Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cancer Control ; 31: 10732748241251571, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38869038

RESUMEN

OBJECTIVES: To determine the dysregulated signaling pathways of head and neck squamous cell carcinoma associated with circulating tumor cells (CTCs) via single-cell molecular characterization. INTRODUCTION: Head and neck squamous cell carcinoma (HNSCC) has a significant global burden and is a disease with poor survival. Despite trials exploring new treatment modalities to improve disease control rates, the 5 year survival rate remains low at only 60%. Most cancer malignancies are reported to progress to a fatal phase due to the metastatic activity derived from treatment-resistant cancer cells, regarded as one of the most significant obstacles to develope effective cancer treatment options. However, the molecular profiles of cancer cells have not been thoroughly studied. METHODS: Here, we examined in-situ HNSCC tumors and pairwisely followed up with the downstream circulating tumor cells (CTCs)-based on the surrogate biomarkers to detect metastasis that is established in other cancers - not yet being fully adopted in HNSCC treatment algorithms. RESULTS: Specifically, we revealed metastatic HNSCC patients have complex CTCs that could be defined through gene expression and mutational gene profiling derived from completed single-cell RNASeq (scRNASeq) that served to confirm molecular pathways inherent in these CTCs. To enhance the reliability of our findings, we cross-validated those molecular profiles with results from previously published studies. CONCLUSION: Thus, we identified 5 dysregulated signaling pathways in CTCs to derive HNSCC biomarker panels for screening HNSCC in situ tumors.


ObjectivesInvestigating the dysregulated signaling pathways of head and neck squamous cell carcinoma (HNSCC) linked with circulating tumor cells (CTCs) using single-cell molecular characterization.IntroductionHNSCC poses a significant global health burden with poor survival rates despite advancements in treatment. Metastatic activity from treatment-resistant cancer cells remains a major challenge in developing effective treatments. However, the molecular profiles of cancer cells, particularly CTCs, are not well-understood.MethodsWe analyzed in-situ HNSCC tumors and corresponding CTCs using surrogate biomarkers to detect metastasis, a technique not widely used in HNSCC treatment protocols.ResultsOur study revealed complex CTCs in metastatic HNSCC patients characterized by gene expression and mutational gene profiling via single-cell RNASeq (scRNASeq). These profiles confirmed molecular pathways inherent in CTCs, further validated by previous research.ConclusionThrough our research, we identified five dysregulated signaling pathways in CTCs, suggesting potential biomarker panels for HNSCC screening in situ tumors.


Asunto(s)
Neoplasias de Cabeza y Cuello , Células Neoplásicas Circulantes , Transducción de Señal , Análisis de la Célula Individual , Carcinoma de Células Escamosas de Cabeza y Cuello , Humanos , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/sangre , Neoplasias de Cabeza y Cuello/patología , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/sangre , Neoplasias de Cabeza y Cuello/metabolismo , Análisis de la Célula Individual/métodos , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/sangre , Masculino , Femenino , Perfilación de la Expresión Génica/métodos , Persona de Mediana Edad , Regulación Neoplásica de la Expresión Génica
2.
Cancer Control ; 30: 10732748231175017, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37161925

RESUMEN

INTRODUCTION: Neuroblastoma (NB) is one of the children's most common solid tumors, accounting for approximately 8% of pediatric malignancies and 15% of childhood cancer deaths. Somatic mutations in several genes, such as ALK, have been associated with NB progression and can facilitate the discovery of novel therapeutic strategies. However, the differential expression of mutated and wild-type alleles on the transcriptome level is poorly studied. METHODS: This study analyzed 219 whole-exome sequencing datasets with somatic mutations detected by MuTect from paired normal and tumor samples. RESULTS: We prioritized mutations in 8 candidate genes (RIMS4, RUSC2, ALK, MYCN, PTPN11, ALOX12B, ZNF44, and CNGB1) as potential driver mutations. We further confirmed the presence of allele-specific expression of the somatic mutations in NB with integrated analysis of 127 RNA-seq samples (of which 85 also had DNA-seq data available), including MYCN, ALK, and PTPN11. The allele-specific expression of mutations suggests that the same somatic mutation may have different effects on the clinical outcomes of tumors. CONCLUSION: Our study suggests 2 novel variants of ZNF44 as a novel candidate driver gene for NB.


Asunto(s)
Neuroblastoma , ARN , Niño , Humanos , Alelos , Proteína Proto-Oncogénica N-Myc , Neuroblastoma/genética , Proteínas Tirosina Quinasas Receptoras , Canales Catiónicos Regulados por Nucleótidos Cíclicos , Proteínas Portadoras
3.
Proc Natl Acad Sci U S A ; 116(41): 20511-20516, 2019 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-31548420

RESUMEN

Resistance to ionizing radiation (IR), which is a conventional treatment for osteosarcoma that cannot be resected, undermines the efficacy of this therapy. However, the mechanism by which IR induces radioresistance in osteosarcoma is not defined. Here, we report that CR6-interacting factor-1 (CRIF1) is highly expressed in osteosarcoma and undergoes nuclear-cytoplasmic shuttling of cyclin-dependent kinase 2 (CDK2) after IR. Osteosarcoma cells lacking CRIF1 show increased sensitivity to IR, which is associated with delayed DNA damage repair, inactivated G1/S checkpoint, and mitochondrial dysfunction. CRIF1 interacts with the DNA damage checkpoint regulator CDK2, and CRIF1 and CDK2 colocalize in the nucleus after IR. Nuclear localization of CDK2 is associated with phosphorylation changes that promote DNA repair and activation of the G1/S checkpoint. CRIF1 knockdown synergized with IR in an in vivo osteosarcoma model, leading to tumor regression. Based on these findings, we identify CRIF1 as a potential therapeutic target in osteosarcoma that can increase the efficacy of radiotherapy. More broadly, our findings may provide insights into the mechanism for other types of radioresistant cancers and be exploited for therapeutic ends.


Asunto(s)
Neoplasias Óseas/patología , Proteínas de Ciclo Celular/metabolismo , Quinasa 2 Dependiente de la Ciclina/metabolismo , Osteosarcoma/patología , Tolerancia a Radiación , Animales , Apoptosis , Neoplasias Óseas/metabolismo , Neoplasias Óseas/radioterapia , Ciclo Celular , Proteínas de Ciclo Celular/genética , Núcleo Celular/metabolismo , Núcleo Celular/efectos de la radiación , Proliferación Celular , Quinasa 2 Dependiente de la Ciclina/genética , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Recurrencia Local de Neoplasia/metabolismo , Recurrencia Local de Neoplasia/patología , Recurrencia Local de Neoplasia/radioterapia , Osteosarcoma/metabolismo , Osteosarcoma/radioterapia , Fosforilación , Pronóstico , Unión Proteica , Radiación Ionizante , Estudios Retrospectivos , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Carcinogenesis ; 39(7): 931-936, 2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29718126

RESUMEN

Glioblastoma multiforme (GBM) remains an incurable brain tumor. The highly malignant behavior of GBM may, in part, be attributed to its intraclonal genetic and phenotypic diversity (subclonal evolution). Identifying the molecular pathways driving GBM relapse may provide novel, actionable targets for personalized diagnosis, characterization of prognosis and improvement of precision therapy. We screened single-cell transcriptomes, namely RNA-seq data of primary and relapsed GBM tumors from a patient, to define the molecular profile of relapse. Characterization of hundreds of individual tumor cells identified three mutated genes within single cells, involved in the RAS/GEF GTP-dependent signaling pathway. The identified molecular pathway was further verified by meta-analysis of RNA-seq data from more than 3000 patients. This study showed that single-cell molecular analysis overcomes the inherent heterogeneity of bulk tumors with respect to defining tumor subclonal evolution relevant to GBM relapse.


Asunto(s)
Neoplasias Encefálicas/patología , Glioblastoma/patología , Neoplasias Encefálicas/genética , Glioblastoma/genética , Humanos , Masculino , Metaanálisis como Asunto , Mutación/genética , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología , Pronóstico , Recurrencia , Transducción de Señal/fisiología , Análisis de la Célula Individual/métodos
5.
J Virol ; 89(1): 763-75, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25355883

RESUMEN

UNLABELLED: Infectious spleen and kidney necrosis virus (ISKNV) is the type species of the Megalocytivirus genus, Iridoviridae family, causing a severe systemic disease with high mortality in mandarin fish (Siniperca chuatsi) in China and Southeast Asia. At present, the pathogenesis of ISKNV infection is still not fully understood. Based on a genome-wide bioinformatics analysis of ISKNV-encoded proteins, we found that ISKNV open reading frame 119L (ORF119L) is predicted to encode a three-ankyrin-repeat (3ANK)-domain-containing protein, which shows high similarity to the dominant negative form of integrin-linked kinase (ILK); i.e., viral ORF119L lacks the ILK kinase domain. Thus, we speculated that viral ORF119L might affect the host ILK complex. Here, we demonstrated that viral ORF119L directly interacts with particularly interesting Cys-His-rich protein (PINCH) and affects the host ILK-PINCH interaction in vitro in fathead minnow (FHM) cells. In vivo ORF119L overexpression in zebrafish (Danio rerio) embryos resulted in myocardial dysfunctions with disintegration of the sarcomeric Z disk. Importantly, ORF119L overexpression in zebrafish highly resembles the phenotype of endogenous ILK inhibition, either by overexpressing a dominant negative form of ILK or by injecting an ILK antisense morpholino oligonucleotide. Intriguingly, ISKNV-infected mandarin fish develop disorganized sarcomeric Z disks in cardiomyocytes. Furthermore, phosphorylation of AKT, a downstream effector of ILK, was remarkably decreased in ORF119L-overexpressing zebrafish embryos. With these results, we show that ISKNV ORF119L acts as a domain-negative inhibitor of the host ILK, providing a novel mechanism for the megalocytivirus pathogenesis. IMPORTANCE: Our work is the first to show the role of a dominant negative inhibitor of the host ILK from ISKNV (an iridovirus). Mechanistically, the viral ORF119L directly binds to the host PINCH, attenuates the host PINCH-ILK interaction, and thus impairs ILK signaling. Intriguingly, ORF119L-overexpressing zebrafish embryos and ISKNV-infected mandarin fish develop similar disordered sarcomeric Z disks in cardiomyocytes. These findings provide a novel mechanism for megalocytivirus pathogenesis.


Asunto(s)
Interacciones Huésped-Patógeno , Iridoviridae/fisiología , Proteínas Musculares/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Virales/metabolismo , Proteínas de Pez Cebra/antagonistas & inhibidores , Proteínas de Pez Cebra/metabolismo , Animales , Línea Celular , Cyprinidae , Infecciones por Virus ADN/patología , Infecciones por Virus ADN/virología , Modelos Animales de Enfermedad , Miocardio/patología
6.
J Virol ; 87(6): 3027-38, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23283951

RESUMEN

Infectious spleen and kidney necrosis virus (ISKNV) is the type species of the genus Megalocytivirus from the family Iridoviridae. ISKNV is one of the major agents that cause mortality and economic losses to the freshwater fish culture industry in Asian countries, particularly for mandarin fish (Siniperca chuatsi). In the present study, we report that the interaction of mandarin fish caveolin 1 (mCav-1) with the ISKNV major capsid protein (MCP) was detected by using a virus overlay assay and confirmed by pulldown assay and coimmunoprecipitation. This interaction was independent of the classic caveolin 1 scaffolding domain (CSD), which is responsible for interacting with several signaling proteins and receptors. Confocal immunofluorescence microscopy showed that ISKNV MCP colocalized with mCav-1 in the perinuclear region of virus-infected mandarin fish fry (MFF-1) cells, which appeared as soon as 4 h postinfection. Subcellular fractionation analysis showed that ISKNV MCP was associated with caveolae in the early stages of viral infection. RNA interference silencing of mCav-1 did not change virus-cell binding but efficiently inhibited the entry of virions into the cell. Taken together, these results suggested that mCav-1 plays an important role in the early stages of ISKNV infection.


Asunto(s)
Proteínas de la Cápside/metabolismo , Caveolina 1/metabolismo , Interacciones Huésped-Patógeno , Iridoviridae/patogenicidad , Mapeo de Interacción de Proteínas , Animales , Línea Celular , Centrifugación , Inmunoprecipitación , Perciformes
7.
Cancer Cell Int ; 14(1): 115, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25411563

RESUMEN

The US National Cancer Institute (NCI) and the National Human Genome Research Institute (NHGRI) created the Cancer Genome Atlas (TCGA) Project in 2006. The TCGA's goal was to sequence the genomes of 10,000 tumors to identify common genetic changes among different types of tumors for developing genetic-based treatments. TCGA offered great potential for cancer patients, but in reality has little impact on clinical applications. Recent reports place the past TCGA approach of testing a small tumor mass at a single time-point at a crossroads. This crossroads presents us with the conundrum of whether we should sequence more tumors or obtain multiple biopsies from each individual tumor at different time points. Sequencing more tumors with the past TCGA approach of single time-point sampling can neither capture the heterogeneity between different parts of the same tumor nor catch the heterogeneity that occurs as a function of time, error rates, and random drift. Obtaining multiple biopsies from each individual tumor presents multiple logistical and financial challenges. Here, we review current literature and rethink the utility and application of the TCGA approach. We discuss that the TCGA-led catalogue may provide insights into studying the functional significance of oncogenic genes in reference to non-cancer genetic background. Different methods to enhance identifying cancer targets, such as single cell technology, real time imaging of cancer cells with a biological global positioning system, and cross-referencing big data sets, are offered as ways to address sampling discrepancies in the face of tumor heterogeneity. We predict that TCGA landmarks may prove far more useful for cancer prevention than for cancer diagnosis and treatment when considering the effect of non-cancer genes and the normal genetic background on tumor microenvironment. Cancer prevention can be better realized once we understand how therapy affects the genetic makeup of cancer over time in a clinical setting. This may help create novel therapies for gene mutations that arise during a tumor's evolution from the selection pressure of treatment.

8.
Proc Natl Acad Sci U S A ; 108(31): 12793-8, 2011 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-21768375

RESUMEN

Recent evidence indicates that p53 suppression increased the efficiency of induced pluripotent stem cell (iPSC) generation. This occurred even with the enforced expression of as few as two canonical transcription factors, Oct4 and Sox2. In this study, primary human keratinocytes were successfully induced into a stage of plasticity by transient inactivation of p53, without enforced expression of any of the transcription factors previously used in iPSC generation. These cells were later redifferentiated into neural lineages. The gene suppression plastic cells were morphologically indistinguishable from human ES cells. Gene suppression plastic cells were alkaline phosphatase-positive, had normal karyotypes, and expressed p53. Together with the accumulating evidence of similarities and overlapping mechanisms between iPSC generation and cancer formation, this finding sheds light on the emerging picture of p53 sitting at the crossroads between two intricate cellular potentials: stem cell vs. cancer cell generation. This finding further supports the crucial role played by p53 in cellular reprogramming and suggests an alternative method to switch the lineage identity of human cells. This reported method offers the potential for directed lineage switching with the goal of generating autologous cell populations for novel clinical applications for neurodegenerative diseases.


Asunto(s)
Células Madre Pluripotentes Inducidas/metabolismo , Queratinocitos/metabolismo , Interferencia de ARN , Proteína p53 Supresora de Tumor/genética , Animales , Western Blotting , Diferenciación Celular/genética , Linaje de la Célula/genética , Trasplante de Células/métodos , Células Cultivadas , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Células Madre Pluripotentes Inducidas/citología , Cariotipificación , Queratinocitos/citología , Ratones , Ratones SCID , Ratones Transgénicos , Microscopía Fluorescente , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Teratoma/genética , Teratoma/metabolismo , Teratoma/patología , Trasplante Heterólogo , Proteína p53 Supresora de Tumor/metabolismo
9.
World J Stem Cells ; 15(8): 781-786, 2023 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-37700820

RESUMEN

The art of constructing an insightful literature review manuscript has witnessed an exemplar in the work of Oz et al (2023), wherein concept progression harmoniously merges with figures and tables. Reflecting on retrospective data science, it is evident that well-cited articles can wield a transformative influence on the Journal Citation Reports Impact Factor score, as exemplified by Robert Weinberg's landmark on cancer (Hanahan and Weinberg, 2011). Here, we aim to spotlight a commendable contribution by Tuba Oz, Ajeet Kaushik, and Malgorzata Kujawska in this issue while pivoting towards identifying the hallmarks of a subpar literature review-elements that hinder rather than promote advancement. The hurdles and roadblocks encountered within subpar literature reviews are multifold. Anticipation of emerging trends, identification of challenges, and exploration of solutions remain conspicuously absent. Original Contributions fail to surface amidst the vast sea of pre-existing literature, with noticeable gaps amplified by the lack of illustrative figures and tables. The manuscript, at times, assumes a skeletal form, reflecting an attempt to accommodate an excess of references, leading to convoluted sentences laden with citations. In contrast, a potent solution lies in adopting a comprehensive approach. A nuanced and critical evaluation of sources can culminate in a robust discussion, surpassing the mere summarization of conclusions drawn by others. This approach, often dismissed, holds the potential to elevate clarity, coherence, and logical flow, ultimately inviting engaged readership and coveted citations. The critical necessity of integrating visionary insights is underscored and achieved through a rigorous analysis of pivotal concepts and innovative ideas. Examples can be harnessed to elucidate the application of these solutions. We advocate a paradigm shift, urging literature review writers to embrace the readers' perspective. A literature review's purpose extends beyond providing a comprehensive panorama; it should illuminate avenues for concept development within a specific field of interest. By achieving this balance, literature reviews stand to captivate a devoted readership, paving the way for manuscripts that are both widely read and frequently cited. The pathway forward requires a fusion of astute analysis and visionary insights, shaping the future of literature review composition.

10.
Med Sci (Basel) ; 11(1)2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36976529

RESUMEN

Qigong is a meditative movement with therapeutic effects and is commonly practiced in Eastern medicine. A growing body of evidence validates its health benefits, leading to mechanistic questions about how it works. We propose a novel mechanism by which the "acid" caused by hypoxia affects metabolism, and the way it is neutralized through Qigong practice involves the body's blood flow and vasculature modifications. Specifically, Qigong exercise generates an oxygen supply and acid-base balance against the hypoxic effects of underlying pathological conditions. We also propose that Qigong exercise mediated and focused on the local hypoxia environment of tissues might normalize the circulation of metabolic and inflammation accumulation in the tumor tissue and restore the normal metabolism of tissues and cells through calm, relaxation, and extreme Zen-style breathing that gravitates toward preemptive health and medicine. Thus, we propose the mechanisms of action related to Qigong, intending to unify Eastern and Western exercise theory.


Asunto(s)
Meditación , Qigong , Humanos , Terapia por Ejercicio , Ejercicio Físico , Oxígeno
11.
Front Oncol ; 13: 1043244, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37091182

RESUMEN

Background: Half of the population of non-small cell lung cancer (NSCLC) patients are older than 70 years and have limited therapeutic options due to poor tolerance and being excluded in most clinical trials. Anlotinib hydrochloride, a novel oral multi-target tyrosine kinase inhibitor, has been approved for the standard third-line treatment for NSCLC in China. Herein we report an elderly NSCLC patient without any driver gene mutations who was undergoing anlotinib as a front-line treatment and who achieved long-term survival. Case summary: The 77-year-old male patient was admitted to the hospital for chest tightness after engaging in physical activity for a week. The patient has been diagnosed with stage IIIB driver gene-negative squamous cell lung carcinoma. After that, he was treated with anlotinib for 2 years and 10 months from the first diagnosis until the last disease progression. Briefly, anlotinib combined with platinum-based chemotherapy was performed as the first-line therapy over six cycles. After 6 more cycles of anlotinib monotherapy maintenance, disease progression occurred. Then, anlotinib combined with tegafur was administered as a salvage treatment, and the disease was controlled again. After 29 cycles of anlotinib combined with tegafur regimens, the disease progressed finally. The patient achieved a total of 34 months of progression-free survival after anlotinib was used as the front-line treatment. He is still alive with a good performance status now (performance status score: 1). Conclusion: This patient achieved long-term survival using anlotinib as a front-line regimen combined with chemotherapy.

12.
Theranostics ; 13(12): 3943-3963, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37554265

RESUMEN

Rationale: In the bone marrow microenvironment (BMME), mesenchymal stem/stromal cells (MSCs) control the self-renewal of both healthy and cancerous hematopoietic stem/progenitor cells (HSPCs). We previously showed that in vivo leukemia-derived MSCs change neighbor MSCs into leukemia-permissive states and boost leukemia cell proliferation, survival, and chemotherapy resistance. But the mechanisms behind how the state changes are still not fully understood. Methods: Here, we took a reverse engineering approach to determine BCR-ABL1+ leukemia cells activated transcriptional factor C/EBPß, resulting in miR130a/b-3p production. Then, we back-tracked from clinical specimen transcriptome sequencing to cell co-culture, molecular and cellular assays, flow cytometry, single-cell transcriptome, and transcriptional regulation to determine the molecular mechanisms of BCR-ABL1-driven exosome-miR130b-3p-mediated gap-junction Cx43 MSC intercellular communications. Results: BCR-ABL1-driven exosome-miR130a/b-3p mediated gap-junction Cx43 (a.k.a., GJA1) BMSC intercellular communications for subclonal evolution in leukemic microenvironment by targeting BMSCs-expressed HLAs, thereby potentially maintaining BMSCs with self-renewal properties and reduced BMSC immunogenicity. The Cx43low and miR-130a/bhigh subclonal MSCs subsets of differentiation state could be reversed to Cx43high and miR-130a/blow subclones of the higher stemness state in Cx43-overexpressed subclonal MSCs. Both miR-130a and miR-130b might only inhibit Cx43 translation or degrade Cx43 proteins and did not affect Cx43 mRNA stability. The subclonal evolution was further confirmed by single-cell transcriptome profiling of MSCs, which suggested that Cx43 regulated their stemness and played normal roles in immunomodulation antigen processing. Thus, upregulated miR-130a/b promoted osteogenesis and adipogenesis from BMSCs, thereby decreasing cancer progression. Our clinical data validated that the expression of many genes in human major histocompatibility was negatively associated with the stemness of MSCs, and several immune checkpoint proteins contributing to immune escape in tumors were overexpressed after either miR-130a or miR-130b overexpression, such as CD274, LAG3, PDCD1, and TNFRSF4. Not only did immune response-related cytokine-cytokine receptor interactions and PI3K-AKT pathways, including EGR3, TNFRSF1B, but also NDRG2 leukemic-associated inflammatory factors, such as IFNB1, CXCL1, CXCL10, and CCL7 manifest upon miR-130a/b overexpression. Either BCR siRNAs or ABL1 siRNAs assay showed significantly decreased miR-130a and miR-130b expression, and chromatin immunoprecipitation sequencing confirmed that the regulation of miR-130a and miR-130b expression is BCR-ABL1-dependent. BCR-ABL1 induces miR-130a/b expression through the upregulation of transcriptional factor C/EBPß. C/EBPß could bind directly to the promoter region of miR-130b-3p, not miR-130a-3p. BCR-ABL1-driven exosome-miR130a-3p could interact with Cx43, and further impact GJIC in TME. Conclusion: Our findings shed light on how leukemia BCR-ABL1-driven exosome-miR130b-3p could interact with gap-junction Cx43, and further impact GJIC in TME, implications for leukemic therapies of subclonal evolution.


Asunto(s)
Conexina 43 , Exosomas , Leucemia Mielógena Crónica BCR-ABL Positiva , MicroARNs , Humanos , Comunicación Celular/genética , Conexina 43/metabolismo , Exosomas/metabolismo , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , MicroARNs/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Microambiente Tumoral/genética , Proteínas Supresoras de Tumor/metabolismo
13.
Cancer Cell Int ; 12(1): 41, 2012 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-22995409

RESUMEN

BACKGROUND: The cancer stem cell (CSC) hypothesis posits that deregulated neural stem cells (NSCs) form the basis of brain tumors such as glioblastoma multiforme (GBM). GBM, however, usually forms in the cerebral white matter while normal NSCs reside in subventricular and hippocampal regions. We attempted to characterize CSCs from a rare form of glioblastoma multiforme involving the neurogenic ventricular wall. METHODS: We described isolating CSCs from a GBM involving the lateral ventricles and characterized these cells with in vitro molecular biomarker profiling, cellular behavior, ex vivo and in vivo techniques. RESULTS: The patient's MRI revealed a heterogeneous mass with associated edema, involving the left subventricular zone. Histological examination of the tumor established it as being a high-grade glial neoplasm, characterized by polygonal and fusiform cells with marked nuclear atypia, amphophilic cytoplasm, prominent nucleoli, frequent mitotic figures, irregular zones of necrosis and vascular hyperplasia. Recurrence of the tumor occurred shortly after the surgical resection. CD133-positive cells, isolated from the tumor, expressed stem cell markers including nestin, CD133, Ki67, Sox2, EFNB1, EFNB2, EFNB3, Cav-1, Musashi, Nucleostemin, Notch 2, Notch 4, and Pax6. Biomarkers expressed in differentiated cells included Cathepsin L, Cathepsin B, Mucin18, Mucin24, c-Myc, NSE, and TIMP1. Expression of unique cancer-related transcripts in these CD133-positive cells, such as caveolin-1 and -2, do not appear to have been previously reported in the literature. Ex vivo organotypic brain slice co-culture showed that the CD133+ cells behaved like tumor cells. The CD133-positive cells also induced tumor formation when they were stereotactically transplanted into the brains of the immune-deficient NOD/SCID mice. CONCLUSIONS: This brain tumor involving the neurogenic lateral ventricular wall was comprised of tumor-forming, CD133-positive cancer stem cells, which are likely the driving force for the rapid recurrence of the tumor in the patient.

14.
Pharmaceutics ; 14(12)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36559147

RESUMEN

We published a study showing that improvement in response to splenectomy associated defective, in regards to the antibody response to Pneumovax® 23 (23-valent polysaccharides, PPSV23), can be achieved by splenocyte reinfusion. This study triggered a debate on whether and how primary and secondary immune responses occur based on humoral antibody responses to the initial vaccination and revaccination. The anti-SARS-CoV-2 vaccine sheds new light on the interpretation of our previous data. Here, we offer an opinion on the administration of the polyvalent polysaccharide vaccine (PPSV23), which appears to be highly relevant to the primary vaccine against SARS-CoV-2 and its booster dose. Thus, we do not insist this is a secondary immune response but an antibody response, nonetheless, as measured through IgG titers after revaccination. However, we contend that we are not sure if these lower but present IgG levels against pneumococcal antigens are clinically protective or are equally common in all groups because of the phenomenon of "hyporesponsiveness" seen after repeated polysaccharide vaccine challenge. We review the literature and propose a new mechanism-caveolae memory extracellular vesicles (CMEVs)-by which polysaccharides mediate prolonged and sustained immune response post-vaccination. We further delineate and explain the data sets to suggest that the dual targets on both Cav-1 and SARS-CoV-2 spike proteins may block the viral entrance and neutralize viral load, which minimizes the immune reaction against viral attacks and inflammatory responses. Thus, while presenting our immunological opinion, we answer queries and responses made by readers to our original statements published in our previous work and propose a hypothesis for all vaccination strategies, i.e., caveolae-mediated extracellular vesicle-mediated vaccine memory.

15.
Artículo en Inglés | MEDLINE | ID: mdl-36312446

RESUMEN

Seafood security is essential in modern society. In 2013, Bush and colleagues stated, 'Aquaculture, farming aquatic organisms, provides close to 50% of the world's supply of seafood, with a value of United States $125 billion. It makes up 13% of the world's animal-source protein (excluding eggs and dairy) and employs an estimated 24 million people'. With the increase in the human population and reducing fishing resources, humans increasingly rely on aquacultural products as the primary protein sources for many countries. Aquacultural productivity has been improving in recent years, and in certain countries, the aquaculture output is more than the fishing output. For example, Chinese aquaculture production is more than fishing output, which provides one-third of animal protein. Thus, intensive aquaculture has become the main supply with global aquatic products (FAO). In recent years, it is estimated that each person consumption of aquaculture products is 130 kg in some countries (Iceland). Here, we illustrate the road blocker in farmed shrimp production and provide our resolution. The global pandemic of white spot syndrome (WSS), caused by the white spot syndrome virus (WSSV), bears a devastating economic loss in farmed shrimp production, thereby jeopardizing seafood security. Currently, there is no effective control for WSS. Conventional single-species intensive farming removes the spatiotemporal interaction between different species. We hypothesize that establishing the spatiotemporal interface of a predator-prey may control WSS outbreak. We search for the pathways for the mechanisms by which predator-prey species interact and compete across spatial scales to characterize WSSV dispersal at regional scales for the local spatiotemporal structure of viral transmission. Thus, we create a generalizable and tunable engineered ecosystem that provides a clear route to prosperity and well-being to harness the world's aquatic "blue" food systems to help end hunger.

17.
Cancers (Basel) ; 14(12)2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35740540

RESUMEN

Currently, most neuroblastoma patients are treated according to the Children's Oncology Group (COG) risk group assignment; however, neuroblastoma's heterogeneity renders only a few predictors for treatment response, resulting in excessive treatment. Here, we sought to couple COG risk classification with tumor intracellular microbiome, which is part of the molecular signature of a tumor. We determine that an intra-tumor microbial gene abundance score, namely M-score, separates the high COG-risk patients into two subpopulations (Mhigh and Mlow) with higher accuracy in risk stratification than the current COG risk assessment, thus sparing a subset of high COG-risk patients from being subjected to traditional high-risk therapies. Mechanistically, the classification power of M-scores implies the effect of CREB over-activation, which may influence the critical genes involved in cellular proliferation, anti-apoptosis, and angiogenesis, affecting tumor cell proliferation survival and metastasis. Thus, intracellular microbiota abundance in neuroblastoma regulates intracellular signals to affect patients' survival.

18.
Theranostics ; 12(4): 1621-1638, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35198061

RESUMEN

Background: Irradiation disrupts the vascular niche where hematopoietic stem cells (HSCs) reside, causing delayed hematopoietic reconstruction. The subsequent recovery of sinusoidal vessels is key to vascular niche regeneration and a prerequisite for hematopoietic reconstruction. We hypothesize that resident bone marrow macrophages (BM-Mφs) are responsible for repairing the HSC niche upon irradiation injury. Methods: We examined the survival and activation of BM-Mφs in C57BL/6 mice upon total body irradiation. After BM-Mφ depletion via injected clodronate-containing liposomes and irradiation injury, hematopoietic reconstruction and sinusoidal vascular regeneration were assessed with immunofluorescence and flow cytometry. Then enzyme-linked immunosorbent assay (ELISA) and flow cytometry were performed to analyze the contribution of VEGF-A released by BM-Mφs to the vascular restructuring of the HSC niche. VEGF-A-mediated signal transduction was assessed with transcriptome sequencing, flow cytometry, and pharmacology (agonists and antagonists) to determine the molecular mechanisms of Piezo1-mediated responses to structural changes in the HSC niche. Results: The depletion of BM-Mφs aggravated the post-irradiation injury, delaying the recovery of sinusoidal endothelial cells and HSCs. A fraction of the BM-Mφ population persisted after irradiation, with residual BM-Mφ exhibiting an activated M2-like phenotype. The expression of VEGF-A, which is essential for sinusoidal regeneration, was upregulated in BM-Mφs post-irradiation, especially CD206+ BM-Mφs. The expression of mechanosensory ion channel Piezo1, a response to mechanical environmental changes induced by bone marrow ablation, was upregulated in BM-Mφs, especially CD206+ BM-Mφs. Piezo1 upregulation was mediated by the effects of irradiation, the activation of Piezo1 itself, and the M2-like polarization induced by the phagocytosis of apoptotic cells. Piezo1 activation was associated with increased expression of VEGF-A and increased accumulation of NFATC1, NFATC2, and HIF-1α. The Piezo1-mediated upregulation in VEGF-A was suppressed by inhibiting the calcineurin/NFAT/HIF-1α signaling pathway. Conclusion: These findings reveal that BM-Mφs play a critical role in promoting vascular niche regeneration by sensing and responding to structural changes after irradiation injury, offering a potential target for therapeutic efforts to enhance hematopoietic reconstruction.


Asunto(s)
Médula Ósea , Células Endoteliales , Animales , Médula Ósea/metabolismo , Células de la Médula Ósea/metabolismo , Células Endoteliales/metabolismo , Canales Iónicos/metabolismo , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Factor A de Crecimiento Endotelial Vascular/metabolismo
19.
Front Cell Dev Biol ; 10: 699144, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35356283

RESUMEN

Background: The mechanism of tumorigenicity potentially evolved in mesenchymal stem cells (MSCs) remains elusive, resulting in inconsistent clinical application efficacy. We hypothesized that subclones in MSCs contribute to their tumorgenicity, and we approached MSC-subclones at the single-cell level. Methods: MSCs were cultured in an osteogenic differentiation medium and harvested on days 12, 19, and 25 for cell differentiation analysis using Alizarin Red and followed with the single-cell transcriptome. Results: Single-cell RNA-seq analysis reveals a discrete cluster of MSCs during osteogenesis, including differentiation-resistant MSCs (DR-MSCs), differentiated osteoblasts (DO), and precursor osteoblasts (PO). The DR-MSCs population resembled cancer initiation cells and were subjected to further analysis of the yes associated protein 1 (YAP1) network. Verteporfin was also used for YAP1 inhibition in cancer cell lines to confirm the role of YAP1 in MSC--involved tumorigenicity. Clinical data from various cancer types were analyzed to reveal relationships among YAP1, OCT4, and CDH6 in MSC--involved tumorigenicity. The expression of cadherin 6 (CDH6), octamer-binding transcription factor 4 (OCT4), and YAP1 expression was significantly upregulated in DR-MSCs compared to PO and DO. YAP1 inhibition by Verteporfin accelerated the differentiation of MSCs and suppressed the expression of YAP1, CDH6, and OCT4. A survey of 56 clinical cohorts revealed a high degree of co-expression among CDH6, YAP1, and OCT4 in various solid tumors. YAP1 inhibition also down-regulated HeLa cell viability and gradually inhibited YAP1 nuclear localization while reducing the transcription of CDH6 and OCT4. Conclusions: We used single-cell sequencing to analyze undifferentiated MSCs and to discover a carcinogenic pathway in single-cell MSCs of differentiated resistance subclones.

20.
Quant Imaging Med Surg ; 11(11): 4604-4616, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34737927

RESUMEN

BACKGROUND: Ectosomes are recognized as shedding from the plasma membranes into the extracellular environment. Recent research has demonstrated that ectosomes are surrounded by phospholipid membranes containing lipid rafts and caveolae. Some ectosomes contain cytokines in the lumen and have high levels of phosphatidylserine exposed to the outer membrane. Intracellular vesicles share both characters with ectosomes. Why the plasma membrane-derived ectosomes have the same characteristics as intracellular vesicles remain largely unknown. METHODS: Using live-cell dynamic imaging, we recorded the process of ectosome biogenesis and release in primary cultured neural cells. RESULTS: Our results show two different ectosome release methods: slow-releasing and fast-releasing. In the slow-releasing, multiple ectosomes emerge almost simultaneously on the cell surface and are released by outward budding from the plasma membrane. In the fast releasing, ectosomes squeeze out of the membrane domain and pinch off from a cell's surface. Using ER-tracker for live-cell imaging, we directly observed the process that intracellular vesicles jump out of the plasma membrane for release. This type of ectosomes has a reverse array of membrane proteins and phospholipids compared to the plasma membrane. So ectosomes should be divided into two groups: plasma membrane-derived and intracellular membrane-derived ectosomes. CONCLUSIONS: Both slow releasing and fast releasing EVs imply mechanisms of human diseases and for diagnostics and drug delivery.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA