Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Biochem Biophys Res Commun ; 721: 150130, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-38761750

RESUMEN

Apigenin (API) is a natural flavonoid compound with antioxidant, anti fibrotic, anti-inflammatory and other effects, but there is limited research on the effect of API on liver fibrosis. This study aims to explore the effect and potential mechanism of API on liver fibrosis induced by CCl4 in mice. The results indicate that API reduces oxidative stress levels, inhibits hepatic stellate cell (HSC) activation, and exerts anti liver fibrosis effects by regulating the PKM2-HIF-1α pathway. We observed that API alleviated liver tissue pathological damage and collagen deposition in CCl4 induced mouse liver fibrosis model, promoting the recovery of liver function in mice with liver fibrosis. In addition, the API inhibits the transition of Pyruvate kinase isozyme type M2 (PKM2) from dimer to tetramer formation by regulating the EGFR-MEK1/2-ERK1/2 pathway, thereby preventing dimer from entering the nucleus and blocking PKM2-HIF-1α access. This change leads to a decrease in malondialdehyde (MDA) and Catalase (CAT) levels and an increase in glutathione (GSH), superoxide dismutase (SOD), glutathione peroxidase (GSH-PX) levels, as well as total antioxidant capacity (T-AOC) in the liver of liver fibrosis mice. At the same time, API downregulated the expression of α-smooth muscle actin (α-SMA), Vimentin and Desmin in the liver tissue of mice with liver fibrosis, inhibited the activation of HSC, and reduced collagen deposition. These results indicate that API can inhibit HSC activation and alleviate CCl4 induced liver fibrosis by inhibiting the PKM2-HIF-1α pathway and reducing oxidative stress, laying an important foundation for the development and clinical application of API as a novel drug for treating liver fibrosis.


Asunto(s)
Apigenina , Subunidad alfa del Factor 1 Inducible por Hipoxia , Cirrosis Hepática , Estrés Oxidativo , Animales , Estrés Oxidativo/efectos de los fármacos , Apigenina/farmacología , Apigenina/uso terapéutico , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Cirrosis Hepática/metabolismo , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/patología , Ratones , Masculino , Piruvato Quinasa/metabolismo , Ratones Endogámicos C57BL , Tetracloruro de Carbono/toxicidad , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/efectos de los fármacos , Células Estrelladas Hepáticas/patología , Proteínas de Unión a Hormona Tiroide , Hígado/metabolismo , Hígado/efectos de los fármacos , Hígado/patología , Hormonas Tiroideas/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Receptores ErbB
2.
Small ; 20(24): e2306859, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38155356

RESUMEN

Solution-processed and efficient yellow quantum dot light-emitting diodes (QLEDs) are considered key optoelectronic devices for lighting, display, and signal indication. However, limited synthesis routes for yellow quantum dots (QDs), combined with inferior stress-relaxation of the core-shell interface, pose challenges to their commercialization. Herein, a nanostructure tailoring strategy for high-quality yellow CdZnSe/ZnSe/ZnS core/shell QDs using a "stepwise high-temperature nucleation-shell growth" method is introduced. The synthesized CdZnSe-based QDs effectively smoothed the release stress of the core-shell interface and revealed a near-unit photoluminescence quantum yield, with nonblinking behavior and matched energy level, which accelerated radiative recombination and charge injection balance for device operation. Consequently, the yellow CdZnSe-based QLEDs exhibited a peak external quantum efficiency of 23.7%, a maximum luminance of 686 050 cd m-2, and a current efficiency of 103.2 cd A-1, along with an operating half-lifetime of 428 523 h at 100 cd m-2. To the best of the knowledge, the luminance and operational stability of the device are found to be the highest values reported for yellow LEDs. Moreover, devices with electroluminescence (EL) peaks at 570-605 nm exhibited excellent EQEs, surpassing 20%. The work is expected to significantly push the development of RGBY-based display panels and white LEDs.

3.
Sensors (Basel) ; 24(1)2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38202869

RESUMEN

For the synthesis of ultra-large scene and ultra-high resolution videos, in order to obtain high-quality large-scene videos, high-quality video stitching and fusion are achieved through multi-scale unstructured array cameras. This paper proposes a network model image feature point extraction algorithm based on symmetric auto-encoding and scale feature fusion. By using the principle of symmetric auto-encoding, the hierarchical restoration of image feature location information is incorporated into the corresponding scale feature, along with deep separable convolution image feature extraction, which not only improves the performance of feature point detection but also significantly reduces the computational complexity of the network model. Based on the calculated high-precision feature point pairing information, a new image localization method is proposed based on area ratio and homography matrix scaling, which improves the speed and accuracy of the array camera image scale alignment and positioning, realizes high-definition perception of local details in large scenes, and obtains clearer synthesis effects of large scenes and high-quality stitched images. The experimental results show that the feature point extraction algorithm proposed in this paper has been experimentally compared with four typical algorithms using the HPatches dataset. The performance of feature point detection has been improved by an average of 4.9%, the performance of homography estimation has been improved by an average of 2.5%, the amount of computation has been reduced by 18%, the number of network model parameters has been reduced by 47%, and the synthesis of billion-pixel videos has been achieved, demonstrating practicality and robustness.

4.
Food Chem Toxicol ; 186: 114546, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38408633

RESUMEN

Cisplatin (DDP) is widely used in the treatment of cancer as a chemotherapeutic drug. However, its severe nephrotoxicity limits the extensive application of cisplatin, which is characterized by injury and apoptosis of renal tubular epithelial cells. This study aimed to reveal the protective effect and its underlying mechanism of Indole-3-carboxaldehyde (IC) against DDP-induced AKI in mice and NRK-52E cells pretreated with PKA antagonist (H-89). Here, we reported that IC improved renal artery blood flow velocity and renal function related indicators, attenuated renal pathological changes, which were confirmed by the results of HE staining and PASM staining. Meanwhile, IC inhibited the levels of inflammatory factors, oxidative stress, CTR1, OCT2, and the levels of autophagy and apoptosis. Mitochondrial dysfunction was significantly improved as observed by TEM. To clarify the potential mechanism, NRK-52E cells induced by DDP was used and the results proved that H-89 could blocked the improvement with IC effectively in vitro. Our findings showed that IC has the potential to treat cisplatin-induced AKI, and its role in protecting the kidney was closely related to activating PKA, inhibiting autophagy and apoptosis, improving mitochondrial function, which could provide a theoretical basis for the development of new clinical drugs.


Asunto(s)
Lesión Renal Aguda , Indoles , Isoquinolinas , Enfermedades Mitocondriales , Sulfonamidas , Ratones , Animales , Cisplatino/toxicidad , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/patología , Riñón/patología , Apoptosis
5.
Int J Nanomedicine ; 18: 7483-7503, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38090366

RESUMEN

Purpose: Fatty oil of Descurainia Sophia (OIL) has poor stability and low solubility, which limits its pharmacological effects. We hypothesized that fatty oil nanoparticles (OIL-NPs) could overcome this limitation. The protective effect of OIL-NPs against monocrotaline-induced lung injury in rats was studied. Methods: We prepared OIL-NPs by wrapping fatty oil with polylactic-polyglycolide nanoparticles (PLGA-NPs) and conducted in vivo and in vitro experiments to explore its anti-pulmonary hypertension (PH) effect. In vitro, we induced malignant proliferation of pulmonary artery smooth muscle cells (RPASMC) using anoxic chambers, and studied the effects of OIL-NPs on the malignant proliferation of RPASMC cells and phospholipase C (PLC)/inositol triphosphate receptor (IP3R)/Ca2+ signal pathways. In vivo, we used small animal echocardiography, flow cytometry, immunohistochemistry, western blotting (WB), polymerase chain reaction (PCR) and metabolomics to explore the effects of OIL-NPs on the heart and lung pathological damage and PLC/IP3R/Ca2+ signal pathway of pulmonary hypertension rats. Results: We prepared fatty into OIL-NPs. In vitro, OIL-NPs could improve the mitochondrial function and inhibit the malignant proliferation of RPASMC cells by inhibiting the PLC/IP3R/Ca2+signal pathway. In vivo, OIL-NPs could reduce the pulmonary artery pressure of rats and alleviate the pathological injury and inflammatory reaction of heart and lung by inhibiting the PLC/IP3R/Ca2+ signal pathway. Conclusion: OIL-NPs have anti-pulmonary hypertension effect, and the mechanism may be related to the inhibition of PLC/IP3R/Ca2+signal pathway.


Asunto(s)
Hipertensión Pulmonar , Nanopartículas , Ratas , Animales , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/metabolismo , Ratas Sprague-Dawley , Monocrotalina/efectos adversos , Fosfolipasas de Tipo C/efectos adversos , Fosfolipasas de Tipo C/metabolismo , Arteria Pulmonar , Transducción de Señal
6.
J Ethnopharmacol ; 313: 116503, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37116727

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Asthma is a chronic airway inflammatory disease. Current treatment of mainstream medications has significant side effects. There is growing evidence that the refractoriness of asthma is closely related to common changes in the lung and intestine. The lungs and intestines, as sites of frequent gas exchange in the body, are widely populated with gas signaling molecules NO and CO, which constitute NO-CO metabolism and may be relevant to the pathogenesis of asthma in the lung and intestine. The Chinese herbal formula Tingli Dazao Xiefei Decoction (TD) is commonly used in clinical practice to treat asthma with good efficacy, but there are few systematic evaluations of the efficacy of asthma on NO-CO metabolism, and the mode of action of its improving effect on the lung and intestine is unclear. AIM OF THE STUDY: To investigate the effect of TD on the lung and intestine of asthmatic rats based on NO-CO metabolism. MATERIALS AND METHODS: In vivo, we established a rat asthma model by intraperitoneal injection of sensitizing solution with OVA atomization, followed by intervention by gavage administration of TD. We simultaneously examined alterations in basal function, pathology, NO-CO metabolism, inflammation and immune cell homeostasis in the lungs and intestines of asthmatic rats, and detected changes in intestinal flora by macrogenome sequencing technology, with a view to multi-angle evaluation of the treatment effects of TD on asthmatic rats. In vitro, lung cells BEAS-2B and intestinal cells NCM-460 were used to establish a model of lung injury causing intestinal injury using LPS and co-culture chambers, and lung cells or intestinal cells TD-containing serum was administered to intervene. Changes in inflammatory, NO-CO metabolism-related, cell barrier-related and oxidative stress indicators were measured in lung cells and intestinal cells to evaluate TD on intestinal injury by way of amelioration and in-depth mechanism. RESULTS: In vivo, our results showed significant basal functional impairment in the lung and intestine of asthmatic rats, and an inflammatory response, immune cell imbalance and intestinal flora disturbance elicited by NO-CO metabolic disorders were observed (P < 0.05 or 0.01). The administration of TD was shown to deliver a multidimensional amelioration of the impairment induced by NO-CO metabolic disorders (P < 0.05 or 0.01). In vitro, the results showed that LPS-induced lung cells BEAS-2B injury could cause NO-CO metabolic disorder-induced inflammatory response, cell permeability damage and oxidative stress damage in intestinal cells NCM-460 (P < 0.01). The ameliorative effect on intestinal cells NCM-460 could only be exerted when TD-containing serum interfered with lung cells BEAS-2B (P < 0.01), suggesting that the intestinal ameliorative effect of TD may be exerted indirectly through the lung. CONCLUSION: TD can ameliorate NO-CO metabolism in the lung and thus achieve the indirectly amelioration of NO-CO metabolism in the intestine, ultimately achieving co-regulation of lung and intestinal inflammation, immune imbalance, cellular barrier damage, oxidative stress and intestinal bacterial disorders in asthma in vivo and in vitro. Targeting lung and intestinal NO-CO metabolic disorders in asthma may be a new therapeutic idea and strategy for asthma.


Asunto(s)
Asma , Enfermedades Intestinales , Enfermedades Metabólicas , Ratas , Animales , Ratones , Lipopolisacáridos/farmacología , Pulmón , Intestinos/patología , Estrés Oxidativo , Inflamación/patología , Enfermedades Intestinales/patología , Enfermedades Metabólicas/metabolismo , Ovalbúmina/farmacología , Ratones Endogámicos BALB C , Modelos Animales de Enfermedad
7.
Chem Biodivers ; 8(9): 1689-700, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21922657

RESUMEN

Three new sesquiterpene acids, xylaric acids A-C (1-3, resp.), and a new tetralone (=3,4-dihydronaphthalen-1(2H)-one) derivative, 4, along with nine known compounds, xylaric acid D (5), hydroheptelidic acid (6), gliocladic acid (7), chlorine heptelidic acid (8), trichoderonic acid A (9), 16-(α-D-mannopyranosyloxy)isopimar-7-en-19-oic acid (10), 16-(α-D-glucopyranosyloxy)isopimar-7-en-19-oic acid (11), 5-carboxymellein (12), and naphthalen-1,8-diol 1-O-α-D-glucopyranoside (13) have been isolated from the solid culture of the ascomycete fungus Xylaria sp. associated with termite nest. The structures of these compounds were elucidated primarily by NMR experiments. The absolute configurations of compounds 1-3 and 5-9 were determined by combination of X-ray data and CD spectral analysis. The absolute configuration of 4 was assigned by Snatzke's method. Compounds 8 and 11 showed slight cytotoxicities against two cell lines A549 and SGC7901.


Asunto(s)
Isópteros/fisiología , Fenoles/metabolismo , Terpenos/química , Xylariales/química , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Dicroismo Circular , Cristalografía por Rayos X , Humanos , Isópteros/microbiología , Espectroscopía de Resonancia Magnética , Conformación Molecular , Fenoles/aislamiento & purificación , Fenoles/toxicidad , Terpenos/aislamiento & purificación , Terpenos/toxicidad , Xylariales/aislamiento & purificación
8.
Mycology ; 7(2): 74-80, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-30123618

RESUMEN

Ling-zhi is a medicinal herb that generally refers to a fungus in the genus Ganoderma. It has been used as a medicinal mushroom in traditional Chinese medicine for more than 2000 years. Mycologists at the Institute of Microbiology, Chinese Academy of Sciences (IMCAS) first artificially cultivated the Ling-zhi fruiting body in the late 1960s (X.J. Liu's team). In IMCAS, different research teams have extensively studied Ling-zhi in the aspects of national resource surveys, systematic taxonomy, chemical analysis, and processing for medicinal and health applications. The research results from IMCAS have provided essential support and prompted the development of the Ling-zhi industry in China to some extent. This review aims to summarize the history of research on Ling-zhi in IMCAS and its role in the development of the Ling-zhi economy.

9.
Oncotarget ; 7(31): 50612-50623, 2016 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-27203676

RESUMEN

The lack of information concerning individual variation in drug-metabolizing enzymes is one of the most important obstacles for designing personalized medicine approaches for hepatocellular carcinoma (HCC) patients. To assess cytochrome P450 (CYP) in the metabolism of endogenous and exogenous molecules in an HCC setting, the activity changes of 10 major CYPs in microsomes from 105 normal and 102 HCC liver tissue samples were investigated. We found that CYP activity values expressed as intrinsic clearance (CLint) differed between HCC patients and control subjects. HCC patient samples showed increased CLint for CYP2C9, CYP2D6, and CYP2E1 compared to controls. Meanwhile, CYP1A2, CYP2C8, and CYP2C19 CLint values decreased and CYP2A6, CYP2B6, and CYP3A4/5 activity was unchanged relative to controls. For patients with HCC accompanied by fibrosis or cirrhosis, the same activity changes were seen for the CYP isoforms, except for CYP2D6 which had higher values in HCC patients with cirrhosis. Moreover, CYP2D6*10 (100C>T), CYP2C9*3 (42614 A>C), and CYP3A5*3 (6986A>G) polymorphisms had definite effects on enzyme activities. In the HCC group, the CLint of CYP2D6*10 mutant homozygote was decreased by 95% compared to wild-type samples, and the frequency of this homozygote was 2.8-fold lower than the controls.In conclusion, the activities of CYP isoforms were differentially affected in HCC patients. Genetic polymorphisms of some CYP enzymes, especially CYP2D6*10, could affect enzyme activity. CYP2D6*10 allelic frequency was significantly different between HCC patients and control subjects. These findings may be useful for personalizing the clinical treatment of HCC patients as well as predicting the risk of hepatocarcinogenesis.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Neoplasias Hepáticas/metabolismo , Adulto , Anciano , Citocromo P-450 CYP2C9/metabolismo , Citocromo P-450 CYP2D6/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Citocromo P-450 CYP3A/metabolismo , Femenino , Fibrosis/tratamiento farmacológico , Frecuencia de los Genes , Genotipo , Homocigoto , Humanos , Hígado/efectos de los fármacos , Hígado/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Masculino , Persona de Mediana Edad , Mutación , Polimorfismo Genético , Fumar
10.
Fitoterapia ; 82(5): 777-81, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21497643

RESUMEN

A new oxysporidinone analogue (1) and a new 3-hydroxyl-2-piperidinone derivative (2), along with the known compounds (-)-4,6'-anhydrooxysporidinone (3), (+)-fusarinolic acid (4), gibepyrone D (5), beauvercin (6),cerevisterol (7), fusaruside (8), and (2S,2'R,3R,3'E,4E,8E)-1-O-D-glucopyranosyl-2-N-(2'-hydroxy-3'-octadecenoyl)-3-hydroxy-9-methyl-4,8-sphingadienine (9) were isolated from Fusarium oxysporum. Compounds 1-9 were evaluated for cytotoxicity using the MTT method against cancer cell lines, PC-3, PANC-1, and A549. Beauvericin showed cytotoxicity against PC-3, PANC-1, and A549 with IC(50) value of 49.5 ± 3.8, 47.2 ± 2.9, and 10.4 ± 1.6µM, respectively. Beauvericin also exhibited anti-bacterial activity towards methicillin-resistant Staphylococcus aureus (MIC=3.125 µg/mL) and Bacillus subtilis (MIC=3.125 µg/mL).


Asunto(s)
Antibacterianos/aislamiento & purificación , Antineoplásicos/aislamiento & purificación , Productos Biológicos/química , Fusarium/química , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Piperidonas/aislamiento & purificación , Piridonas/aislamiento & purificación , Antibacterianos/farmacología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Línea Celular Tumoral , Humanos , Fitoterapia , Piperidonas/química , Piperidonas/farmacología , Piridonas/farmacología , Piridonas/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA