Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Nanobiotechnology ; 22(1): 429, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39033109

RESUMEN

Pazopanib (PAZ), an oral multi-tyrosine kinase inhibitor, demonstrates promising cytostatic activities against various human cancers. However, its clinical utility is limited by substantial side effects and therapeutic resistance. We developed a nanoplatform capable of delivering PAZ for enhanced anti-breast cancer therapy. Nanometer-sized PAZ@Fe-MOF, compared to free PAZ, demonstrated increased anti-tumor therapeutic activities in both syngeneic murine 4T1 and xenograft human MDA-MB-231 breast cancer models. High-throughput single-cell RNA sequencing (scRNAseq) revealed that PAZ@Fe-MOF significantly reduced pro-tumorigenic M2-like macrophage populations at tumor sites and suppressed M2-type signaling pathways, such as ATF6-TGFBR1-SMAD3, as well as chemokines including CCL17, CCL22, and CCL24. PAZ@Fe-MOF reprogramed the inhibitory immune microenvironment and curbed tumorigenicity by blocking the polarization of M2 phenotype macrophages. This platform offers a promising and new strategy for improving the cytotoxicity of PAZ against breast cancers. It provides a method to evaluate the immunological response of tumor cells to PAZ-mediated treatment.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Indazoles , Macrófagos , Estructuras Metalorgánicas , Nanopartículas , Pirimidinas , Sulfonamidas , Animales , Femenino , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Humanos , Macrófagos/efectos de los fármacos , Indazoles/farmacología , Indazoles/química , Ratones , Pirimidinas/farmacología , Pirimidinas/química , Línea Celular Tumoral , Nanopartículas/química , Sulfonamidas/farmacología , Sulfonamidas/química , Antineoplásicos/farmacología , Antineoplásicos/química , Ratones Endogámicos BALB C , Microambiente Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Ecotoxicol Environ Saf ; 277: 116372, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38669875

RESUMEN

Environmental pollution, including air pollution, plastic contamination, and heavy metal exposure, is a pressing global issue. This crisis contributes significantly to pollution-related diseases and is a critical risk factor for chronic health conditions, including cancer. Mounting evidence underscores the pivotal role of N6-methyladenosine (m6A) as a crucial regulatory mechanism in pathological processes and cancer progression. Governed by m6A writers, erasers, and readers, m6A orchestrates alterations in target gene expression, consequently playing a vital role in a spectrum of RNA processes, covering mRNA processing, translation, degradation, splicing, nuclear export, and folding. Thus, there is a growing need to pinpoint specific m6A-regulated targets in environmental pollutant-induced carcinogenesis, an emerging area of research in cancer prevention. This review consolidates the understanding of m6A modification in environmental pollutant-induced tumorigenesis, explicitly examining its implications in lung, skin, and bladder cancer. We also investigate the biological mechanisms that underlie carcinogenesis originating from pollution. Specific m6A methylation pathways, such as the HIF1A/METTL3/IGF2BP3/BIRC5 network, METTL3/YTHDF1-mediated m6A modification of IL 24, METTL3/YTHDF2 dynamically catalyzed m6A modification of AKT1, METTL3-mediated m6A-modified oxidative stress, METTL16-mediated m6A modification, site-specific ATG13 methylation-mediated autophagy, and the role of m6A in up-regulating ribosome biogenesis, all come into play in this intricate process. Furthermore, we discuss the direction regarding the interplay between pollutants and RNA metabolism, particularly in immune response, providing new information on RNA modifications for future exploration.


Asunto(s)
Adenosina , Carcinogénesis , Contaminantes Ambientales , Adenosina/análogos & derivados , Carcinogénesis/inducido químicamente , Contaminantes Ambientales/toxicidad , Humanos , Metilación , Animales , ARN/genética , Metilación de ARN
3.
Phytother Res ; 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38761036

RESUMEN

Enhancement of malignant cell immunogenicity to relieve immunosuppression of lung cancer microenvironment is essential in lung cancer treatment. In previous study, we have demonstrated that dihydroartemisinin (DHA), a kind of phytopharmaceutical, is effective in inhibiting lung cancer cells and boosting their immunogenicity, while the initial target of DHA's intracellular action is poorly understood. The present in-depth analysis aims to reveal the influence of DHA on the highly expressed TOM70 in the mitochondrial membrane of lung cancer. The affinity of DHA and TOM70 was analyzed by microscale thermophoresis (MST), pronase stability, and thermal stability. The functions and underlying mechanism were investigated using western blots, qRT-PCR, flow cytometry, and rescue experiments. TOM70 inhibition resulted in mtDNA damage and translocation to the cytoplasm from mitochondria due to the disruption of mitochondrial homeostasis. Further ex and in vivo findings also showed that the cGAS/STING/NLRP3 signaling pathway was activated by mtDNA and thereby malignant cells underwent pyroptosis, leading to enhanced immunogenicity of lung cancer cells in the presence of DHA. Nevertheless, DHA-induced mtDNA translocation and cGAS/STING/NLRP3 mobilization were synchronously attenuated when TOM70 was replenished. Finally, DHA was demonstrated to possess potent anti-lung cancer efficacy in vitro and in vivo. Taken together, these data confirm that TOM70 is an important target for DHA to disturb mitochondria homeostasis, which further activates STING and arouses pyroptosis to strengthen immunogenicity against lung cancer thereupon. The present study provides vital clues for phytomedicine-mediated anti-tumor therapy.

4.
Platelets ; 34(1): 2166677, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36719251

RESUMEN

In our previous study, target drug delivery and treatment of malignant tumors have been achieved by using platelets as carriers loading nano-chemotherapeutic agents (ND-DOX). However, drug release from ND-DOX-loaded platelets is dependent on negative platelet activation by tumor cells, whose activation is not significant enough for the resulting drug release to take an effective anti-tumor effect. Exploring strategies to proactively manipulate the controlled release of drug-laden platelets is imperative. The present study innovatively revealed that photodynamic action can activate platelets in a spatiotemporally controlled manner. Consequently, based on the previous study, platelets were used to load iron oxide-polyglycerol-doxorubicin-chlorin e6 composites (IO-PG-DOX-Ce6), wherein the laser-triggered drug release ability and anti-tumor capability were demonstrated. The findings suggested that IO-PG-DOX-Ce6 could be stably loaded by platelets in high volume without any decrease in viability. Importantly and interestingly, drug-loaded platelets were significantly activated by laser irradiation, characterized by intracellular ROS accumulation and up-regulation of CD62p. Additionally, scanning electron microscopy (SEM) and hydrated particle size results also showed a significant aggregation response of laser irradiated-drug-loaded platelets. Further transmission electron microscopy (TEM) measurements indicated that the activated platelets released extracellularly their cargo drug after laser exposure, which could be taken up by co-cultured tumor cells. Finally, the co-culture model of drug-loaded platelets and tumor cells proved that laser-triggered delivery system of platelets could effectively damage the DNA and promote apoptosis of tumor cells. Overall, the present study discovers a drug-loaded platelets delivery using photodynamic effect, enabling laser-controlled intelligent drug delivery and anti-tumor therapy, which provides a novel and feasible approach for clinical application of cytopharmaceuticals.


What is the context?1. Platelets were applied to load IO-PG-DOX-Ce6, wherein the laser-triggered drug release and anti-tumor effect were investigated in vitro.2. The findings indicated that IO-PG-DOX-Ce6 could be stably loaded by platelets in high volume without any decrease in viability, which may attribute to the activation of autophagy in platelets.3. IO-PG-DOX-Ce6-loaded platelets could be significantly activated by laser irradiation (690 nm).4. Activated platelets released extracellularly their cargo drug after laser exposure, which could be taken up by co-cultured tumor cells5. The co-culture model of drug-loaded platelets and tumor cells proved that the laser-triggered delivery system of platelets could effectively damage the DNA and promote apoptosis of tumor cells.What is new?1. Platelets could be utilized as the vehicle to load photosensitizer-loaded-nano-drug.2. Photodynamic action can activate platelets in a spatiotemporally controlled manner, which could be a tool to regulate the activation of platelets.3. The laser-triggered activation of drug-loaded platelets allows for target release of cargo.4. The limitation of the current research is that only in vitro experiments were carried out to demonstrate our conclusions.What is impact?The present work provides a novel and feasible approach for the clinical application of cytopharmaceuticals.


Asunto(s)
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Fotoquimioterapia/métodos , Sistemas de Liberación de Medicamentos/métodos , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Neoplasias/tratamiento farmacológico , Rayos Láser
5.
J Nanobiotechnology ; 21(1): 204, 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37386404

RESUMEN

Dihydroartemisinin (DHA), a natural product derived from the herbal medicine Artemisia annua, is recently used as a novel anti-cancer agent. However, some intrinsic disadvantages limit its potential for clinical management of cancer patients, such as poor water solubility and low bioavailability. Nowadays, the nanoscale drug delivery system emerges as a hopeful platform for improve the anti-cancer treatment. Accordingly, a metal-organic framework (MOF) based on zeolitic imidazolate framework-8 was designed and synthesized to carry DHA in the core (ZIF-DHA). Contrast with free DHA, these prepared ZIF-DHA nanoparticles (NPs) displayed preferable anti-tumor therapeutic activity in several ovarian cancer cells accompanied with suppressed production of cellular reactive oxygen species (ROS) and induced apoptotic cell death. 4D-FastDIA-based mass spectrometry technology indicated that down-regulated reactive oxygen species modulator 1 (ROMO1) might be regarded as potential therapeutic targets for ZIF-DHA NPs. Overexpression of ROMO1 in ovarian cancer cells significantly reversed the cellular ROS-generation induced by ZIF-DHA, as well as the pro-apoptosis effects. Taken together, our study elucidated and highlighted the potential of zeolitic imidazolate framework-8-based MOF to improve the activity of DHA to treat ovarian cancer. Our findings suggested that these prepared ZIF-DHA NPs could be an attractive therapeutic strategy for ovarian cancer.


Asunto(s)
Estructuras Metalorgánicas , Nanopartículas , Neoplasias Ováricas , Humanos , Femenino , Especies Reactivas de Oxígeno , Neoplasias Ováricas/tratamiento farmacológico , Apoptosis , Proteínas de la Membrana , Proteínas Mitocondriales
6.
J Nanobiotechnology ; 20(1): 230, 2022 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-35568865

RESUMEN

BACKGROUND: Chemodynamic therapy (CDT) relying on intracellular iron ions and H2O2 is a promising therapeutic strategy due to its tumor selectivity, which is limited by the not enough metal ions or H2O2 supply of tumor microenvironment. Herein, we presented an efficient CDT strategy based on Chinese herbal monomer-dihydroartemisinin (DHA) as a substitute for the H2O2 and recruiter of iron ions to amplify greatly the reactive oxygen species (ROS) generation for synergetic CDT-ferroptosis therapy. RESULTS: The DHA@MIL-101 nanoreactor was prepared and characterized firstly. This nanoreactor degraded under the acid tumor microenvironment, thereby releasing DHA and iron ions. Subsequent experiments demonstrated DHA@MIL-101 significantly increased intracellular iron ions through collapsed nanoreactor and recruitment effect of DHA, further generating ROS thereupon. Meanwhile, ROS production introduced ferroptosis by depleting glutathione (GSH), inactivating glutathione peroxidase 4 (GPX4), leading to lipid peroxide (LPO) accumulation. Furthermore, DHA also acted as an efficient ferroptosis molecular amplifier by direct inhibiting GPX4. The resulting ROS and LPO caused DNA and mitochondria damage to induce apoptosis of malignant cells. Finally, in vivo outcomes evidenced that DHA@MIL-101 nanoreactor exhibited prominent anti-cancer efficacy with minimal systemic toxicity. CONCLUSION: In summary, DHA@MIL-101 nanoreactor boosts CDT and ferroptosis for synergistic cancer therapy by molecular amplifier DHA. This work provides a novel and effective approach for synergistic CDT-ferroptosis with Chinese herbal monomer-DHA and Nanomedicine.


Asunto(s)
Ferroptosis , Neoplasias , Artemisininas , Línea Celular Tumoral , Glutatión , Humanos , Peróxido de Hidrógeno , Hierro , Nanomedicina , Neoplasias/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Microambiente Tumoral
7.
Mol Pharm ; 18(9): 3601-3615, 2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34388342

RESUMEN

Chlorin e6 (Ce6) is a promising photosensitizer for tumor photodynamic therapy (PDT). However, the efficacy of Ce6 PDT is limited by Ce6's poor water solubility, rapid blood clearance, and inadequate accumulation in the tumor tissue. This problem is tackled in this work, wherein functionalized superparamagnetic iron oxide nanoparticles (IO-NPs) were used as carriers to deliver Ce6 to melanoma. The IO-NPs were coated with polyglycerol (PG) to afford good aqueous solubility. The chemotherapeutic agent doxorubicin (DOX) was attached to the PG coating via the hydrazone bond to afford affinity to the cell membrane and thereby promote the cell uptake. The hydrophobic nature of DOX also induced the aggregation of IO-NPs to form nanoclusters. Ce6 was then loaded onto the IO nanoclusters through physical adsorption and coordination with surface iron atoms, yielding the final composites IO-PG-DOX-Ce6. In vitro experiments showed that IO-PG-DOX-Ce6 markedly increased Ce6 uptake in mouse melanoma cells, leading to much-enhanced photocytotoxicity characterized by intensified reactive oxygen species production, loss of viability, DNA damage, and stimulation of tumor cell immunogenicity. In vivo experiments corroborated the in vitro findings and demonstrated prolonged blood clearance of IO-PG-DOX-Ce6. Importantly, IO-PG-DOX-Ce6 markedly increased the Ce6 distribution and retention in mouse subcutaneous melanoma grafts and significantly improved the efficacy of Ce6-mediated PDT. No apparent vital organ damage was observed at the same time. In conclusion, the IO-PG-DOX NPs provide a simple and safe delivery platform for efficient tumor enrichment of Ce6, thereby enhancing antimelanoma PDT.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Clorofilidas/administración & dosificación , Melanoma/tratamiento farmacológico , Sistema de Administración de Fármacos con Nanopartículas/química , Neoplasias Cutáneas/tratamiento farmacológico , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/química , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Línea Celular Tumoral , Clorofilidas/química , Clorofilidas/farmacocinética , Modelos Animales de Enfermedad , Doxorrubicina/administración & dosificación , Femenino , Humanos , Nanopartículas Magnéticas de Óxido de Hierro/química , Melanoma/patología , Ratones , Fotoquimioterapia , Neoplasias Cutáneas/patología , Solubilidad , Distribución Tisular
8.
J Nanobiotechnology ; 19(1): 268, 2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34488792

RESUMEN

BACKGROUND: Tumor-associated macrophages (TAMs) are the most abundant stromal cells in the tumor microenvironment. Turning the TAMs against their host tumor cells is an intriguing therapeutic strategy particularly attractive for patients with immunologically "cold" tumors. This concept was mechanistically demonstrated on in vitro human and murine lung cancer cells and their corresponding TAM models through combinatorial use of nanodiamond-doxorubicin conjugates (Nano-DOX) and a PD-L1 blocking agent BMS-1. Nano-DOX are an agent previously proved to be able to stimulate tumor cells' immunogenicity and thereby reactivate the TAMs into the anti-tumor M1 phenotype. RESULTS: Nano-DOX were first shown to stimulate the tumor cells and the TAMs to release the cytokine HMGB1 which, regardless of its source, acted through the RAGE/NF-κB pathway to induce PD-L1 in the tumor cells and PD-L1/PD-1 in the TAMs. Interestingly, Nano-DOX also induced NF-κB-dependent RAGE expression in the tumor cells and thus reinforced HMGB1's action thereon. Then, BMS-1 was shown to enhance Nano-DOX-stimulated M1-type activation of TAMs both by blocking Nano-DOX-induced PD-L1 in the TAMs and by blocking tumor cell PD-L1 ligation with TAM PD-1. The TAMs with enhanced M1-type repolarization both killed the tumor cells and suppressed their growth. BMS-1 could also potentiate Nano-DOX's action to suppress tumor cell growth via blocking of Nano-DOX-induced PD-L1 therein. Finally, Nano-DOX and BMS-1 achieved synergistic therapeutic efficacy against in vivo tumor grafts in a TAM-dependent manner. CONCLUSIONS: PD-L1/PD-1 upregulation mediated by autocrine and paracrine activation of the HMGB1/RAGE/NF-κB signaling is a key response of lung cancer cells and their TAMs to stress, which can be induced by Nano-DOX. Blockade of Nano-DOX-induced PD-L1, both in the cancer cells and the TAMs, achieves enhanced activation of TAM-mediated anti-tumor response.


Asunto(s)
Antígeno B7-H1/efectos de los fármacos , Doxorrubicina/farmacología , Inhibidores de Puntos de Control Inmunológico/farmacología , Nanodiamantes/química , Macrófagos Asociados a Tumores , Células A549 , Animales , Antígeno B7-H1/genética , Línea Celular Tumoral , Citocinas/metabolismo , Femenino , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Microambiente Tumoral/efectos de los fármacos
9.
Artículo en Inglés | MEDLINE | ID: mdl-38597996

RESUMEN

We have previously identified a latent interaction mechanism between non-small cell lung cancer cells (NSCLCC) and their associated macrophages (TAM) mediated by mutual paracrine activation of the HMGB1/RAGE/NF-κB signaling. Activation of this mechanism results in TAM stimulation and PD-L1 upregulation in the NSCLCC. In the present work, we found that free DOX at a low concentration that does not cause DNA damage could activate the HMGB1/RAGE/NF-κB/PD-L1 pathway byinducing oxidative stress. It was thus proposed that a combination of low-dose DOX and a PD-L1 blocker delivered in the NSCLC tumor would achieve synergistic TAM stimulation and thereby synergetic anti-tumor potency. To prove this idea, DOX and BMS-202 (a PD-L1 blocker) were loaded to black phosphorus (BP) nanoparticles after dosage titration to yield the BMS-202/DOX@BP composites that rapidly disintegrated and released drug cargo upon mild photothermal heating at 40 °C. In vitro experiments then demonstrated that low-dose DOX and BMS-202 delivered via BMS-202/DOX@BP under mild photothermia displayed enhanced tumor cell toxicity with a potent synergism only in the presence of TAM. This enhanced synergism was due to an anti-tumor M1-like TAM phenotype that was synergistically induced by low dose DOX plus BMS-202 only in the presence of the tumor cells, indicating the damaged tumor cells to be the cardinal contributor to the M1-like TAM stimulation. In vivo, BMS-202/DOX@BP under mild photothermia exhibited targeted delivery to NSCLC graft tumors in mice and synergistic anti-tumor efficacy of delivered DOX and BMS-202. In conclusion, low-dose DOX in combination with a PD-L1 blocker is an effective strategy to turn TAM against their host tumor cells exploiting the HMGB1/RAGE/NF-κB/PD-L1 pathway. The synergetic actions involved highlight the value of TAM and the significance of modulating tumor cell-TAM cross-talk in tumor therapy. Photothermia-responsive BP provides an efficient platform to translate this strategy into targeted, efficacious tumor therapy.

10.
Photodiagnosis Photodyn Ther ; 45: 103917, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38042236

RESUMEN

OBJECTIVE: Photodynamic therapy (PDT) primarily treats skin diseases or cancer by generating reactive oxygen species (ROS) to damage cellular DNA, yet drug resistance limits its application. To tackle this problem, the present study was carried out to improve the efficacy of chlorin e6 (Ce6)-PDT using Cepharanthine (CEP) as well as to reveal the potential molecular mechanism. MATERIALS AND METHODS: Lewis lung cancer cell line (LLC) was utilized as the cancer cell model. chlorin e6 (Ce6) acted as the photosensitizer to induce PDT. The in vitro anti-cancer efficacy was measured by CCK-8, Annexin-V/PI staining, and migration assay. The Ce6 uptake was observed using flow cytometry and confocal microscopy. The ROS generation was detected by the DCFH-DA probe. The analysis of MutT Homolog 1 (MTH1) expression, correlation, and prognosis in databases was conducted by bioinformatic. The MTH1 expression was detected through western blots (WB). DNA damage was assayed by WB, immunofluorescent staining, and comet assay. RESULTS: Ce6-PDT showed robust resistance in lung cancer cells under certain conditions, as evidenced by the unchanged cell viability and apoptosis. The subsequent findings confirmed that the uptake of Ce6 and MTH1 expression was enhanced, but ROS generation with laser irradiation was not increased in LLC, which indicated that the ROS scavenge may be the critical reason for resistance. Surprisingly, bioinformatic and in vitro experiments identified that MTH1, which could prevent the DNA from damage of ROS, was highly expressed in lung cancer and thereby led to the poor prognosis and could be further up-regulated by Ce6 PDT. CEP exhibited a dose-dependent suppressive effect on the lung cancer cells. Further investigations presented that CEP treatment boosted ROS production, thereby resulting in DNA double-strand breakage (DDSB) with activation of MTH1, indicating that CEP facilitated Ce6-PDT-mediated DNA damage. Finally, the combination of CEP and Ce6-PDT exhibited prominent ROS accumulation, MTH1 inhibition, and anti-lung cancer efficacy, which had synergistic pro-DNA damage properties. CONCLUSION: Collectively, highly expressed MTH1 and the failure of ROS generation lead to PDT resistance in lung cancer cells. CEP facilitates ROS generation of PDT, thereby promoting vigorous DNA damage, inactivating MTH1, alleviating PDT resistance, and ameliorating the anti-cancer efficacy of Ce6-PDT, provides a novel approach for augmented PDT.


Asunto(s)
Benzodioxoles , Bencilisoquinolinas , Neoplasias Pulmonares , Fotoquimioterapia , Humanos , Fármacos Fotosensibilizantes/uso terapéutico , Fotoquimioterapia/métodos , Especies Reactivas de Oxígeno/metabolismo , Línea Celular Tumoral , Neoplasias Pulmonares/tratamiento farmacológico , Daño del ADN , ADN
11.
Sci Rep ; 14(1): 11704, 2024 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778121

RESUMEN

Chemotherapeutic agents can inhibit the proliferation of malignant cells due to their cytotoxicity, which is limited by collateral damage. Dihydroartemisinin (DHA), has a selective anti-cancer effect, whose target and mechanism remain uncovered. The present work aims to examine the selective inhibitory effect of DHA as well as the mechanisms involved. The findings revealed that the Lewis cell line (LLC) and A549 cell line (A549) had an extremely rapid proliferation rate compared with the 16HBE cell line (16HBE). LLC and A549 showed an increased expression of NRAS compared with 16HBE. Interestingly, DHA was found to inhibit the proliferation and facilitate the apoptosis of LLC and A549 with significant anti-cancer efficacy and down-regulation of NRAS. Results from molecular docking and cellular thermal shift assay revealed that DHA could bind to epidermal growth factor receptor (EGFR) molecules, attenuating the EGF binding and thus driving the suppressive effect. LLC and A549 also exhibited obvious DNA damage in response to DHA. Further results demonstrated that over-expression of NRAS abated DHA-induced blockage of NRAS. Moreover, not only the DNA damage was impaired, but the proliferation of lung cancer cells was also revitalized while NRAS was over-expression. Taken together, DHA could induce selective anti-lung cancer efficacy through binding to EGFR and thereby abolishing the NRAS signaling pathway, thus leading to DNA damage, which provides a novel theoretical basis for phytomedicine molecular therapy of malignant tumors.


Asunto(s)
Artemisininas , Proliferación Celular , Daño del ADN , Receptores ErbB , GTP Fosfohidrolasas , Neoplasias Pulmonares , Proteínas de la Membrana , Transducción de Señal , Receptores ErbB/metabolismo , Humanos , Proliferación Celular/efectos de los fármacos , Artemisininas/farmacología , Daño del ADN/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , GTP Fosfohidrolasas/metabolismo , Animales , Apoptosis/efectos de los fármacos , Simulación del Acoplamiento Molecular , Células A549 , Ratones , Antineoplásicos/farmacología , Línea Celular Tumoral , Unión Proteica
12.
Eur J Pharmacol ; 979: 176839, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39033838

RESUMEN

BACKGROUND: Severe endoplasmic reticulum (ER) stress elicits apoptosis to suppress lung cancer. Our previous research identified that Cepharanthine (CEP), a kind of phytomedicine, possessed powerful anti-cancer efficacy, for which the underlying mechanism was still uncovered. Herein, we investigated how CEP induced ER stress and worked against lung cancer. METHODS: The differential expression genes (DEGs) and enrichment were detected by RNA-sequence. The affinity of CEP and NRF2 was analyzed by cellular thermal shift assay (CETSA) and molecular docking. The function assay of lung cancer cells was measured by western blots, flow cytometry, immunofluorescence staining, and ferroptosis inhibitors. RESULTS: CEP treatment enriched DEGs in ferroptosis and ER stress. Further analysis demonstrated the target was NRF2. In vitro and in vivo experiments showed that CEP induced obvious ferroptosis, as characterized by the elevated iron ions, ROS, COX-2 expression, down-regulation of GPX4, and atrophic mitochondria. Moreover, enhanced Grp78, CHOP expression, ß-amyloid mass, and disappearing parallel stacked structures of ER were observed in CEP group, suggesting ER stress was aroused. CEP exhibited excellent anti-lung cancer efficacy, as evidenced by the increased apoptosis, reduced proliferation, diminished cell stemness, and prominent inhibition of tumor grafts in animal models. Furthermore, the addition of ferroptosis inhibitors weakened CEP-induced ER stress and apoptosis. CONCLUSION: In summary, our findings proved CEP drives ferroptosis through inhibition of NRF2 for induction of robust ER stress, thereby leading to apoptosis and attenuated stemness of lung cancer cells. The current work presents a novel mechanism for the anti-tumor efficacy of the natural compound CEP.

13.
Sci Rep ; 14(1): 7733, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565963

RESUMEN

B-Myb has received considerable attention for its critical tumorigenic function of supporting DNA repair. However, its modulatory effects on chemotherapy and immunotherapy have rarely been reported in colorectal cancer. Bortezomib (BTZ) is a novel compound with chemotherapeutic and immunotherapeutic effects, but it fails to work in colorectal cancer with high B-Myb expression. The present study was designed to investigate whether B-Myb deletion in colorectal cancer could potentiate the immune efficacy of BTZ against colorectal cancer and to clarify the underlying mechanism. Stable B-Myb knockdown was induced in colorectal cancer cells, which increased apoptosis of the cancer cells relative to the control group in vitro and in vivo. We found that BTZ exhibited more favourable efficacy in B-Myb-defective colorectal cancer cells and tumor-bearing mice. BTZ treatment led to differential expression of genes enriched in the p53 signaling pathway promoted more powerful downstream DNA damage, and arrested cell cycle in B-Myb-defective colorectal cancer. In contrast, recovery of B-Myb in B-Myb-defective colorectal cancer cells abated BTZ-related DNA damage, cell cycle arrest, and anticancer efficacy. Moreover, BTZ promoted DNA damage-associated enhancement of immunogenicity, as indicated by potentiated expression of HMGB1 and HSP90 in B-Myb-defective cells, thereby driving M1 polarization of macrophages. Collectively, B-Myb deletion in colorectal cancer facilitates the immunogenic death of cancer cells, thereby further promoting the immune efficacy of BTZ by amplifying DNA damage. The present work provides an effective molecular target for colorectal cancer immunotherapy with BTZ.


Asunto(s)
Antineoplásicos , Neoplasias Colorrectales , Animales , Ratones , Bortezomib/farmacología , Bortezomib/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Muerte Celular Inmunogénica , Línea Celular Tumoral , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Apoptosis
14.
Photodiagnosis Photodyn Ther ; 45: 103945, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38135108

RESUMEN

OBJECTIVE: Prompt and effective wound repair is an essential strategy to promote recovery and prevent infection in patients with various types of trauma. Platelets can release a variety of growth factors upon activation to facilitate revascularization and tissue repair, provided that their activation is uncontrollable. The present study is designed to explore the selective activation of platelets by photodynamic and photothermal effects (PDE/PTE) as well as the trauma repair mediated by PDE/PTE. MATERIALS AND METHODS: In the current research, platelets were extracted from the blood of mice. Indocyanine green (ICG) was applied to induce PDE/PTE. The uptake of ICG by platelets was detected by laser confocal microscopy and flow cytometry. The cellular integrity was measured by microscopy. The reactive oxygen species (ROS) generation and temperature of platelets were assayed by 2,7-Dichlorodihydrofluorescein diacetate (DCFH-DA) and temperature detector. The activation of platelets was measured by western blots (WB), dynamic light scattering (DLS), and scanning electron microscopy (SEM). The release of growth factor was detected by enzyme-linked immuno sorbent assay (Elisa), wherein the in vitro cell proliferation was investigated by 5-Ethynyl-2'-deoxyuridine (EDU) assay. The wound infection rates model and histological examination were constructed to assay the ICG-loaded platelet-mediated wound repair. RESULTS: Platelets could load with ICG, a kind of photodynamic and photothermal agent, as carriers and remain intact. Near-infrared (NIR) laser irradiation of ICG-loaded platelets (ICG@PLT) facilitated higher temperature and ROS generation, which immediately activated ICG@PLT, as characterized by increased membrane p-selectin (CD62p), cyclooxygenase-2 (COX-2), thromboxane A2 receptor (TXA2R) expression, elevated hydrated particle size, and prominent aggregation in platelets. Further investigation revealed that massive insulin-like growth factor (IGF) and platelet-derived growth factor (PDGF) were released from the activated ICG@PLT, which also promoted the proliferation of endothelial cells and keratinocytes in co-culture. In consequence, activated platelets and increased neovascularization could be observed in rats with wound infection treated by ICG@PLT in the presence of NIR. More impressively, the hydrogel containing ICG@PLT accelerated wound healing and suppressed inflammation under NIR, exhibiting excellent wound repair properties. CONCLUSION: Taken together, the current work identified that platelets could be activated by PDE/PTE and thereby release growth factor, potentiating wound repair in a controlled manner.


Asunto(s)
Fotoquimioterapia , Infección de Heridas , Humanos , Ratones , Ratas , Animales , Verde de Indocianina/farmacología , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Especies Reactivas de Oxígeno/metabolismo , Células Endoteliales/metabolismo , Cicatrización de Heridas , Péptidos y Proteínas de Señalización Intercelular , Línea Celular Tumoral
15.
Int Immunopharmacol ; 115: 109661, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36608440

RESUMEN

Suppression of the immune microenvironment is an important endogenous contributor to treatment failure in lung cancer. Photodynamic therapy (PDT) is widely used in the treatment of malignant tumors owing to its photo-selectivity and minimal side effects. Some studies have shown the ability of photodynamic action not only to cause photo-cytotoxicity to tumor cells but also to induce immunogenic cell death (ICD). However, the mechanism by which PDT enhances tumor immunogenicity is poorly understood. The present study aimed to explore the immunogenicity effect of PDT on lung cancer and to reveal the underlying mechanism. First, we searched for effective conditions for PDT-induced apoptosis in lung cancer cells. Just as expected, chlorin e6 (Ce6) PDT could enhance the immunogenicity of lung cancer cells alongside the induction of apoptosis, characterized by up-regulation of CRT, HSP90, HMGB1 and MHC-I. Further results showed the generation of ROS by Ce6 PDT under the above conditions, which is an oxidative damaging agent. Simultaneously, PDT induced endoplasmic reticulum (ER) stress in cells, as evidenced by enhanced Tht staining and up-regulated CHOP and GRP78 expression. Moreover, PDT led to DNA damage response (DDR) as well. However, the redox inhibitor NAC abolished the ER stress and DDR caused by PDT. More importantly, NAC also attenuated PDT-induced improvement of immunogenicity in lung cancer. On this basis, the PDT-induced CRT up-regulation was found to be attenuated in response to inhibition of ER stress. In addition, PDT-induced increase in HMGB1 and HSP90 release was blocked by inhibition of DDR. In summary, Ce6 PDT could produce ROS under certain conditions, which leads to ER stress that promotes CRT translocation to the cell membrane, and the resulting DNA damage causes the expression and release of nuclear HMGB1 and HSP90, thereby enhancing the immunogenicity of lung cancer. This current study elucidates the mechanism of PDT in ameliorating the immunogenicity of lung cancer, providing a rationale for PDT in regulating the immune microenvironment for the treatment of malignant tumors.


Asunto(s)
Proteína HMGB1 , Neoplasias Pulmonares , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Especies Reactivas de Oxígeno , Muerte Celular Inmunogénica , Neoplasias Pulmonares/tratamiento farmacológico , Estrés Oxidativo , Estrés del Retículo Endoplásmico , Daño del ADN , Oxidación-Reducción , Línea Celular Tumoral , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Microambiente Tumoral
16.
Adv Healthc Mater ; 12(28): e2301561, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37567571

RESUMEN

Infiltration of tumor-associated macrophages (TAM) characterized by an M2 phenotype is an overriding feature in malignant tumors. Reprogramming TAM is the most cutting-edge strategy for cancer therapy. In the present study, an iron-based metal-organic framework (MOF) nanoreactor loaded with dihydroartemisinin (DHA) is developed, which provides high uptake by TAM and retains their viability, thus effectively addressing the inefficiency of the DHA at low concentrations. Impressively, DHA@MIL-101 can selectively accumulate in tumor tissues and remodel TAM to the M1 phenotype. The results of RNA sequencing further suggest that this nanoreactor may regulate ferroptosis, a DNA damage signaling pathway in TAM. Indeed, the outcomes confirm that DHA@MIL-101 triggers ferroptosis in TAM. In addition, the findings reveal that DNA damage induced by DHA nanoreactors activates the intracellular cGAS sensor, resulting in the binding of STING to IRF3 and thereby up-regulating the immunogenicity. In contrast, blocking ferroptosis impairs DHA@MIL-101-induced activation of STING signaling and phenotypic remodeling. Finally, it is shown that DHA nanoreactors deploy anti-tumor immunotherapy through ferroptosis-mediated TAM reprogramming. Taken together, immune efficacy is achieved through TAM's remodeling by delivering DHA and iron ions into TAM using nanoreactors, providing a novel approach for combining phytopharmaceuticals with nanocarriers to regulate the immune microenvironment.


Asunto(s)
Ferroptosis , Macrófagos , Inmunoterapia , Hierro , Nanotecnología , Microambiente Tumoral
17.
Photodiagnosis Photodyn Ther ; 42: 103558, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37030434

RESUMEN

OBJECTIVE: Photodynamic therapy (PDT) may be an effective therapeutic strategy for colorectal cancer at an early stage. However, malignant cells' resistance to photodynamic agents can lead to treatment failure. MYBL2 (B-Myb) is an oncogene in colorectal carcinogenesis and development, for which little research has focused on its effect on drug resistance. MATERIALS AND METHODS: In the present work, a colorectal cancer cell line with a stable knockdown of MYBL2 (ShB-Myb) was constructed first. Chlorin e6 (Ce6) was utilized to induced PDT. The anti-cancer efficacy was measured by CCK-8, PI staining, and Western blots. The drug uptake of Ce6 was assayed by flow cytometry and confocal microscopy. The ROS generation was detected by the CellROX probe. DDSB and DNA damage were assayed through comet experiment and Western blots. The over-expression of MYBL2 was conducted by MYBL2 plasmid. RESULTS: The findings indicated that the viability of ShB-Myb treated with Ce6-PDT was not decreased compared to control SW480 cells (ShNC), which were resistant to PDT. Further investigation revealed reduced photosensitizer enrichment and mitigated oxidative DNA damage in colorectal cancer cells with depressed MYBL2. It turned out that SW480 cells knocking down MYBL2 showed phosphorylation of NF-κB and led to up-regulation of ABCG2 expression thereupon. When MYBL2 was replenished back in MYBL2-deficient colorectal cancer cells, phosphorylation of NF-κB was blocked and ABCG2 expression up-regulation was suppressed. Additionally, replenishment of MYBL2 also increased the enrichment of Ce6 and the efficacy of PDT. CONCLUSION: In summary, MYBL2 absence in colorectal cancer contributes to drug resistance by activating NF-κB to up-regulate ABCG2 and thereby leading to photosensitizer Ce6 efflux. This study provides a novel theoretical basis and strategy for how to effectively improve the anti-tumor efficacy of PDT.


Asunto(s)
Clorofilidas , Neoplasias Colorrectales , Fotoquimioterapia , Porfirinas , Humanos , Fármacos Fotosensibilizantes/farmacología , Fotoquimioterapia/métodos , Regulación hacia Arriba , FN-kappa B/metabolismo , Neoplasias Colorrectales/tratamiento farmacológico , Porfirinas/farmacología , Línea Celular Tumoral , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Proteínas de Neoplasias , Transactivadores/metabolismo , Proteínas de Ciclo Celular/metabolismo
18.
Phytomedicine ; 112: 154682, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36739636

RESUMEN

BACKGROUND: The immunosuppressive microenvironment of lung cancer serves as an important endogenous contributor to treatment failure. The present study aimed to demonstrate the promotive effect of DHA on immunogenic cell death (ICD) in lung cancer as well as the mechanism. METHODS: The lewis lung cancer cells (LLC), A549 cells and LLC-bearing mice were applied as the lung cancer model. The apoptosis, ferroptosis assay, western blotting, immunofluorescent staining, qPCR, comet assay, flow cytometry, confocal microscopy, transmission electron microscopy and immunohistochemistry were conducted to analyze the functions and the underlying mechanism. RESULTS: An increased apoptosis rate and immunogenicity were detected in DHA-treated LLC and tumor grafts. Further findings showed DHA caused lipid peroxide (LPO) accumulation, thereby initiating ferroptosis. DHA stimulated cellular endoplasmic reticulum (ER) stress and DNA damage simultaneously. However, the ER stress and DNA damage induced by DHA could be abolished by ferroptosis inhibitors, whose immunogenicity enhancement was synchronously attenuated. In contrast, the addition of exogenous iron ions further improved the immunogenicity induced by DHA accompanied by enhanced ER stress and DNA damage. The enhanced immunogenicity could be abated by ER stress and DNA damage inhibitors as well. Finally, DHA activated immunocytes and exhibited excellent anti-cancer efficacy in LLC-bearing mice. CONCLUSIONS: In summary, the current study demonstrates that DHA triggers ferroptosis, facilitating the ICD of lung cancer thereupon. This work reveals for the first time the effect and underlying mechanism by which DHA induces ICD of cancer cells, providing novel insights into the regulation of the immune microenvironment for cancer immunotherapy by Chinese medicine phytopharmaceuticals.


Asunto(s)
Carcinoma Pulmonar de Lewis , Ferroptosis , Neoplasias Pulmonares , Animales , Ratones , Neoplasias Pulmonares/tratamiento farmacológico , Carcinoma Pulmonar de Lewis/tratamiento farmacológico , Estrés del Retículo Endoplásmico , Inmunoterapia , Daño del ADN , Microambiente Tumoral
19.
Biomaterials ; 290: 121833, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36201945

RESUMEN

Photodynamic therapy (PDT) has recently emerged as a promising, targeted treatment modality for glioblastoma (GBM) which is the most vicious type of brain tumor. Successful GBM-PDT hinges upon light activation of a photosensitizer accumulated in the tumor. However, inadequate tumor accumulation of photosensitizer severely limits the success of PDT of GBM. To tackle this difficulty, we herein propose a drug delivery strategy of "platelets with photo-controlled release property". This strategy exploits platelets as carriers to deliver a photosensitizer which, in the current study, is a nano-composite (BNPD-Ce6) comprised of chlorine e6 (Ce6) loaded to boron nitride nanoparticles with a surface coating of polyglycerol and doxorubicin. To demonstrate the working mechanism and therapeutic advantage of this strategy, we loaded mouse platelets with BNPD-Ce6 to yield the nano-device BNPD-Ce6@Plt. In vitro experiments showed BNPD-Ce6@Plt to have a high loading capacity and efficiency. Laser irradiation (LI) at a wavelength of 808 nm induced ROS generation in BNPD-Ce6@Plt which displayed rapid activation, aggregation, and speedy discharge of BNPD-Ce6 into co-cultured GL261 mouse GBM cells which in turn, after LI, exhibited marked ROS generation, DNA damage, reduced viability, and cell death. In vivo animal experiments, mice that were intravenously injected with BNPD-Ce6@Plt exhibited rapid and extensive BNPD-Ce6 accumulation in both subcutaneous and intra-brain GL261 tumors shortly after LI of the tumors and the tumors displayed massive tissue necrosis after LI for a second time. Finally, a PDT regimen of two intravenous BNPD-Ce6@Plt injections each followed by multiple times of extracranial LI at the tumor site significantly inhibited the growth of intra-brain GL261 tumors and markedly increased the survival of the host animals. No apparent tissue damage was found in vital organs. Our findings make a compelling case for the notion that platelets are efficient carriers that can photo-controllably deliver nano-photosensitizers to achieve highly targeted and efficacious PDT of GBM. This work presents a novel approach to GBM-PDT with great translational potential.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Nanopartículas , Fotoquimioterapia , Porfirinas , Ratones , Animales , Glioblastoma/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Preparaciones de Acción Retardada , Línea Celular Tumoral , Porfirinas/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Fármacos Fotosensibilizantes/farmacología , Neoplasias Encefálicas/tratamiento farmacológico
20.
J Cancer Res Clin Oncol ; 148(4): 867-879, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34997349

RESUMEN

BACKGROUND: Non-small-cell lung cancer (NSCLC) is the most common malignant lung tumor and is difficult to be eradicated due to its immunosuppressive microenvironment. Chlorin e6 (Ce6)-mediated photodynamic therapy (PDT) could improve immunogenicity while destroying malignant tumor cells. However, the clinic application of Ce6-mediated PDT is limited by Ce6's poor water solubility and insufficient accumulation in lung cancer. To address this issue, Ce6 was loaded onto functionalized iron oxide nanoparticles linked with glucose to improve the distribution of Ce6 in lung cancer. MATERIALS AND RESULTS: The results of transmission electron microscopy (TEM), UV-Vis spectrophotometry, dynamic light scattering and near-infrared (NIR) spectroscopy confirmed the successful preparation of the composites. Confocal and flow cytometry showed IO-PG-GLU-Ce6 significantly enhanced the uptake of Ce6 by lung cancer cells and produced more reactive oxygen species (ROS) under NIR light irradiation. In addition, the detection of cell viability, proliferation and apoptosis indicated IO-PG-GLU-Ce6 achieved stronger photo-toxicity to lung cancer cells. Moreover, IO-PG-GLU-Ce6 treatment effectively damaged the DNA of lung cancer cells and thereby activated STING, up-regulated the expression of IFN-ß, HMGB1 and HSP90, indicating augmented immunogenicity of lung cancer cells. Further results of in vivo, organ imaging and tissue fluorescence sections demonstrated IO-PG-GLU-Ce6 significantly improved the distribution of Ce6 in tumor tissues of lung cancer-bearing mice as well. Finally, the findings of in vivo study and immunohistochemistry confirmed the better efficacy of IO-PG-GLU-Ce6. HE staining results of vital organs suggested that the composites were less toxic. CONCLUSION: In conclusion, Ce6 loaded by functionalized iron oxide nanoparticles linked with glucose exhibited both target photodynamic efficacy and the ability to enhance its immunogenicity in lung cancer. This study provides a promising strategy for augment of the targeting delivery of Ce6 and its mediated photodynamic and immunotherapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Clorofilidas , Neoplasias Pulmonares , Nanopartículas , Fotoquimioterapia , Porfirinas , Animales , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Línea Celular Tumoral , Clorofilidas/uso terapéutico , Glucosa , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Nanopartículas Magnéticas de Óxido de Hierro , Ratones , Nanopartículas/química , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Porfirinas/química , Porfirinas/farmacología , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA