Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 70(3): 502-515.e8, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29727620

RESUMEN

Nutrients are not only organic compounds fueling bioenergetics and biosynthesis, but also key chemical signals controlling growth and metabolism. Nutrients enormously impact the production of reactive oxygen species (ROS), which play essential roles in normal physiology and diseases. How nutrient signaling is integrated with redox regulation is an interesting, but not fully understood, question. Herein, we report that superoxide dismutase 1 (SOD1) is a conserved component of the mechanistic target of rapamycin complex 1 (mTORC1) nutrient signaling. mTORC1 regulates SOD1 activity through reversible phosphorylation at S39 in yeast and T40 in humans in response to nutrients, which moderates ROS level and prevents oxidative DNA damage. We further show that SOD1 activation enhances cancer cell survival and tumor formation in the ischemic tumor microenvironment and protects against the chemotherapeutic agent cisplatin. Collectively, these findings identify a conserved mechanism by which eukaryotes dynamically regulate redox homeostasis in response to changing nutrient conditions.


Asunto(s)
Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Nutrientes/metabolismo , Fosforilación/fisiología , Superóxido Dismutasa-1/metabolismo , Animales , Línea Celular , Línea Celular Tumoral , Daño del ADN/fisiología , Metabolismo Energético/fisiología , Femenino , Células HEK293 , Humanos , Células MCF-7 , Ratones Endogámicos BALB C , Ratones Desnudos , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/metabolismo
2.
Hepatology ; 79(3): 560-574, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37733002

RESUMEN

BACKGROUND AND AIMS: NASH-HCC is inherently resistant to immune checkpoint blockade, but its tumor immune microenvironment is largely unknown. APPROACH AND RESULTS: We applied the imaging mass cytometry to construct a spatially resolved single-cell atlas from the formalin-fixed and paraffin-embedded tissue sections from patients with NASH-HCC, virus-HCC (HBV-HCC and HCV-HCC), and healthy donors. Based on 35 biomarkers, over 750,000 individual cells were categorized into 13 distinct cell types, together with the expression of key immune functional markers. Higher infiltration of T cells, myeloid-derived suppressor cell (MDSCs), and tumor-associated macrophages (TAMs) in HCC compared to controls. The distribution of immune cells in NASH-HCC is spatially heterogeneous, enriched at adjacent normal tissues and declined toward tumors. Cell-cell connections analysis revealed the interplay of MDSCs and TAMs with CD8 + T cells in NASH-HCC. In particular, exhausted programmed cell death 1 (PD-1 + )CD8 + T cells connected with programmed cell death-ligand 1 (PD-L1 + )/inducible T cell costimulator (ICOS + ) MDSCs and TAMs in NASH-HCC, but not in viral HCC. In contrast, CD4 + /CD8 + T cells with granzyme B positivity were reduced in NASH-HCC. Tumor cells expressed low PD-L1 and showed few connections with immune cells. CONCLUSIONS: Our work provides the first detailed spatial map of single-cell phenotypes and multicellular connections in NASH-HCC. We demonstrate that interactions between MDSCs and TAMs with effector T cells underlie immunosuppression in NASH-HCC and are an actionable target.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Humanos , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Antígeno B7-H1/metabolismo , Proteómica , Linfocitos T CD8-positivos , Biomarcadores/metabolismo , Microambiente Tumoral
3.
Nucleic Acids Res ; 51(D1): D479-D487, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36165955

RESUMEN

Post-translational modifications (PTMs) are critical molecular mechanisms that regulate protein functions temporally and spatially in various organisms. Since most PTMs are dynamically regulated, quantifying PTM events under different states is crucial for understanding biological processes and diseases. With the rapid development of high-throughput proteomics technologies, massive quantitative PTM proteome datasets have been generated. Thus, a comprehensive one-stop data resource for surfing big data will benefit the community. Here, we updated our previous phosphorylation dynamics database qPhos to the qPTM (http://qptm.omicsbio.info). In qPTM, 11 482 553 quantification events among six types of PTMs, including phosphorylation, acetylation, glycosylation, methylation, SUMOylation and ubiquitylation in four different organisms were collected and integrated, and the matched proteome datasets were included if available. The raw mass spectrometry based false discovery rate control and the recurrences of identifications among datasets were integrated into a scoring system to assess the reliability of the PTM sites. Browse and search functions were improved to facilitate users in swiftly and accurately acquiring specific information. The results page was revised with more abundant annotations, and time-course dynamics data were visualized in trend lines. We expected the qPTM database to be a much more powerful and comprehensive data repository for the PTM research community.


Asunto(s)
Procesamiento Proteico-Postraduccional , Proteoma , Animales , Humanos , Ratones , Ratas , Fosforilación , Proteoma/metabolismo , Saccharomyces cerevisiae/metabolismo , Bases de Datos Genéticas
4.
J Hepatol ; 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38508240

RESUMEN

BACKGROUND & AIMS: Intrahepatic cholangiocarcinoma (iCCA) is the second most common primary liver cancer and is highly lethal. Clonorchis sinensis (C. sinensis) infection is an important risk factor for iCCA. Here we investigated the clinical impact and underlying molecular characteristics of C. sinensis infection-related iCCA. METHODS: We performed single-cell RNA sequencing, whole-exome sequencing, RNA sequencing, metabolomics and spatial transcriptomics in 251 patients with iCCA from three medical centers. Alterations in metabolism and the immune microenvironment of C. sinensis-related iCCAs were validated through an in vitro co-culture system and in a mouse model of iCCA. RESULTS: We revealed that C. sinensis infection was significantly associated with iCCA patients' overall survival and response to immunotherapy. Fatty acid biosynthesis and the expression of fatty acid synthase (FASN), a key enzyme catalyzing long-chain fatty acid synthesis, were significantly enriched in C. sinensis-related iCCAs. iCCA cell lines treated with excretory/secretory products of C. sinensis displayed elevated FASN and free fatty acids. The metabolic alteration of tumor cells was closely correlated with the enrichment of tumor-associated macrophage (TAM)-like macrophages and the impaired function of T cells, which led to formation of an immunosuppressive microenvironment and tumor progression. Spatial transcriptomics analysis revealed that malignant cells were in closer juxtaposition with TAM-like macrophages in C. sinensis-related iCCAs than non-C. sinensis-related iCCAs. Importantly, treatment with a FASN inhibitor significantly reversed the immunosuppressive microenvironment and enhanced anti-PD-1 efficacy in iCCA mouse models treated with excretory/secretory products from C. sinensis. CONCLUSIONS: We provide novel insights into metabolic alterations and the immune microenvironment in C. sinensis infection-related iCCAs. We also demonstrate that the combination of a FASN inhibitor with immunotherapy could be a promising strategy for the treatment of C. sinensis-related iCCAs. IMPACT AND IMPLICATIONS: Clonorchis sinensis (C. sinensis)-infected patients with intrahepatic cholangiocarcinoma (iCCA) have a worse prognosis and response to immunotherapy than non-C. sinensis-infected patients with iCCA. The underlying molecular characteristics of C. sinensis infection-related iCCAs remain unclear. Herein, we demonstrate that upregulation of FASN (fatty acid synthase) and free fatty acids in C. sinensis-related iCCAs leads to formation of an immunosuppressive microenvironment and tumor progression. Thus, administration of FASN inhibitors could significantly reverse the immunosuppressive microenvironment and further enhance the efficacy of anti-PD-1 against C. sinensis-related iCCAs.

5.
Gastroenterology ; 165(6): 1404-1419, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37704113

RESUMEN

BACKGROUND & AIMS: Pien Tze Huang (PZH) is a well-established traditional medicine with beneficial effects against inflammation and cancer. We aimed to explore the chemopreventive effect of PZH in colorectal cancer (CRC) through modulating gut microbiota. METHODS: CRC mouse models were established by azoxymethane plus dextran sulfate sodium treatment or in Apcmin/+ mice treated with or without PZH (270 mg/kg and 540 mg/kg). Gut barrier function was determined by means of intestinal permeability assays and transmission electron microscopy. Fecal microbiota and metabolites were analyzed by means of metagenomic sequencing and liquid chromatography mass spectrometry, respectively. Germ-free mice or antibiotic-treated mice were used as models of microbiota depletion. RESULTS: PZH inhibited colorectal tumorigenesis in azoxymethane plus dextran sulfate sodium-treated mice and in Apcmin/+ mice in a dose-dependent manner. PZH treatment altered the gut microbiota profile, with an increased abundance of probiotics Pseudobutyrivibrio xylanivorans and Eubacterium limosum, while pathogenic bacteria Aeromonas veronii, Campylobacter jejuni, Collinsella aerofaciens, and Peptoniphilus harei were depleted. In addition, PZH increased beneficial metabolites taurine and hypotaurine, bile acids, and unsaturated fatty acids, and significantly restored gut barrier function. Transcriptomic profiling revealed that PZH inhibited PI3K-Akt, interleukin-17, tumor necrosis factor, and cytokine-chemokine signaling. Notably, the chemopreventive effect of PZH involved both microbiota-dependent and -independent mechanisms. Fecal microbiota transplantation from PZH-treated mice to germ-free mice partly recapitulated the chemopreventive effects of PZH. PZH components ginsenoside-F2 and ginsenoside-Re demonstrated inhibitory effects on CRC cells and primary organoids, and PZH also inhibited tumorigenesis in azoxymethane plus dextran sulfate sodium-treated germ-free mice. CONCLUSIONS: PZH manipulated gut microbiota and metabolites toward a more favorable profile, improved gut barrier function, and suppressed oncogenic and pro-inflammatory pathways, thereby suppressing colorectal carcinogenesis.


Asunto(s)
Neoplasias Colorrectales , Microbioma Gastrointestinal , Ratones , Animales , Transducción de Señal , Sulfato de Dextran/toxicidad , Fosfatidilinositol 3-Quinasas/metabolismo , Apoptosis , Medicina Tradicional , Neoplasias Colorrectales/inducido químicamente , Neoplasias Colorrectales/prevención & control , Neoplasias Colorrectales/metabolismo , Carcinogénesis , Azoximetano/toxicidad
6.
Anal Chem ; 96(16): 6292-6300, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38597814

RESUMEN

Toward the challenges of signaling transduction amplified in enantioselective recognition, we herein devised an innovative strategy for highly selective recognition of amino acids and their derivatives, leveraging photothermal effects. In this approach, bifunctional l-ascorbic acid is employed to reduce silver ions in situ on Au nanostars. Simultaneously, its oxidate (l-dehydroascorbic acid) is bonded to the silver shell as a chiral selector to prepare chiral nanoparticles (C-AuNS@Ag NPs) with the ability to recognize stereoisomers and sensitively modulate the photothermal effect. l-Dehydroascorbic acid can selectively capture one of the enantiomers of the two forms through hydrogen bonding and drive aggregation of the nanoparticles, which sharply enhances the photothermal effect. Consequently, the two forms of the system exhibit a significant temperature difference, which enables the discrimination and quantification of enantiomers. Our strategy verifies that six chiral amino acids and their derivatives can be discriminated with enantioselective response values of up to 79. Additionally, the chiral recognition mechanism was revealed through density functional theory (DFT) calculations, providing a paradigm shift in the development of enantiomeric recognition strategies.

7.
Cardiovasc Diabetol ; 23(1): 83, 2024 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-38402162

RESUMEN

BACKGROUND: Whether distributions and prognostic values of high-sensitivity cardiac troponin (hs-cTn) T and I are different across normoglycemic, prediabetic, and diabetic populations is unknown. METHODS: 10127 adult participants from the National Health and Nutrition Examination Survey 1999-2004 with determined glycemic status and measurement of at least one of hs-cTn assays were included, from whom healthy participants and presumably healthy diabetic and prediabetic participants were selected to investigate pure impacts of glycemic status on distributions of hs-cTn. The nonparametric method and bootstrapping were used to derive the 99th upper reference limits of hs-cTn and 95% CI. Participants with available follow-up and hs-cTn concentrations of all 4 assays were included in prognostic analyses. Associations of hs-cTn with all-cause and cardiac-specific mortality were modeled by Cox proportional hazard regression under the complex survey design. The incremental value of hs-cTn to an established risk score in predicting cardiac-specific mortality was assessed by the 10-year area under time-dependent receiver operating characteristic curve (AUC) using the Fine-Grey competing risk model. RESULTS: Among 9714 participants included in prognostic analyses, 5946 (61.2%) were normoglycemic, 2172 (22.4%) prediabetic, and 1596 (16.4%) diabetic. Hyperglycemic populations were older than the normoglycemic population but sex and race/ethnicity were similar. During the median follow-up of 16.8 years, hs-cTnT and hs-cTnI were independently associated with all-cause and cardiac-specific mortality across glycemic status. In the diabetic population, adjusted hazard ratios per 1-standard deviation increase of log-transformed hs-cTnT and hs-cTnI (Abbott) concentrations were 1.77 (95% CI 1.48-2.12; P < .001) and 1.83 (95% CI 1.33-2.53; P < .001), respectively, regarding cardiac-specific mortality. In the diabetic but not the normoglycemic population, adding either hs-cTnT (difference in AUC: 0.062; 95% CI 0.038-0.086; P < 0.001) or hs-cTnI (Abbott) (difference in AUC: 0.071; 95% CI 0.046-0.097; P < 0.001) would significantly increase the discriminative ability of the risk score; AUC of the score combined with hs-cTnT would be further improved by incorporating hs-cTnI (0.018; 95%CI 0.006-0.029; P = 0.002). The 99th percentile of hs-cTnT of the presumably healthy diabetic population was higher than the healthy population and had no overlap in 95% CIs, however, for hs-cTnI 99th percentiles of the two populations were very close and 95% CIs extensively overlapped. CONCLUSIONS: Hs-cTnT and hs-cTnI demonstrated consistent prognostic associations across glycemic status but incremental predictive values in hyperglycemic populations only. The susceptibility of hs-cTnT 99th percentiles to diabetes plus the additive value of hs-cTnI to hs-cTnT in diabetic cardiovascular risk stratification suggested hs-cTnI and hs-cTnT may be differentially associated with glycemic status, but further research is needed to illustrate the interaction between hyperglycemia and hs-cTn.


Asunto(s)
Infarto del Miocardio , Estado Prediabético , Adulto , Humanos , Pronóstico , Troponina T , Infarto del Miocardio/diagnóstico , Biomarcadores , Encuestas Nutricionales , Estado Prediabético/diagnóstico , Troponina I
8.
Gut ; 72(12): 2272-2285, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-37770127

RESUMEN

OBJECTIVE: Gut microbiota is a key player in dictating immunotherapy response. We aimed to explore the immunomodulatory effect of probiotic Lactobacillus gallinarum and its role in improving anti-programmed cell death protein 1 (PD1) efficacy against colorectal cancer (CRC). DESIGN: The effects of L. gallinarum in anti-PD1 response were assessed in syngeneic mouse models and azoxymethane/dextran sulfate sodium-induced CRC model. The change of immune landscape was identified by multicolour flow cytometry and validated by immunohistochemistry staining and in vitro functional assays. Liquid chromatography-mass spectrometry was performed to identify the functional metabolites. RESULTS: L. gallinarum significantly improved anti-PD1 efficacy in two syngeneic mouse models with different microsatellite instability (MSI) statuses (MSI-high for MC38, MSI-low for CT26). Such effect was confirmed in CRC tumourigenesis model. L. gallinarum synergised with anti-PD1 therapy by reducing Foxp3+ CD25+ regulatory T cell (Treg) intratumoural infiltration, and enhancing effector function of CD8+ T cells. L. gallinarum-derived indole-3-carboxylic acid (ICA) was identified as the functional metabolite. Mechanistically, ICA inhibited indoleamine 2,3-dioxygenase (IDO1) expression, therefore suppressing kynurenine (Kyn) production in tumours. ICA also competed with Kyn for binding site on aryl hydrocarbon receptor (AHR) and antagonised Kyn binding on CD4+ T cells, thereby inhibiting Treg differentiation in vitro. ICA phenocopied L. gallinarum effect and significantly improved anti-PD1 efficacy in vivo, which could be reversed by Kyn supplementation. CONCLUSION: L. gallinarum-derived ICA improved anti-PD1 efficacy in CRC through suppressing CD4+Treg differentiation and enhancing CD8+T cell function by modulating the IDO1/Kyn/AHR axis. L. gallinarum is a potential adjuvant to augment anti-PD1 efficacy against CRC.


Asunto(s)
Neoplasias Colorrectales , Inhibidores de Puntos de Control Inmunológico , Quinurenina , Lactobacillus , Animales , Ratones , Linfocitos T CD8-positivos , Neoplasias Colorrectales/tratamiento farmacológico , Quinurenina/metabolismo , Receptores de Hidrocarburo de Aril/efectos de los fármacos , Receptores de Hidrocarburo de Aril/metabolismo , Linfocitos T Reguladores , Lactobacillus/química , Receptor de Muerte Celular Programada 1/efectos de los fármacos , Receptor de Muerte Celular Programada 1/inmunología , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Lisados Bacterianos/farmacología , Lisados Bacterianos/uso terapéutico
9.
J Hepatol ; 79(5): 1185-1200, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37459919

RESUMEN

BACKGROUND & AIMS: RNA N6-methyladenosine (m6A) reader protein YTHDF1 has been implicated in cancer; however, its role in hepatocellular carcinoma (HCC), especially in non-alcoholic steatohepatitis-associated HCC (NASH-HCC), remains unknown. Here, we investigated the functional role of YTHDF1 in NASH-HCC and its interplay with the tumor immune microenvironment. METHODS: Hepatocyte-specific Ythdf1-overexpressing mice were subjected to a NASH-HCC-inducing diet. Tumor-infiltrating immune cells were profiled with single-cell RNA-sequencing, flow cytometry, and immunostaining. The molecular target of YTHDF1 was elucidated with RNA-sequencing, m6A-sequencing, YTHDF1 RNA immunoprecipitation-sequencing, proteomics, and ribosome-profiling. Ythdf1 in NASH-HCC models was targeted by lipid nanoparticle (LNP)-encapsulated small-interfering Ythdf1. RESULTS: YTHDF1 is overexpressed in tumor tissues compared to adjacent peri-tumor tissues from patients with NASH-HCC. Liver-specific Ythdf1 overexpression drives tumorigenesis in dietary models of spontaneous NASH-HCC. Single-cell RNA-sequencing and flow cytometry revealed that Ythdf1 induced accumulation of myeloid-derived suppressor cells (MDSCs) and suppressed cytotoxic CD8+ T-cell function. Mechanistically, Ythdf1 expression in NASH-HCC cells induced the secretion of IL-6, which mediated MDSC recruitment and activation, leading to CD8+ T-cell dysfunction. EZH2 mRNA was identified as a key YTHDF1 target. YTHDF1 binds to m6A-modified EZH2 mRNA and promotes EZH2 translation. EZH2 in turn increased expression and secretion of IL-6. Ythdf1 knockout synergized with anti-PD-1 treatment to suppress tumor growth in NASH-HCC allografts. Furthermore, therapeutic targeting of Ythdf1 using LNP-encapsulated small-interfering RNA significantly increased the efficacy of anti-PD-1 blockade in NASH-HCC allografts. CONCLUSIONS: We identified that YTHDF1 promotes NASH-HCC tumorigenesis via EZH2-IL-6 signaling, which recruits and activates MDSCs to cause cytotoxic CD8+ T-cell dysfunction. YTHDF1 may be a novel therapeutic target to improve responses to anti-PD-1 immunotherapy in NASH-HCC. IMPACT AND IMPLICATIONS: YTHDF1, a N6-methyladenosine reader, is upregulated in patients with non-alcoholic steatohepatitis (NASH)-associated hepatocellular carcinoma (HCC); however, its role in modulating the tumor immune microenvironment in NASH-HCC remains unclear. Here, we show that Ythdf1 mediates immunosuppression in NASH-HCC and that targeting YTHDF1 in combination with immune checkpoint blockade elicits robust antitumor immune responses. Our findings suggest novel therapeutic targets for potentiating the efficacy of immune checkpoint blockade in NASH-HCC and provide the rationale for developing YTHDF1 inhibitors for the treatment of NASH-HCC.

10.
Brief Bioinform ; 22(3)2021 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32496513

RESUMEN

The gut microbiota plays important roles in human health through regulating both physiological homeostasis and disease emergence. The accumulation of metagenomic sequencing studies enables us to better understand the temporal and spatial variations of the gut microbiota under different physiological and pathological conditions. However, it is inconvenient for scientists to query and retrieve published data; thus, a comprehensive resource for the quantitative gut metagenome is urgently needed. In this study, we developed gut MEtaGenome Atlas (gutMEGA), a well-annotated comprehensive database, to curate and host published quantitative gut microbiota datasets from Homo sapiens. By carefully curating the gut microbiota composition, phenotypes and experimental information, gutMEGA finally integrated 59 132 quantification events for 6457 taxa at seven different levels (kingdom, phylum, class, order, family, genus and species) under 776 conditions. Moreover, with various browsing and search functions, gutMEGA provides a fast and simple way for users to obtain the relative abundances of intestinal microbes among phenotypes. Overall, gutMEGA is a convenient and comprehensive resource for gut metagenome research, which can be freely accessed at http://gutmega.omicsbio.info.


Asunto(s)
Bases de Datos Genéticas , Microbioma Gastrointestinal/genética , Metagenoma , Humanos , Internet , Fenotipo , Programas Informáticos
11.
J Transl Med ; 21(1): 276, 2023 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-37088830

RESUMEN

BACKGROUND: Both dysregulation of mechanistic target of rapamycin (mTOR) signalling and DNA methylation patterns have been shown to be closely associated with tumor progression and serve as promising targets for hepatocellular carcinoma (HCC) therapy. Although their respective roles in HCC have been extensively revealed, the existence of molecular interactions between them remains largely unknown. METHODS: The association of DNA methylation and mTOR signalling in HCC tissues and cell lines was assessed. A Kaplan‒Meier analysis was applied to estimate the overall survival (OS) and recurrence-free survival (RFS) of HCC patients. The modulation of DNMT1 by mTOR in HCC cell lines was determined. The effect of the drug combination in cell lines and mouse models was examined. RESULTS: The results showed that the DNA methylation level was positively associated with the activation of mTOR signalling in HCC tissues and cell lines. Moreover, HCC patients with higher DNA methylation levels and enhanced activation of mTOR signalling exhibited the worst prognosis. Then, we screened methylation-related enzymes and found that the activation of mTOR signalling increased DNMT1 expression and activity. In addition, mTOR enhanced the translational efficiency of DNMT1 in a 4E-BP1-dependent manner, which is based on the pyrimidine rich translational element (PRTE)-containing 5'UTR of DNMT1. Moreover, we demonstrated that the combined inhibition of mTOR and DNMT synergistically inhibited HCC growth in vitro and in vivo. CONCLUSIONS: In addition to some already identified pro-cancer downstream molecules, the activation of mTOR signalling was found to promote DNA methylation by increasing the translation of DNMT1. Furthermore, combined targeting of mTOR and DNMT1 has been demonstrated to have a more effective tumor suppressive function in HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Ratones , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , ADN (Citosina-5-)-Metiltransferasa 1/genética , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Metilación de ADN/genética , Neoplasias Hepáticas/patología , Sirolimus , Serina-Treonina Quinasas TOR/metabolismo
12.
Hepatology ; 75(5): 1123-1138, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34435708

RESUMEN

BACKGROUND AND AIMS: Androgen receptor (AR) has been reported to play an important role in the development and progression of man's prostate cancer. Hepatocellular carcinoma (HCC) is also male-dominant, but the role of AR in HCC remains poorly understood. Mechanistic target of rapamycin complex 1 (mTORC1) also has been reported to be highly activated in HCC. In this study, we aimed to explore the role of AR phosphorylation and its relationship with mTORC1 in hepatocarcinogenesis. APPROACH AND RESULTS: In vitro experiment, we observed that mTORC1 interacts with hepatic AR and phosphorylates it at S96 in response to nutrient and mitogenic stimuli in HCC cells. S96 phosphorylation promotes the stability, nuclear localization, and transcriptional activity of AR, which enhances de novo lipogenesis and proliferation in hepatocytes and induces liver steatosis and hepatocarcinogenesis in mice independently and cooperatively with androgen. Furthermore, high ARS96 phosphorylation is observed in human liver steatotic and HCC tissues and is associated with overall survival and disease-free survival, which has been proven as an independent survival predictor for patients with HCC. CONCLUSIONS: AR S96 phosphorylation by mTORC1 drives liver steatosis and HCC development and progression independently and cooperatively with androgen, which not only explains why HCC is man-biased but also provides a target molecule for prevention and treatment of HCC and a potential survival predictor in patients with HCC.


Asunto(s)
Carcinoma Hepatocelular , Hígado Graso , Neoplasias Hepáticas , Andrógenos , Animales , Carcinogénesis , Carcinoma Hepatocelular/patología , Transformación Celular Neoplásica , Humanos , Neoplasias Hepáticas/patología , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Fosforilación , Receptores Androgénicos/metabolismo
13.
Clin Oral Investig ; 27(5): 2267-2276, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37017756

RESUMEN

OBJECTIVES: This study is aimed at assessing the Cone-beam computed tomographic (CBCT) characteristics of temporomandibular joints (TMJ) in degenerative temporomandibular joint disease (DJD) patients with chewing side preference (CSP). MATERIALS AND METHODS: CBCT images of 98 patients with DJD (67 with CSP and 31 without CSP) and 22 asymptomatic participants without DJD were measured retrospectively to compare the osteoarthritic changes and the morphology of TMJ. Quantitative analysis of the TMJ radiographic images was performed to present a comparison between the three inter-group groups and between the two sides of the joints. RESULTS: The frequencies of the articular flattening and surface erosion occur more often in the preferred side joints of DJD patients with CSP than the contralateral side. In addition, the horizontal angle of condyle, the depth of glenoid fossa (DGF), and the inclination of articular eminence (IAE) were larger in DJD patients with CSP than that in asymptomatic participants (p<0.05). Also, the condylar anteroposterior dimension of preferred side joints was significantly less than that of non-preferred side (p=0.026), while the width of condyles (p=0.041) and IAE (p=0.045) was greater. CONCLUSIONS: DJD patients with CSP appear to have a higher prevalence of osteoarthritic changes, with the morphological changes such as flat condyle, deep glenoid fossa, and steep articular eminence, which might be considered the characteristic imaging features. CLINICAL RELEVANCE: This study found that CSP is a predisposing factor for the development of DJD, and attention should be paid to the existence of CSP in DJD patients during the clinical practice.


Asunto(s)
Cóndilo Mandibular , Trastornos de la Articulación Temporomandibular , Humanos , Estudios Retrospectivos , Masticación , Trastornos de la Articulación Temporomandibular/diagnóstico por imagen , Articulación Temporomandibular/diagnóstico por imagen , Tomografía Computarizada de Haz Cónico
14.
Molecules ; 28(8)2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37110586

RESUMEN

Cordyceps has anti-cancer effects; however, the bioactive substance and its effect are still unclear. Polysaccharides extracted from Cordyceps sinensis, the fugus of Cordyceps, have been reported to have anti-cancer properties. Thus, we speculated that polysaccharides might be the key anti-tumor active ingredients of Cordyceps because of their larger molecular weight than that of polysaccharides in Cordyceps sinensis. In this study, we aimed to investigate the effects of wild Cordyceps polysaccharides on H22 liver cancer and the underlying mechanism. The structural characteristics of the polysaccharides of WCP were analyzed by high-performance liquid chromatography, high-performance gel-permeation chromatography, Fourier transform infrared spectrophotometry, and scanning electron microscopy. Additionally, H22 tumor-bearing BALB/c mice were used to explore the anti-tumor effect of WCP (100 and 300 mg/kg/d). The mechanism by WCP inhibited H22 tumors was uncovered by the TUNEL assay, flow cytometry, hematoxylin-eosin staining, quantitative reverse transcription-polymerase chain reaction, and Western blotting. Here, our results showed that WCP presented high purity with an average molecular weight of 2.1 × 106 Da and 2.19 × 104 Da. WCP was determined to be composed of mannose, glucose, and galactose. Notably, WCP could inhibit the proliferation of H22 tumors not only by improving immune function, but also by promoting the apoptosis of tumor cells, likely through the IL-10/STAT3/Bcl2 and Cyto-c/Caspase8/3 signaling pathways, in H22 tumor-bearing mice. Particularly, WCP had essentially no side effects compared to 5-FU, a common drug used in the treatment of liver cancer. In conclusion, WCP could be a potential anti-tumor product with strong regulatory effects in H22 liver cancer.


Asunto(s)
Antineoplásicos , Cordyceps , Neoplasias Hepáticas , Animales , Ratones , Cordyceps/química , Peso Molecular , Antineoplásicos/química , Polisacáridos/química , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología
15.
Brief Bioinform ; 21(5): 1798-1805, 2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32978618

RESUMEN

Protein lysine acetylation regulation is an important molecular mechanism for regulating cellular processes and plays critical physiological and pathological roles in cancers and diseases. Although massive acetylation sites have been identified through experimental identification and high-throughput proteomics techniques, their enzyme-specific regulation remains largely unknown. Here, we developed the deep learning-based protein lysine acetylation modification prediction (Deep-PLA) software for histone acetyltransferase (HAT)/histone deacetylase (HDAC)-specific acetylation prediction based on deep learning. Experimentally identified substrates and sites of several HATs and HDACs were curated from the literature to generate enzyme-specific data sets. We integrated various protein sequence features with deep neural network and optimized the hyperparameters with particle swarm optimization, which achieved satisfactory performance. Through comparisons based on cross-validations and testing data sets, the model outperformed previous studies. Meanwhile, we found that protein-protein interactions could enrich enzyme-specific acetylation regulatory relations and visualized this information in the Deep-PLA web server. Furthermore, a cross-cancer analysis of acetylation-associated mutations revealed that acetylation regulation was intensively disrupted by mutations in cancers and heavily implicated in the regulation of cancer signaling. These prediction and analysis results might provide helpful information to reveal the regulatory mechanism of protein acetylation in various biological processes to promote the research on prognosis and treatment of cancers. Therefore, the Deep-PLA predictor and protein acetylation interaction networks could provide helpful information for studying the regulation of protein acetylation. The web server of Deep-PLA could be accessed at http://deeppla.cancerbio.info.


Asunto(s)
Aprendizaje Profundo , Histona Desacetilasas/metabolismo , Lisina/metabolismo , Neoplasias/metabolismo , Acetilación , Conjuntos de Datos como Asunto , Humanos , Internet , Neoplasias/enzimología , Neoplasias/patología
16.
J Gastroenterol Hepatol ; 37(8): 1446-1454, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35771719

RESUMEN

Cancer organoids, a three-dimensional (3D) culture system of cancer cells derived from tumor tissues, recapitulate physiological structure of the parental tumor. Different tumor organoids have been established for a variety of tumor types, such as colorectal, liver, stomach, pancreatic and brain tumors. Some tumor organoid biobanks are built to screen and discover novel antitumor drug targets. Moreover, patients-derived tumor organoids (PDOs) could predict treatment response to chemoradiotherapy, targeted therapy and immunotherapy to provide guidance for personalized cancer therapy. In this review, we provide an updated overview of tumor organoid development, summarize general approach to establish tumor organoids, and discuss the application of anti-cancer drug screening based on tumor organoid and its application in personalized therapy. We also outline the opportunities and challenges for organoids to guide precision medicine.


Asunto(s)
Antineoplásicos , Neoplasias , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Evaluación Preclínica de Medicamentos , Detección Precoz del Cáncer , Humanos , Neoplasias/tratamiento farmacológico , Organoides/patología , Tecnología
17.
J Gastroenterol Hepatol ; 37(6): 1156-1168, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35233828

RESUMEN

BACKGROUND AND AIM: Intrahepatic cholangiocarcinoma (ICC) is a highly aggressive disease with the underlying mechanisms poorly understood. YTHDF1, an N6 -methyladenosine (m6 A) reader protein, has important physiological functions in regulation of tumor development. However, the effect of YTHDF1 on ICC progression remains unknown yet. METHODS: The expression level of YTHDF1 in human ICC tissue was examined in The Cancer Genome Atlas database and our cohort. The role of YTHDF1 was detected using two human ICC cell lines in vitro. An ICC tumorigenesis mouse model was established via hydrodynamic transfection of AKT/YAP plasmids. m6 A sequencing, RNA immunoprecipitation sequencing, and RNA sequencing were carried out to explore the mechanism of YTHDF1 modulating ICC progression. RESULTS: Here, we find that YTHDF1 is upregulated in ICC and associated with shorter survival of ICC patients. Depletion of YTHDF1 inhibits cell proliferation, migration, and invasion, while overexpression of wild-type YTHDF1, but not m6 A reader domain mutant YTHDF1, significantly enhances tumor cell growth and aggressive abilities in vitro. Moreover, overexpression of YTHDF1 promotes the AKT/YAP transfection-induced orthotopic ICC tumorigenesis and progression in vivo. Mechanistically, we identify that YTHDF1 regulates the translation of epidermal growth factor receptor (EGFR) mRNA via binding m6 A sites in the 3'-UTR of EGFR transcript, thus leading to aberrant activities of downstream signal pathways that impact tumor progression. CONCLUSIONS: Our data uncover the oncogenic function and m6 A reader-dependent mechanism of YTHDF1 in regulation of ICC progression. Restricting abnormal oncogenic mRNA translation by targeting YTHDF1 may be a novel and promising strategy for ICC treatment.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Animales , Neoplasias de los Conductos Biliares/patología , Conductos Biliares Intrahepáticos/patología , Carcinogénesis , Línea Celular Tumoral , Colangiocarcinoma/patología , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Ratones , Biosíntesis de Proteínas , Proteínas Proto-Oncogénicas c-akt , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
18.
J Craniofac Surg ; 33(8): e810-e812, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36409853

RESUMEN

Cystic hygroma is one type of the benign malformations and typically located in the neck, clavicle, and others, in children under the age of 5 years. However, the incidence of giant cervicomediastinal giant cystic hygroma is very rare, especially in adulthood. Such a location and age make its diagnosis difficult because they are usually asymptomatic. Complete surgical resection seems impossible while multiple sites are involved. Herein, we present a case of giant cervicomediastinal cystic hygroma, describing the clinical presentation, radiographic features, and OK-432 sclerotherapy. In conclusion, repeated OK-432 sclerotherapy may be an effective treatment option in giant cervicomediastinal cystic hygroma. Pay close attention to patient's symptoms and vital signs, adjusting the OK-432 dose throughout the process.


Asunto(s)
Linfangioma Quístico , Picibanil , Niño , Humanos , Adulto , Preescolar , Picibanil/uso terapéutico , Linfangioma Quístico/diagnóstico por imagen , Linfangioma Quístico/terapia , Escleroterapia , Cuello , Clavícula
19.
Nucleic Acids Res ; 47(D1): D451-D458, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30380102

RESUMEN

Temporal and spatial protein phosphorylation dynamically orchestrates a broad spectrum of biological processes and plays various physiological and pathological roles in diseases and cancers. Recent advancements in high-throughput proteomics techniques greatly promoted the profiling and quantification of phosphoproteome. However, although several comprehensive databases have reserved the phosphorylated proteins and sites, a resource for phosphorylation quantification still remains to be constructed. In this study, we developed the qPhos (http://qphos.cancerbio.info) database to integrate and host the data on phosphorylation dynamics. A total of 3 537 533 quantification events for 199 071 non-redundant phosphorylation sites on 18 402 proteins under 484 conditions were collected through exhaustive curation of published literature. The experimental details, including sample materials, conditions and methods, were recorded. Various annotations, such as protein sequence and structure properties, potential upstream kinases and their inhibitors, were systematically integrated and carefully organized to present details about the quantified phosphorylation sites. Various browse and search functions were implemented for the user-defined filtering of samples, conditions and proteins. Furthermore, the qKinAct service was developed to dissect the kinase activity profile from user-submitted quantitative phosphoproteome data through annotating the kinase activity-related phosphorylation sites. Taken together, the qPhos database provides a comprehensive resource for protein phosphorylation dynamics to facilitate related investigations.


Asunto(s)
Bases de Datos de Proteínas , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Procesamiento Proteico-Postraduccional , Humanos , Fosforilación , Proteínas Quinasas/metabolismo , Proteoma/metabolismo
20.
Biochem Biophys Res Commun ; 525(2): 360-365, 2020 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-32089266

RESUMEN

Aldehyde dehydrogenase 2, a mitochondrial matrix enzyme, plays a crucial role in protecting the heart against stress, such as ischemia reperfusion and alcohol injury. The present study aimed to investigate the effect of aldehyde dehydrogenase 2 on lipotoxic cardiomyopathy and to explore the possible mechanisms in vitro. Primary cardiomyocytes in the lipotoxic group were treated with oxidatively modified low-density lipoprotein (50 mg/L) for 24 h. Overexpression of aldehyde dehydrogenase 2 was achieved using the aldehyde dehydrogenase 2 activator, Alda-1 (20 µM). We found that cardiomyocyte apoptosis was attenuated by aldehyde dehydrogenase 2 overexpression. In addition, aldehyde dehydrogenase 2 overexpression inhibited the expression of BCL2 associated X, apoptosis regulator (BAX) and caspase 3, while it enhanced protein kinase B (AKT) and glycogen synthase kinase 3 beta (GSK-3ß) phosphorylation. The results suggested that aldehyde dehydrogenase 2 is cardioprotective against lipotoxic cardiomyopathy, probably by reducing apoptosis through the AKT/glycogen synthase kinase 3 beta (GSK-3ß) pathway. Our findings partially revealed the molecular mechanism of aldehyde dehydrogenase 2's cardioprotective effect against lipotoxic injury, and suggest a new therapeutic strategy to treat lipotoxic cardiomyopathy.


Asunto(s)
Aldehído Deshidrogenasa Mitocondrial/fisiología , Apoptosis/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Cardiomiopatías/etiología , Cardiomiopatías/terapia , Células Cultivadas , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Lípidos/toxicidad , Lipoproteínas IDL/toxicidad , Sustancias Protectoras/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA