODUCTION: Vasoconstriction is triggered by an increase in intracellular-free calcium concentration. Growing evidence indicates that contraction is also regulated by calcium-independent mechanisms involving RhoA-Rho kinase (ROCK), protein kinase C (PKC), and so on. In this study, we studied the changes of vascular reactivity as well as the underlying signaling pathways in aging spontaneously hypertensive rats (SHRs). METHODS: The artery tension induced by α1-adrenergic receptor activator (α1-AR) phenylephrine (PE) was measured in the absence or presence of myosin light chain kinase (MLCK), PKC, and ROCK inhibitors. The α1-AR, PKC, ROCK, phosphorylation of myosin light chain (MLC), and PKC-potentiated phosphatase inhibitors of 17 kDa (CPI-17) of rat mesenteric arteries were analyzed at the mRNA level or protein level. RESULTS: The vascular tension measurements showed that there was a significant increase in the mesenteric artery contraction induced by PE in old SHR. MLCK inhibitor ML-7 can similarly inhibit PE-induced vasoconstriction. PKC inhibitor GF109203X has the weakest inhibitory effect on PE-induced contraction in old SHR. At the presence of ROCK inhibitor H1152, PE-induced contraction was significantly reduced in young Wistar-Kyoto (WKY) rats, but this phenomenon disappeared in other rats. Furthermore, in old SHR the protein expression of α1-AR decreased and phosphorylation of MLC and CPI-17 were upregulated and MLC phosphatase (MLCP) activity was significantly lower. The expressions of PKC were upregulated in SHR and old rats. In addition, the expression of ROCK-1 was decreased and ROCK-2 was significantly upregulated with age in SHR. CONCLUSION: In aging hypertension, the expression/activity of PKC or ROCK-2/CPI-17 excessively increased, MLCP activity decreased and MLC phosphorylation enhanced, leading to increased α1-AR-induced vasoconstriction.


Asunto(s)
Hipertensión , Proteínas Musculares , Envejecimiento , Animales , Arterias Mesentéricas , Fosfoproteínas , Ratas , Ratas Endogámicas WKY
19.
Anal Chem ; 92(17): 11607-11616, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32605365

RESUMEN

In recent decades, cell immobilization using microfluidic chips has facilitated significant advancements in biological analyses at the single-cell level. However, the efficient capture of multiple cells as a cluster in adjustable quantities for cell-cell interaction has not been achieved. In this paper, aiming to monitor the cell-cell interaction at the single-cell level, we proposed a novel method for the efficient immobilization of adjustable quantities of cells on the basis of passive hydrodynamics so that different cell-cell interaction patterns could be generated. Experiments were conducted to characterize the key geometric parameters of the chip to optimize the efficiency of trapping different quantities of cells. In the microfluidic chips optimized for immobilizing one to five cells, the trapping success rates (TSRs) were up to 97%, 87%, 84%, 58%, and 54%, respectively. Furthermore, the throughput was over 200 cells min-1 with a minimum cell density of 350 cells mm-2. Finally, in the experiments of applying the proposed multicell immobilization chips to cell-cell interaction monitoring, calcein-AM transfer between multiple cells under different patterns has been studied through quantifying the local fluorescent intensity. The results demonstrated that the proposed method could be a promising opportunity in the widening field of biological research at the single-cell level.


Asunto(s)
Comunicación Celular/fisiología , Técnicas Analíticas Microfluídicas/instrumentación , Microfluídica/instrumentación , Análisis de la Célula Individual/instrumentación , Células 3T3 , Animales , Células Cultivadas , Células Inmovilizadas/metabolismo , Técnicas de Cocultivo , Dimetilpolisiloxanos/química , Equipos y Suministros , Fluoresceínas/metabolismo , Células HT29 , Células HeLa , Humanos , Hidrodinámica , Ratones , Modelos Químicos
20.
Environ Res ; 187: 109488, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32470646

RESUMEN

Macro-porous poly(lauryl acrylate) cryogel sheets as oil-sorbents were prepared through UV-radiation cryo-polymerizations in 1, 4-dioxane at low temperatures (-5, -2 and 0 °C) within 30 min. The influences of total monomer concentration, crosslinking monomer amount and polymerization temperature on the formation of cryogels were studied. The chemical structure and porous morphology were characterized through the techniques of Fourier transform infrared spectroscopy, thermal gravimetric analysis, contact angle measurement and scanning electron microscopy, confirming the features of high hydrophobicity, macro-porosity and good thermal stability. As well, the comparison between conventional gels prepared at room temperature and cryogels at lower temperatures was made, showing the higher rate of cryo-polymerization than conventional polymerization under the same UV-radiation condition. The swelling investigation was carried out with several organic solvents and oils. Enhanced performance of oil absorption was observed for those cryogels considering the absorption capacity and absorption rate. Variation of initiator amount and acrylate monomers could also modulate the absorption capacity. Those cryogel oil-sorbents exhibited wide adaptability, good reusability and high-temperature tolerance. Thus, this rapid and low-cost fabrication opens out a novel pathway to prepare efficient oil-sorbents used in waste water treatment.


Asunto(s)
Criogeles , Rayos Ultravioleta , Adsorción , Microscopía Electrónica de Rastreo , Aceites , Porosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA