Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Total Environ ; 950: 175286, 2024 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-39111431

RESUMEN

The production of short-chain fatty acids (SCFAs) from sludge is promising, but the efficiency and product quality often vary because of extracellular polymeric substances (EPS) characteristics and pretreatment principles. This study adopted specific EPS disintegration pretreatment to treat different types of sludge. By correlation coefficient matrix analysis and correlation dynamics change resolution, the intrinsic relationships between the nature of EPS and the production of SCFAs from sludge was unveiled. We demonstrate that tight-bound EPS (TB-EPS) is a principal carbon reservoir, positively impacting SCFAs yields, in the fermentation system with EPS as the main fermentation substrate, it can contribute about 29.2 % for SCFAs growth during fermentation. Conversely, TB-EPS exhibits a negative correlation during fermentation due to EPS-SCFAs interconversion, while loosely bound EPS (LB-EPS) correlates positively. Proteins and polysaccharides in TB-EPS, especially proteins, significantly enhance individual SCFAs yields, predominantly acetic, propionic, and isovaleric acids. The findings would provide a theoretical basis for developing pretreatments and process-control technologies aimed at improving SCFAs production efficiency and quality.


Asunto(s)
Matriz Extracelular de Sustancias Poliméricas , Ácidos Grasos Volátiles , Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Ácidos Grasos Volátiles/metabolismo , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Eliminación de Residuos Líquidos/métodos , Fermentación
2.
Water Res ; 217: 118433, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35429886

RESUMEN

Constructed wetlands (CWs) integrated with the bioelectrochemical system (BES-CW) to stimulate bio-refractory compounds removal holds particular promise, owing to its inherent greater scale and well-recognized environmentally benign wastewater advanced purification technology. However, the knowledge regarding the feasibility and removal mechanisms, particularly the potential negative effects of biorefractory compounds on nitrogen removal performance for the CWs is far insufficient. This study performed a critical assessment by using BES-CW (ECW) and conventional CW (CW) to investigate the effects of p-Chloronitrobenzene (pCNB) on nitrogen transformations in CWs. The results showed that low concentration (1 mg·L-1) of pCNB would inhibit the ammonia oxidation in CWs, while ECW could improve its tolerance to pCNB to a certain level (8 mg·L-1) due to the high pCNB degradation efficiencies (2.5 times higher than CWs), accordingly, much higher TN and nitrate removal efficiencies were observed in ECWs, 81.71% - 96.82% (TN) higher than CWs, further leading to a lower N2O emission from ECWs than CWs. The main intermediate of pCNB degradation was p-Chloroaniline (pCAN) and the genera Geobacter and Propionimicrobium were consider to be the responsible pCNB degradation bacteria in the present study. However, too high concentration (20 mg·L-1) of pCNB would have a huge impact on ECW and CW, especially microbial biomass. Nevertheless, ECW could improve the 1.87 times higher microbial biomass than CW on the substrate. Accordingly, considerably higher functional gene abundance was observed in ECW. Therefore, the introduction of BES has great potential to ensure CW stability when treating industrial wastewater containing bio-refractory compounds.


Asunto(s)
Nitrógeno , Humedales , Nitrobencenos , Nitrógeno/análisis , Eliminación de Residuos Líquidos , Aguas Residuales
3.
Environ Sci Ecotechnol ; 11: 100186, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36158760

RESUMEN

Traditional bioelectrochemical systems (BESs) coupled with stripping units for ammonia recovery suffer from an insufficient supply of electron acceptors due to the low solubility of oxygen. In this study, we proposed a novel strategy to efficiently transport the oxidizing equivalent provided at the stripping unit to the cathode by introducing a highly soluble electron mediator (EM) into the catholyte. To validate this strategy, we developed a new kind of iron complex system (tartrate-EDTA-Fe) as the EM. EDTA-Fe contributed to the redox property with a midpoint potential of -0.075 V (vs. standard hydrogen electrode, SHE) at pH 10, whereas tartrate acted as a stabilizer to avoid iron precipitation under alkaline conditions. At a ratio of the catholyte recirculation rate to the anolyte flow rate (RC-A) of 12, the NH4 +-N recovery rate in the system with 50 mM tartrate-EDTA-Fe complex reached 6.9 ±â€¯0.2 g N m-2 d-1, approximately 3.8 times higher than that in the non-EM control. With the help of the complex, our system showed an NH4 +-N recovery performance comparable to that previously reported but with an extremely low RC-A (0.5 vs. 288). The strategy proposed here may guide the future of ammonia recovery BES scale-up because the introduction of an EM allows aeration to be performed only at the stripping unit instead of at every cathode, which is beneficial for the system design due to its simplicity and reliability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA