Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Plant J ; 118(2): 457-468, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38198228

RESUMEN

Carotenoids perform a broad range of important functions in humans; therefore, carotenoid biofortification of maize (Zea mays L.), one of the most highly produced cereal crops worldwide, would have a global impact on human health. PLASTID TERMINAL OXIDASE (PTOX) genes play an important role in carotenoid metabolism; however, the possible function of PTOX in carotenoid biosynthesis in maize has not yet been explored. In this study, we characterized the maize PTOX locus by forward- and reverse-genetic analyses. While most higher plant species possess a single copy of the PTOX gene, maize carries two tandemly duplicated copies. Characterization of mutants revealed that disruption of either copy resulted in a carotenoid-deficient phenotype. We identified mutations in the PTOX genes as being causal of the classic maize mutant, albescent1. Remarkably, overexpression of ZmPTOX1 significantly improved the content of carotenoids, especially ß-carotene (provitamin A), which was increased by ~threefold, in maize kernels. Overall, our study shows that maize PTOX locus plays an important role in carotenoid biosynthesis in maize kernels and suggests that fine-tuning the expression of this gene could improve the nutritional value of cereal grains.


Asunto(s)
Oxidorreductasas , Zea mays , Humanos , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Zea mays/genética , Zea mays/metabolismo , Carotenoides/metabolismo , beta Caroteno/metabolismo , Grano Comestible/genética , Grano Comestible/metabolismo , Plastidios/genética , Plastidios/metabolismo
2.
Plant J ; 112(1): 207-220, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35960639

RESUMEN

Zea mays (maize) makes phytoalexins such as sesquiterpenoid zealexins, to combat invading pathogens. Zealexins are produced from farnesyl diphosphate in microgram per gram fresh weight quantities. As farnesyl diphosphate is also a precursor for many compounds essential for plant growth, the question arises as to how Z. mays produces high levels of zealexins without negatively affecting vital plant systems. To examine if specific pools of farnesyl diphosphate are made for zealexin synthesis we made CRISPR/Cas9 knockouts of each of the three farnesyl diphosphate synthases (FPS) in Z. mays and examined the resultant impacts on different farnesyl diphosphate-derived metabolites. We found that FPS3 (GRMZM2G098569) produced most of the farnesyl diphosphate for zealexins, while FPS1 (GRMZM2G168681) made most of the farnesyl diphosphate for the vital respiratory co-factor ubiquinone. Indeed, fps1 mutants had strong developmental phenotypes such as reduced stature and development of chlorosis. The replication and evolution of the fps gene family in Z. mays enabled it to produce dedicated FPSs for developmentally related ubiquinone production (FPS1) or defense-related zealexin production (FPS3). This partitioning of farnesyl diphosphate production between growth and defense could contribute to the ability of Z. mays to produce high levels of phytoalexins without negatively impacting its growth.


Asunto(s)
Geraniltranstransferasa , Sesquiterpenos , Geraniltranstransferasa/genética , Geraniltranstransferasa/metabolismo , Fosfatos de Poliisoprenilo , Sesquiterpenos/metabolismo , Terpenos/metabolismo , Ubiquinona/metabolismo , Zea mays/genética , Zea mays/metabolismo , Fitoalexinas
3.
Plant J ; 93(5): 799-813, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29315977

RESUMEN

Maize white seedling 3 (w3) has been used to study carotenoid deficiency for almost 100 years, although the molecular basis of the mutation has remained unknown. Here we show that the w3 phenotype is caused by disruption of the maize gene for homogentisate solanesyl transferase (HST), which catalyzes the first and committed step in plastoquinone-9 (PQ-9) biosynthesis in the plastid. The resulting PQ-9 deficiency prohibits photosynthetic electron transfer and eliminates PQ-9 as an oxidant in the enzymatic desaturation of phytoene during carotenoid synthesis. As a result, light-grown w3 seedlings are albino, deficient in colored carotenoids and accumulate high levels of phytoene. However, despite the absence of PQ-9 for phytoene desaturation, dark-grown w3 seedlings can produce abscisic acid (ABA) and homozygous w3 kernels accumulate sufficient carotenoids to generate ABA needed for seed maturation. The presence of ABA and low levels of carotenoids in w3 nulls indicates that phytoene desaturase is able to use an alternate oxidant cofactor, albeit less efficiently than PQ-9. The observation that tocopherols and tocotrienols are modestly affected in w3 embryos and unaffected in w3 endosperm indicates that, unlike leaves, grain tissues deficient in PQ-9 are not subject to severe photo-oxidative stress. In addition to identifying the molecular basis for the maize w3 mutant, we: (1) show that low levels of phytoene desaturation can occur in w3 seedlings in the absence of PQ-9; and (2) demonstrate that PQ-9 and carotenoids are not required for vitamin E accumulation.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Proteínas de Plantas/metabolismo , Plastoquinona/metabolismo , Tocoferoles/metabolismo , Zea mays/metabolismo , Ácido Abscísico/metabolismo , Transferasas Alquil y Aril/genética , Carotenoides/genética , Carotenoides/metabolismo , Mutación , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Fenotipo , Fotosíntesis , Filogenia , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Plastidios/genética , Plastidios/metabolismo , Semillas/genética , Semillas/metabolismo , Vitamina E/genética , Vitamina E/metabolismo , Zea mays/genética
4.
FEMS Microbiol Ecol ; 100(3)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38366934

RESUMEN

Microbes in floral nectar can impact both their host plants and floral visitors, yet little is known about the nectar microbiome of most pollinator-dependent crops. In this study, we examined the abundance and composition of the fungi and bacteria inhabiting Vaccinium spp. nectar, as well as nectar volume and sugar concentrations. We compared wild V. myrsinites with two field-grown V. corymbosum cultivars collected from two organic and two conventional farms. Differences in nectar traits and microbiomes were identified between V. corymbosum cultivars but not Vaccinium species. The microbiome of cultivated plants also varied greatly between farms, whereas management regime had only subtle effects, with higher fungal populations detected under organic management. Nectars were hexose-dominant, and high cell densities were correlated with reduced nectar sugar concentrations. Bacteria were more common than fungi in blueberry nectar, although both were frequently detected and co-occurred more often than would be predicted by chance. "Cosmopolitan" blueberry nectar microbes that were isolated in all plants, including Rosenbergiella sp. and Symmetrospora symmetrica, were identified. This study provides the first systematic report of the blueberry nectar microbiome, which may have important implications for pollinator and crop health.


Asunto(s)
Arándanos Azules (Planta) , Microbiota , Vaccinium , Granjas , Néctar de las Plantas , Azúcares
5.
Plant Physiol ; 160(3): 1318-28, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22961134

RESUMEN

The phytohormone auxin (indole-3-acetic acid [IAA]) plays a fundamental role in vegetative and reproductive plant development. Here, we characterized a seed-specific viable maize (Zea mays) mutant, defective endosperm18 (de18) that is impaired in IAA biosynthesis. de18 endosperm showed large reductions of free IAA levels and is known to have approximately 40% less dry mass, compared with De18. Cellular analyses showed lower total cell number, smaller cell volume, and reduced level of endoreduplication in the mutant endosperm. Gene expression analyses of seed-specific tryptophan-dependent IAA pathway genes, maize Yucca1 (ZmYuc1), and two tryptophan-aminotransferase co-orthologs were performed to understand the molecular basis of the IAA deficiency in the mutant. Temporally, all three genes showed high expression coincident with high IAA levels; however, only ZmYuc1 correlated with the reduced IAA levels in the mutant throughout endosperm development. Furthermore, sequence analyses of ZmYuc1 complementary DNA and genomic clones revealed many changes specific to the mutant, including a 2-bp insertion that generated a premature stop codon and a truncated YUC1 protein of 212 amino acids, compared with the 400 amino acids in the De18. The putative, approximately 1.5-kb, Yuc1 promoter region also showed many rearrangements, including a 151-bp deletion in the mutant. Our concurrent high-density mapping and annotation studies of chromosome 10, contig 395, showed that the De18 locus was tightly linked to the gene ZmYuc1. Collectively, the data suggest that the molecular changes in the ZmYuc1 gene encoding the YUC1 protein are the causal basis of impairment in a critical step in IAA biosynthesis, essential for normal endosperm development in maize.


Asunto(s)
Endospermo/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Ácidos Indolacéticos/metabolismo , Mutación/genética , Zea mays/embriología , Zea mays/genética , Secuencia de Bases , Vías Biosintéticas/genética , Tamaño de la Célula , Clonación Molecular , Endospermo/crecimiento & desarrollo , Escherichia coli/metabolismo , Sitios Genéticos/genética , Especificidad de Órganos/genética , Mapeo Físico de Cromosoma , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reacción en Cadena de la Polimerasa , Polimorfismo Genético , Poliploidía , Proteínas Recombinantes/metabolismo , Zea mays/citología
6.
Plant Sci ; 291: 110329, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31928686

RESUMEN

Little is known regarding insect defense pathways in Setaria viridis (setaria), a model system for panicoid grasses, including Zea mays (maize). It is thus of interest to compare insect herbivory responses of setaria and maize. Here we use metabolic, phylogenetic, and gene expression analyses to measure a subset of jasmonic acid (JA)-related defense responses to leaf-chewing caterpillars. Phylogenetic comparisons of known defense-related maize genes were used to identify putative orthologs in setaria, and candidates were tested by quantitative PCR to determine transcriptional responses to insect challenge. Our findings show that while much of the core JA-related metabolic and genetic responses appear conserved between setaria and maize, production of downstream secondary metabolites such as benzoxazinoids and herbivore-induced plant volatiles are dissimilar. This diversity of chemical defenses and gene families involved in secondary metabolism among grasses presents new opportunities for cross species engineering. The high degree of genetic similarity and ease of orthologous gene identification between setaria and maize make setaria an excellent species for translational genetic studies, but the species specificity of downstream insect defense chemistry makes some pathways unamenable to cross-species comparisons.


Asunto(s)
Ciclopentanos/metabolismo , Herbivoria , Oxilipinas/metabolismo , Proteínas de Plantas/biosíntesis , Biosíntesis de Proteínas , Setaria (Planta)/genética , Zea mays/genética , Animales , Insectos , Setaria (Planta)/metabolismo , Zea mays/metabolismo
7.
Physiol Plant ; 134(1): 161-73, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18433416

RESUMEN

A full-length cDNA clone, SbSnRK1b (1530 bp, GenBank accession no. EF544393), encoding a putative serine/threonine protein kinase homologue of yeast (Saccharomyces cerevisiae) SNF1, was isolated from developing endosperm of sorghum [Sorghum bicolor (L.) Moench]. Multiple sequence alignment data showed a phylogenetic affiliation of the sorghum clone with the SnRK1b group of protein kinases that are highly expressed in cereal seed endosperm. The DNA gel blot analyses indicated that SbSnRK1b gene is present as a single- or low copy number gene in sorghum. The RNA and protein gel blot analyses confirmed the expression of SbSnRK1b in developing sorghum caryopses, overlapping with the starch biosynthesis phase, 12-24 days after fertilization. In situ hybridization and immunolocalization data resolved the spatial specificity of SbSnRK1b expression in the basal endosperm transfer cell layer, the unique port of assimilate unloading in the growing sorghum seed. Expression of SbSnRK1b was also evident in the developing sorghum microspores, coincident with the onset of starch deposition phase. As in sorghum, similar spatiotemporal specificity of SnRK1b expression was observed during maize (Zea mays L.) seed development. However, discordant in situ hybridization and immunolocalization data indicated that the expression of SbSnRK1b homologue in maize is under posttranscriptional control during endosperm development.


Asunto(s)
Proteínas de Plantas/genética , Proteínas Serina-Treonina Quinasas/genética , Sorghum/genética , Almidón/biosíntesis , Zea mays/genética , Secuencia de Aminoácidos , Northern Blotting , Southern Blotting , Western Blotting , Metabolismo de los Hidratos de Carbono , Clonación Molecular , Electroforesis en Gel de Poliacrilamida , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Hibridación in Situ , Datos de Secuencia Molecular , Filogenia , Proteínas de Plantas/clasificación , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Alineación de Secuencia , Sorghum/crecimiento & desarrollo , Sorghum/metabolismo , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo
8.
J Plant Physiol ; 165(3): 331-44, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-17293002

RESUMEN

We report expression profiles of several genes of carbohydrate metabolism, cell wall invertase (CWI) in particular, to better understand sugar transport and its utilization in developing caryopses of grain sorghum [Sorghum bicolor (L.) Moench]. Gene expression analyses for CWI using RNA gel blot and real-time quantitative PCR approaches on developing caryopses, including the glumes (maternal tissue appended to the seeds), showed expression of SbIncw (ZmIncw2 ortholog) primarily in the basal sugar unloading zone of endosperm. The expression of ZmIncw1 ortholog was significantly less abundant and restricted to the glumes. The protein and enzyme activity data corroborated the temporal transcript expression profile that showed maximal CWI protein (INCW) expression preceding the starch-filling phase of endosperm development, i.e. 6-12d-after-pollination (DAP). Protein gel blot analysis using polyclonal maize INCW1 antibodies showed a single polypeptide of 72kDa. The highest level of enzyme activity was unique to the basal part of the endosperm, in particular the basal endosperm transfer cell (BETC) layer and the maternal pedicel region that were highly enriched for the INCW protein, as seen by immunolocalization. High hexose-to-sucrose ratio in 6-12 DAP seeds, and negligible starch deposition in glumes corroborated the CWI activity data. Additionally, we report transcription profiles of several other genes related to sugar-to-starch metabolism in developing sorghum endosperm. As in maize, the INCW-mediated apoplastic cleavage of sucrose in the BETC and pedicel during the early developmental stages of caryopses is essential for the normal development of filial tissues. The unique cell-specificity of the INCW protein to both proximal and distal ends of placental sac shown here for the first time is likely to greatly increase uptakes of both hexose sugars and water through turgor sensing into developing seed. This trait is unique to sorghum among cereals and may facilitate its survival in drought environment.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Pared Celular/enzimología , Semillas/crecimiento & desarrollo , Sorghum/embriología , beta-Fructofuranosidasa/genética , Secuencia de Aminoácidos , Secuencia de Bases , Clonación Molecular , Cartilla de ADN , ADN Complementario , Electroforesis en Gel de Poliacrilamida , Perfilación de la Expresión Génica , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Sorghum/genética
9.
Nat Genet ; 47(12): 1489-93, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26523777

RESUMEN

Carbohydrate import into seeds directly determines seed size and must have been increased through domestication. However, evidence of the domestication of sugar translocation and the identities of seed-filling transporters have been elusive. Maize ZmSWEET4c, as opposed to its sucrose-transporting homologs, mediates transepithelial hexose transport across the basal endosperm transfer layer (BETL), the entry point of nutrients into the seed, and shows signatures indicative of selection during domestication. Mutants of both maize ZmSWEET4c and its rice ortholog OsSWEET4 are defective in seed filling, indicating that a lack of hexose transport at the BETL impairs further transfer of sugars imported from the maternal phloem. In both maize and rice, SWEET4 was likely recruited during domestication to enhance sugar import into the endosperm.


Asunto(s)
Productos Agrícolas/genética , Endospermo/metabolismo , Hexosas/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Semillas/metabolismo , Zea mays/metabolismo , Transporte Biológico , Regulación de la Expresión Génica de las Plantas , Humanos , Mutación/genética , Oryza/genética , Oryza/crecimiento & desarrollo , Proteínas de Plantas/genética , Semillas/genética , Semillas/crecimiento & desarrollo , Zea mays/genética , Zea mays/crecimiento & desarrollo
10.
Front Plant Sci ; 4: 211, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23805148

RESUMEN

Developing endosperm in maize seed is a major site for biosynthesis and storage of starch and proteins, and of immense economic importance for its role in food, feed and biofuel production. The basal part of endosperm performs a major role in solute, water and nutrition acquisition from mother plant to sustain these functions. The miniature1 (mn1) mutation is a loss-of-function mutation of the Mn1-encoded cell wall invertase that is entirely expressed in the basal endosperm and is essential for many of the metabolic and signaling functions associated with metabolically released hexose sugars in developing endosperm. Here we report a comparative proteomic study between Mn1 and mn1 basal endosperm to better understand basis of pleiotropic effects on many diverse traits in the mutant. Specifically, we used iTRAQ based quantitative proteomics combined with Gene Ontology (GO) and bioinformatics to understand functional basis of the proteomic information. A total of 2518 proteins were identified from soluble and cell wall associated protein (CWAP) fractions; of these 131 proteins were observed to be differentially expressed in the two genotypes. The main functional groups of proteins that were significantly different were those involved in the carbohydrate metabolic and catabolic process, and cell homeostasis. The study constitutes the first proteomic analysis of basal endosperm cell layers in relation to endosperm growth and development in maize.

11.
Plant Sci ; 184: 45-53, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22284709

RESUMEN

The Mn1-encoded endosperm-specific cell wall invertase is a major determinant of sink strength of developing seeds through its control of both sink size, cell number and cell size, and sink activity via sucrose hydrolysis and release of hexoses essential for energy and signaling functions. Consequently, loss-of-function mutations of the gene lead to the mn1 seed phenotype that shows ∼70% reduction in seed mass at maturity and several pleiotropic changes. A comparative analysis of endosperm and embryo mass in the Mn1 and mn1 genotypes showed here significant reductions of both tissues in the mn1 starting with early stages of development. Clearly, embryo development was endosperm-dependent. To gain a mechanistic understanding of the changes, sugar levels were measured in both endosperm and embryo samples. Changes in the levels of all sugars tested, glc, fru, suc, and sorbitol, were mainly observed in the endosperm. Greatly reduced fru levels in the mutant led to RNA level expression analyses by q-PCR of several genes that encode sucrose and fructose metabolizing enzymes. The mn1 endosperm showed reductions in gene expression, ranging from ∼70% to 99% of the Mn1 samples, for both suc-starch and suc--energy pathways, suggesting an in vivo metabolic coordinated regulation due to the hexose-deficiency. Together, these data provide evidence of the Mn1-dependent interconnected network of several pathways as a possible basis for pleiotropic changes in seed development.


Asunto(s)
Pared Celular/enzimología , Pleiotropía Genética , Proteínas de Plantas/genética , Semillas/embriología , Zea mays/enzimología , Zea mays/genética , beta-Fructofuranosidasa/genética , Biomasa , Metabolismo de los Hidratos de Carbono/genética , Pared Celular/genética , Endospermo/embriología , Endospermo/genética , Fructosa/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Proteínas de Plantas/metabolismo , Reacción en Cadena de la Polimerasa , ARN Mensajero/genética , ARN Mensajero/metabolismo , Semillas/enzimología , Semillas/genética , Sacarosa/metabolismo , Zea mays/embriología , beta-Fructofuranosidasa/metabolismo
12.
Mol Plant ; 3(6): 1026-36, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20924026

RESUMEN

The miniature1 (mn1) seed phenotype is a loss-of-function mutation at the Mn1 locus that encodes a cell wall invertase; its deficiency leads to pleiotropic changes including altered sugar levels and decreased levels of IAA throughout seed development. To understand the molecular details of such a sugar-hormone relationship, we have initiated studies on IAA biosynthesis genes in developing seeds of maize. Two tryptophan-dependent pathways of IAA biosynthesis, tryptamine (TAM) and indole-3-pyruvic acid (IPA), are of particular interest. We report on molecular isolation and characterization of an endosperm-specific ZmTARelated1 (ZmTar1) gene of the IPA branch; we have also reported recently on ZmYuc1 gene in the TAM branch. Comparative gene expression analyses here have shown that (1) the ZmTar1 transcripts were approximately 10-fold higher levels than the ZmYuc1; (2) although both genes showed the highest level of expression at 8-12 d after pollination (DAP) coincident with an early peak in IAA levels, the two showed highly divergent (antagonistic) response at 12 and 16 DAP but similar patterns at 20 and 28 DAP in the Mn1 and mn1 endosperm. The Western blot analyses for the ZmTAR1 protein, however, displayed disconcordant protein/transcript expression patterns. Overall, these data report novel observations on redundant trp-dependent pathways of auxin biosynthesis in developing seeds of maize, and suggest that homeostatic control of IAA in this important sink is highly complex and may be regulated by both sucrose metabolism and developmental signals.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Ácidos Indolacéticos/metabolismo , Mutación , Reguladores del Crecimiento de las Plantas/metabolismo , Semillas/metabolismo , Zea mays/metabolismo , beta-Fructofuranosidasa/deficiencia , Secuencia de Aminoácidos , Endospermo/genética , Endospermo/crecimiento & desarrollo , Endospermo/metabolismo , Exones/genética , Regulación de la Expresión Génica de las Plantas , Intrones/genética , Datos de Secuencia Molecular , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reacción en Cadena de la Polimerasa , Semillas/enzimología , Semillas/genética , Semillas/crecimiento & desarrollo , Análisis de Secuencia de ADN , Zea mays/enzimología , Zea mays/genética , Zea mays/crecimiento & desarrollo
13.
Planta ; 223(2): 159-67, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16025339

RESUMEN

We show here that the total invertase activity in developing seeds of maize is due to two cell wall invertase (CWI) genes, Incw1 and Incw2 (Mn1). Our previous results have shown that loss-of-function mutations at the Mn1 locus lead to the miniature-1 (mn1) seed phenotype, marked by a loss of >70% of seed weight at maturity. The mn1 seed mutant is, however, non-lethal presumably because it retains a residual low level, approximately 1%, of the total CWI activity relative to the Mn1 endosperm throughout seed development. Evidence here shows that the residual activity in the mn1 mutant is encoded by the Incw1 gene. RNA level analyses, especially quantitative real-time PCR studies, showed significant spatial and temporal heterogeneity in the expression of the two CWI genes in the developing endosperm. The Mn1-encoded Incw2 transcripts were seen at the highest levels in the basal region (the sugar unloading zone) during the early phase of cell division and elongation in the endosperm. In contrast, the highest levels of Incw1 transcripts were seen in the storage phase in both the upper (storage cells) and the lower parts of the endosperm. Protein and enzyme level analyses, however, appeared to show a lack of concordance with the RNA level of expression in both the Mn1 and mn1 endosperms, indicating a possibility of post-transcriptional control in the expression of these two genes. Collectively, the data suggest an important role for apoplastic cleavage of sucrose throughout the duration of seed development; and, of the two isoforms, the INCW2 appears to control metabolic flux of sugar utilization in the developing endosperm.


Asunto(s)
Pared Celular/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Zea mays/genética , beta-Fructofuranosidasa/genética , Pared Celular/enzimología , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Inmunohistoquímica , Proteínas de Plantas/metabolismo , ARN de Planta/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Semillas/enzimología , Semillas/genética , Semillas/crecimiento & desarrollo , Zea mays/enzimología , Zea mays/crecimiento & desarrollo , beta-Fructofuranosidasa/metabolismo
14.
Plant J ; 45(2): 264-74, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16367969

RESUMEN

A new Zea mays viviparous seed mutant, viviparous15 (vp15), was isolated from the UniformMu transposon-tagging population. In addition to precocious germination, vp15 has an early seedling lethal phenotype. Biochemical analysis showed reduced activities of several enzymes that require molybdenum cofactor (MoCo) in vp15 mutant seedlings. Because MoCo is required for abscisic acid (ABA) biosynthesis, the viviparous phenotype is probably caused by ABA deficiency. We cloned the vp15 mutant using a novel high-throughput strategy for analysis of high-copy Mu lines: We used MuTAIL PCR to extract genomic sequences flanking the Mu transposons in the vp15 line. The Mu insertions specific to the vp15 line were identified by in silico subtraction using a database of MuTAIL sequences from 90 UniformMu lines. Annotation of the vp15-specific sequences revealed a Mu insertion in a gene homologous to human MOCS2A, the small subunit of molybdopterin (MPT) synthase. Molecular analysis of two allelic mutations confirmed that Vp15 encodes a plant MPT synthase small subunit (ZmCNX7). Our results, and a related paper reporting the cloning of maize viviparous10, demonstrate robust cloning strategies based on MuTAIL-PCR. The Vp15/CNX7, together with other CNX genes, is expressed in both embryo and endosperm during seed maturation. Expression of Vp15 appears to be regulated independently of MoCo biosynthesis. Comparisons of Vp15 loci in genomes of three cereals and Arabidopsis thaliana identified a conserved sequence element in the 5' untranslated region as well as a micro-synteny among the cereals.


Asunto(s)
Genes de Plantas , Sulfurtransferasas/genética , Zea mays/genética , Alelos , Secuencia de Aminoácidos , Secuencia de Bases , Northern Blotting , Clonación Molecular , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Mutación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Sulfurtransferasas/química
15.
Plant Physiol ; 132(3): 1664-77, 2003 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12857845

RESUMEN

Maize (Zea mays) Viviparous1 (VP1) and Arabidopsis ABI3 are orthologous transcription factors that regulate key aspects of plant seed development and ABA signaling. To understand VP1-regulated gene expression on a global scale, we have performed oligomicroarray analysis of transgenic Arabidopsis carrying 35S::VP1 in an abi3 null mutant background. We have identified 353 VP1/ABA-regulated genes by GeneChip analysis. Seventy-three percent of the genes were affected by both VP1 and ABA in vegetative tissues, indicating a tight coupling between ABA signaling and VP1 function. A large number of seed-specific genes were ectopically expressed in vegetative tissue of 35S::VP1 plants consistent with evidence that VP1 and ABI3 are key determinants of seed-specific expression. ABI5, a positive regulator of ABA signaling, was activated by VP1, indicating conservation of the feed-forward pathway mediated by ABI3. ABA induction of ABI1 and ABI2, negative regulators of ABA signaling, was strongly inhibited by VP1, revealing a second pathway of feed-forward regulation. These results indicate that VP1 strongly modifies ABA signaling through feed-forward regulation of ABI1/ABI5-related genes. Of the 32 bZIP transcription factors represented on the GeneChip, genes in the ABI5 clade were specifically coregulated by ABA and VP1. Statistical analysis of 5' upstream sequences of the VP1/ABA-regulated genes identified consensus abscisic responsive elements as an enriched element, indicating that many of the genes could be direct targets of the ABI5-related bZIPs. The Sph element is an enriched sequence motif in promoters of genes co-activated by ABA and VP1 but not in promoters of genes activated by ABA alone. This analysis reveals that distinct combinatorial patterns of promoter elements distinguish subclasses of VP1/ABA coregulated genes.


Asunto(s)
Ácido Abscísico/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/metabolismo , Proteínas de Unión al ADN/genética , Perfilación de la Expresión Génica , Genes de Plantas/genética , Proteínas de Plantas , Regiones Promotoras Genéticas/genética , ARN de Planta/genética , ARN de Planta/metabolismo , Elementos de Respuesta/genética , Semillas/efectos de los fármacos , Semillas/genética , Semillas/crecimiento & desarrollo , Transactivadores , Factores de Transcripción/genética , Zea mays/genética
16.
Plant J ; 35(1): 44-56, 2003 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12834401

RESUMEN

A key regulated step in abscisic acid (ABA) biosynthesis in plants is catalyzed by 9-cis epoxycarotenoid dioxygenase (NCED), which cleaves 9-cis xanthophylls to xanthoxin, a precursor of ABA. In Arabidopsis, ABA biosynthesis is controlled by a small family of NCED genes. Nine carotenoid cleavage dioxygenase (CCD) genes have been identified in the complete genome sequence. Of these, five AtNCEDs (2, 3, 5, 6, and 9) have been cloned and studied for expression and subcellular localization. Although all five AtNCEDs are targeted to plastids, they differ in binding activity of the thylakoid membrane. AtNCED2, AtNCED3, and AtNCED6 are found in both stroma and thylakoid membrane-bound compartments. AtNCED5 is exclusively bound to thylakoids, whereas AtNCED9 remains soluble in stroma. A quantitative real-time PCR analysis and histochemical staining of promoter::GUS activity in transgenic Arabidopsis revealed a complex pattern of localized NCED expression in well-watered plants during development. AtNCED2 and AtNCED3 account for the NCED activity in roots, with localized expression in root tips, pericycle, and cortex cells at the base of lateral roots. Localized AtNCED2 and AtNCED3 expression in pericycle cells is an early marker of lateral initiation sites. AtNCED5, AtNCED6, AtNCED3, and AtNCED2 are expressed in flowers with very high AtNCED6::GUS activity occurring in pollen. AtNCED5::GUS, and to lesser degrees, AtNCED2::GUS and AtNCED3::GUS are expressed in developing anthers. AtNCED5, AtNCED6, AtNCED9, and AtNCED3 contribute to expression in developing seeds with high levels of AtNCED6 present at an early stage. GUS analysis indicates that AtNCED3 expression is confined to the base of the seed, whereas AtNCED5 and AtNCED6 are expressed throughout the seed. Consistent with the studies conducted by Iuchi and his colleagues in 2001, AtNCED3 is the major stress-induced NCED in leaves. Our results indicate that developmental control of ABA synthesis involves localized patterns of AtNCED gene expression. In addition, differential membrane-binding capacity of AtNCEDs is a potential means of post-translational regulation of NCED activity.


Asunto(s)
Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Oxigenasas/genética , Ácido Abscísico/metabolismo , Secuencia de Aminoácidos , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Clonación Molecular , Dioxigenasas , Inducción Enzimática , Flores/citología , Flores/enzimología , Flores/genética , Datos de Secuencia Molecular , Oxigenasas/química , Oxigenasas/metabolismo , Filogenia , Proteínas de Plantas , Raíces de Plantas/citología , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Transporte de Proteínas , Semillas/citología , Semillas/enzimología , Semillas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA