Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant Cell ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38917216

RESUMEN

Plants generally enhance their root growth in the form of greater biomass and/or root length to boost nutrient uptake in response to short-term low nitrogen (LN). However, the underlying mechanisms of short-term LN-mediated root growth remain largely elusive. Our genome-wide association study, haplotype analysis, and phenotyping of transgenic plants showed that the crucial nitrate signaling component NIN-LIKE PROTEIN3.2 (ZmNLP3.2), a positive regulator of root biomass, is associated with natural variations in root biomass of maize (Zea mays L.) seedlings under LN. The monocot-specific gene AUXIN/INDOLE-3-ACETIC ACID14 (ZmAux/IAA14) exhibited opposite expression patterns to ZmNLP3.2 in ZmNLP3.2 knockout and overexpression lines, suggesting that ZmNLP3.2 hampers ZmAux/IAA14 transcription. Importantly, ZmAux/IAA14 knockout seedlings showed a greater root dry weight (RDW), whereas ZmAux/IAA14 overexpression reduced RDW under LN compared with wild-type plants, indicating that ZmAux/IAA14 negatively regulates the RDW of LN-grown seedlings. Moreover, in vitro and vivo assays indicated that AUXIN RESPONSE FACTOR19 (ZmARF19) binds to and transcriptionally activates ZmAux/IAA14, which was weakened by the ZmNLP3.2-ZmARF19 interaction. The zmnlp3.2 ZmAux/IAA14-OE seedlings exhibited further reduced RDW compared to ZmAux/IAA14 overexpression lines when subjected to LN treatment, corroborating the ZmNLP3.2-ZmAux/IAA14 interaction. Thus, our study reveals a ZmNLP3.2-ZmARF19-ZmAux/IAA14 module regulating root biomass in response to nitrogen limitation in maize.

2.
Plant Cell ; 34(11): 4232-4254, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36047828

RESUMEN

Maternal-to-filial nutrition transfer is central to grain development and yield. nitrate transporter 1/peptide transporter (NRT1-PTR)-type transporters typically transport nitrate, peptides, and ions. Here, we report the identification of a maize (Zea mays) NRT1-PTR-type transporter that transports sucrose and glucose. The activity of this sugar transporter, named Sucrose and Glucose Carrier 1 (SUGCAR1), was systematically verified by tracer-labeled sugar uptake and serial electrophysiological studies including two-electrode voltage-clamp, non-invasive microelectrode ion flux estimation assays in Xenopus laevis oocytes and patch clamping in HEK293T cells. ZmSUGCAR1 is specifically expressed in the basal endosperm transfer layer and loss-of-function mutation of ZmSUGCAR1 caused significantly decreased sucrose and glucose contents and subsequent shrinkage of maize kernels. Notably, the ZmSUGCAR1 orthologs SbSUGCAR1 (from Sorghum bicolor) and TaSUGCAR1 (from Triticum aestivum) displayed similar sugar transport activities in oocytes, supporting the functional conservation of SUGCAR1 in closely related cereal species. Thus, the discovery of ZmSUGCAR1 uncovers a type of sugar transporter essential for grain development and opens potential avenues for genetic improvement of seed-filling and yield in maize and other grain crops.


Asunto(s)
Grano Comestible , Glucosa , Transportadores de Nitrato , Transportador de Péptidos 1 , Proteínas de Plantas , Sacarosa , Zea mays , Humanos , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Glucosa/metabolismo , Células HEK293 , Transportadores de Nitrato/genética , Transportadores de Nitrato/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sacarosa/metabolismo , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo , Transportador de Péptidos 1/genética , Transportador de Péptidos 1/metabolismo , Transporte Biológico
3.
J Environ Manage ; 359: 120989, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38678906

RESUMEN

The efficient utilization of food waste (FW) resources through Food Waste Valorization (FWV) has received increasing attention in recent years. Various decision-making studies have been undertaken to facilitate FWV implementation, such as the studies on decision-making framework and FWV technology assessment. Food waste hierarchy is a widely discussed framework in FW management, but it was found too simplified and does not always contribute positively to environmental sustainability. Moreover, decision-making studies in FWV often focus on specific aspects of the food system and employ distinctive decision-making approaches, making it difficult to compare the results from different studies. Therefore, our literature review is conducted to provide a comprehensive understanding of FWV decision-making. This study identifies what decisions are needed, and three levels of decisions are revealed: system-level, FW stream-level, and FWV option-level. The assessment approaches and criteria used to support decision-making in FWV are also collected and analyzed. Building upon these findings, an hourglass model is synthesized to provide a holistic illustration of decision-making in FWV. This study untangles the complexities of FWV decision-making and sheds light on the limitations of current studies. We anticipate this study will make more people realize that FWV is a multidisciplinary issue and requires the collective participation of researchers, practitioners, policymakers, and consumers. Such collective engagement is essential to effectively address practical challenges and propel the transition of the current food system toward a more resource-efficient paradigm.


Asunto(s)
Toma de Decisiones , Alimentos , Administración de Residuos/métodos , Alimento Perdido y Desperdiciado
4.
PLoS Biol ; 18(3): e3000671, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32203514

RESUMEN

Domesticated crops with high yield and quality are frequently susceptible to pathogen attack, whereas enhancement of disease resistance generally compromises crop yield. The underlying mechanisms of how plant development and disease resistance are coordinately programed remain elusive. Here, we showed that the basic Helix-Loop-Helix (bHLH) transcription factor Cucumis sativus Irregular Vasculature Patterning (CsIVP) was highly expressed in cucumber vascular tissues. Knockdown of CsIVP caused severe vasculature disorganization and abnormal organ morphogenesis. CsIVP directly binds to vascular-related regulators YABBY5 (CsYAB5), BREVIPEDICELLUS (CsBP), and AUXIN/INDOLEACETIC ACIDS4 (CsAUX4) and promotes their expression. Knockdown of CsYAB5 resulted in similar phenotypes as CsIVP-RNA interference (RNAi) plants, including disturbed vascular configuration and abnormal organ morphology. Meanwhile, CsIVP-RNAi plants were more resistant to downy mildew and accumulated more salicylic acid (SA). CsIVP physically interacts with NIM1-INTERACTING1 (CsNIMIN1), a negative regulator in the SA signaling pathway. Thus, CsIVP is a novel vasculature regulator functioning in CsYAB5-mediated organ morphogenesis and SA-mediated downy mildew resistance in cucumber.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Cucumis sativus/crecimiento & desarrollo , Cucumis sativus/inmunología , Proteínas de Plantas/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Cucumis sativus/clasificación , Cucumis sativus/genética , Resistencia a la Enfermedad/genética , Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Morfogénesis , Filogenia , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/genética , Haz Vascular de Plantas/genética , Haz Vascular de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Unión Proteica , Ácido Salicílico/metabolismo , Transducción de Señal/genética
5.
Environ Geochem Health ; 45(11): 7585-7601, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37394675

RESUMEN

As important place for water storage and supply, drinking-water reservoirs in karst mountain areas play a key role in ensuring human well-being, and its water quality safety has attracted much attention. Source apportionment and ecological risks of heavy metal(loid)s in sediments of drinking-water reservoir are important for water security, public health, and regional water resources management, especially in karst mountain areas where water resources are scarce. To expound the accumulation, potential ecological risks, and sources of heavy metal(loid)s in a drinking-water reservoir in Northwest Guizhou, China, the surface sediments were collected and analyzed based on the combined use of the geo-accumulation index (Igeo), sequential extraction (BCR), ratios of secondary phase and primary phase (RSP), risk assessment code (RAC), modified potential ecological risk index (MRI), as well as the positive matrix factorization methods. The results indicated that the accumulation of Cd in sediments was obvious, with approximately 61.9% of the samples showing moderate to high accumulation levels, followed by Pb, Cu, Ni, and Zn, whereas the As and Cr were at low levels. A large proportion of BCR-extracted acid extractable and reducible fraction were found in Cd (72.5%) and Pb (40.3%), suggesting high bioavailability. The combined results of RSP, RAC, and MRI showed that Cd was the major pollutant in sediments with high potential ecological risk, while the risk of other elements was low. Source apportionment results of heavy metal(loid)s indicated that Cd (75.76%) and Zn (23.1%) mainly originated from agricultural activities; As (69.82%), Cr (50.05%), Cu (33.47%), and Ni (31.87%) were associated with domestic sources related to residents' lives; Cu (52.36%), Ni (44.57%), Cr (34.33%), As (26.51%), Pb (24.77%), and Zn (23.80%) primarily came from natural geological sources; and Pb (47.56%), Zn (22.46%) and Cr (13.92%) might be introduced by mixed sources of traffic and domestic. The contribution ratios of the four sources were 18.41%, 36.67%, 29.48%, and 15.44%, respectively. Overall, priority control factors for pollution in relation to agricultural sources included Cd, while domestic sources are primarily associated with As. It is crucial to place special emphasis on the impacts of human activities when formulating pollution prevention and control measures. The results of this study can provide valuable reference and insights for water resources management and pollution prevention and control strategies in karst mountainous areas.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Humanos , Monitoreo del Ambiente/métodos , Cadmio , Plomo , Contaminantes Químicos del Agua/análisis , Sedimentos Geológicos , Ríos , Metales Pesados/análisis , Medición de Riesgo , Calidad del Agua , China
6.
Plant Cell Physiol ; 63(5): 605-617, 2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35137209

RESUMEN

Crop plants experience various abiotic stresses that reduce yield and quality. Although several adaptative physiological and defense responses to single stress have been identified, the behavior and mechanisms of plant response to multiple stresses remain underexamined. Herein, we determined that the leaf and vascular changes in Cucumis sativus Irregular Vasculature Patterning (CsIVP)-RNAi cucumber plants can enhance resistance to nitrogen deficiency and high-temperature stress. CsIVP negatively regulated high nitrate affinity transporters (NRT2.1, NRT2.5) and reallocation transporters (NRT1.7, NRT1.9, NRT1.12) under low nitrogen stress. Furthermore, CsIVP-RNAi plants have high survival rate with low heat injury level under high-temperature condition. Several key high-temperature regulators, including Hsfs, Hsps, DREB2C, MBF1b and WRKY33 have significant expression in CsIVP-RNAi plants. CsIVP negatively mediated high-temperature responses by physically interacting with CsDREB2C. Altogether, these results indicated that CsIVP integrates innate programming of plant development, nutrient transport and high-temperature resistance, providing a potentially valuable target for breeding nutrient-efficient and heat-resistant crops.


Asunto(s)
Cucumis sativus , Cucumis sativus/metabolismo , Regulación de la Expresión Génica de las Plantas , Calor , Nitrógeno/metabolismo , Fitomejoramiento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Temperatura
7.
Plant Cell ; 31(6): 1289-1307, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30979795

RESUMEN

Fruit length is a prominent agricultural trait during cucumber (Cucumis sativus) domestication and diversifying selection; however, the regulatory mechanisms of fruit elongation remain elusive. We identified two alleles of the FRUITFULL (FUL)-like MADS-box gene CsFUL1 with 3393C/A Single Nucleotide Polymorphism variation among 150 cucumber lines. Whereas CsFUL1A was specifically enriched in the long-fruited East Asian type cucumbers (China and Japan), the CsFUL1C allele was randomly distributed in cucumber populations, including wild and semiwild cucumbers. CsFUL1A knockdown led to further fruit elongation in cucumber, whereas elevated expression of CsFUL1A resulted in significantly shorter fruits. No effect on fruit elongation was detected when CsFUL1C expression was modulated, suggesting that CsFUL1A is a gain-of-function allele in long-fruited cucumber that acts as a repressor during diversifying selection of East Asian cucumbers. Furthermore, CsFUL1A binds to the CArG-box in the promoter region of SUPERMAN, a regulator of cell division and expansion, to repress its expression. Additionally, CsFUL1A inhibits the expression of auxin transporters PIN-FORMED1 (PIN1) and PIN7, resulting in decreases in auxin accumulation in fruits. Together, our work identifies an agriculturally important allele and suggests a strategy for manipulating fruit length in cucumber breeding that involves modulation of CsFUL1A expression.


Asunto(s)
Cucumis sativus/genética , Frutas/metabolismo , Proteínas de Plantas/metabolismo , Sitios de Carácter Cuantitativo/genética , Alelos , Frutas/genética , Proteínas de Plantas/genética
8.
Bull Environ Contam Toxicol ; 109(5): 741-746, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35715701

RESUMEN

In this study, topsoil and soil profiles were collected from typical karst areas in central Guizhou to investigate the accumulation and bioavailability of As in cultivated soils. The parent material of the investigated soil is carbonate rock, but there is strong heterogeneity in the As concentrations of soils developed in the Permian and Triassic, with average concentrations of 18.31 and 40.35 mg/kg, respectively. Additionally, the average As concentration of dolomite of the Anshun Formation (46.23 mg/kg) is slightly higher than that of the limestone in the Daye Formation (31.96 mg/kg) from the Triassic. Arsenic in the soil profiles of Triassic is also higher than that of the Permian and shows deep enrichment characteristics. Approximately 80% of the As exists as stable crystalline hydrous oxide-bound As and residual As fractions, and the bioavailability is very low.


Asunto(s)
Arsénico , Contaminantes del Suelo , Suelo/química , Arsénico/análisis , Contaminantes del Suelo/análisis , China , Disponibilidad Biológica
9.
Plant Physiol ; 184(1): 374-392, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32586893

RESUMEN

Carotenoid cleavage dioxygenases (CCDs) drive carotenoid catabolism to produce various apocarotenoids and immediate derivatives with particular developmental, ecological, and agricultural importance. How CCD genes evolved with species diversification and the resulting functional novelties in cereal crops have remained largely elusive. We constructed a unified four-clade phylogenetic tree of CCDs, revealing a previously unanchored basal clade CCD10 CCD10 underwent highly dynamic duplication or loss events, even in the grass family. Different from cleavage sites of CCD8 and ZAXINONE SYNTHASE (ZAS), maize (Zea mays) ZmCCD10a cleaved differentially structured carotenoids at 5, 6 (5', 6') and 9, 10 (9', 10') positions, generating C8 (6-methyl-5-hepten-2-one) and C13 (geranylacetone, α-ionone, and ß-ionone) apocarotenoids in Escherichia coli Localized in plastids, ZmCCD10a cleaved neoxanthin, violaxanthin, antheraxathin, lutein, zeaxanthin, and ß-carotene in planta, corroborating functional divergence of ZmCCD10a and ZAS. ZmCCD10a expression was dramatically stimulated in maize and teosinte (Z. mays ssp. parviglumis, Z. mays ssp. huehuetenangensis, Zea luxurians, and Zea diploperennis) roots by phosphate (Pi) limitation. ZmCCD10a silencing favored phosphorus retention in the root and reduced phosphorus and biomass accumulation in the shoot under low Pi. Overexpression of ZmCCD10a in Arabidopsis (Arabidopsis thaliana) enhanced plant tolerance to Pi limitation by preferential phosphorus allocation to the shoot. Thus, ZmCCD10a encodes a unique CCD facilitating plant tolerance to Pi limitation. Additionally, ZmCCD10a silencing and overexpression led to coherent alterations in expression of PHOSPHATE STARVATION RESPONSE REGULATOR 1 (PHR1) and Pi transporters, and cis-regulation of ZmCCD10a expression by ZmPHR1;1 and ZmPHR1;2 implies a probable ZmCCD10a-involved regulatory pathway that adjusts Pi allocation.


Asunto(s)
Carotenoides/metabolismo , Dioxigenasas/metabolismo , Fosfatos/metabolismo , Proteínas de Plantas/metabolismo , Arabidopsis/metabolismo , Norisoprenoides/metabolismo , Terpenos/metabolismo , Xantófilas/metabolismo , Zea mays/metabolismo , beta Caroteno/metabolismo
10.
J Exp Bot ; 72(10): 3846-3863, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33765129

RESUMEN

Phosphorus and nitrogen nutrition have profound and complicated innate connections; however, underlying molecular mechanisms are mostly elusive. PHR1 is a master phosphate signaling component, and whether it directly functions in phosphorus-nitrogen crosstalk remains a particularly interesting question. In maize, nitrogen limitation caused tip kernel abortion and ear shortening. By contrast, moderately low phosphate in the field reduced kernels across the ear, maintained ear elongation and significantly lowered concentrations of total free amino acids and soluble proteins 2 weeks after silking. Transcriptome profiling revealed significant enrichment and overall down-regulation of transport genes in ears under low phosphate. Importantly, 313 out of 847 differentially expressed genes harbored PHR1 binding sequences (P1BS) including those controlling amino acid/polyamine transport and metabolism. Specifically, both ZmAAP2 and ZmLHT1 are plasma membrane-localized broad-spectrum amino acid transporters, and ZmPHR1.1 and ZmPHR1.2 were able to bind to P1BS-containing ZmAAP2 and ZmLHT1 and down-regulate their expression in planta. Taken together, the results suggest that prevalence of P1BS elements enables ZmPHR1s to regulate a large number of low phosphate responsive genes. Further, consistent with reduced accumulation of free amino acids, ZmPHR1s down-regulate ZmAAP2 and ZmLHT1 expression as direct linkers of phosphorus and nitrogen nutrition independent of NIGT1 in maize ear under low phosphate.


Asunto(s)
Factores de Transcripción , Zea mays , Sistemas de Transporte de Aminoácidos , Regulación de la Expresión Génica de las Plantas , Fosfatos/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Zea mays/genética , Zea mays/metabolismo
11.
Environ Geochem Health ; 43(10): 4219-4233, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33830390

RESUMEN

Micronutrients deficiency in soil-plant and human is well-addressed; however, little is known about their spatial distribution, magnitude of deficiency and biological nexus. Zinc deficiency (ZnD) and iron-deficiency anemia (FeD) are two serious nutritional concerns which are negatively affecting human health. Herein, a survey-based case study was conducted in major wheat-based cropping system of east-central Pakistan. Soil and grain samples were collected from 125 field-grown wheat from 25 distinct sites/villages and GPS coordinates were taken for mapping. The collected samples were tags according to the names of 25 sites, i.e., UCs (union councils; an administrative unit). The quantified amount of zinc (Zn) or iron (Fe) in soil-wheat grains was compared with their recommended concentrations (RCZn, RCFe) for human nutrition. Additionally, clinical features of ZnD and FeD were diagnosed among local farmers who used to consume these grains, throughout the year, cultivated on their farm, and quantified their deficiency prevalence (ZnDP, FeDP). Results revealed, the collected 64% (0.54 to 5.25 mg kg-1) soils, and 96% (1.4 to 31 mg kg-1) grain samples are Zn-deficient (RCZn) along with ZnDP recorded among 68% of population. Meanwhile, FeD is quantified in 76% (1.86 to 15 mg kg-1) soil, 72% grain (2.1 to 134 mg kg-1) samples, and FeDP is found among 84% of studied population. A strong and positive correlation is developed in the Zn-or FeDP with their deficiencies in soil and grain by plotting multivariate analysis. In line with spatial distribution pattern, the UCs, namely, 141, 151, 159 and 132 are quantified severe deficient in Zn and Fe, and others are marginal or approaching to deficient level. Our findings rationalize the biological nexus of Zn and Fe, and accordingly, draw attention in the biofortification of staple crop as a win-win approach to combat the rising malnutrition concerns.


Asunto(s)
Desnutrición , Zinc , Biofortificación , Humanos , Hierro/análisis , Pakistán/epidemiología , Suelo , Zinc/análisis
12.
Bull Environ Contam Toxicol ; 107(6): 1087-1094, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34236455

RESUMEN

Coal resources are widely distributed in Guizhou province, China and environmental pollution caused by coal mining is becoming increasingly serious, especially mine drainage. A total of 120 mine water samples collected from different coalfields were analyzed to investigate the hydrogeochemical characteristics and assess the water quality for drinking, domestic, and irrigative purposes. Water samples had a pH of 1.90-9.12 and most of them were acidic or weakly acidic. Total dissolved solids (TDS) ranged from 254 to 13,944 mg/L and correlated closely with the electrical conductivity (EC). The coal mine drainage of Guizhou was characterized typically by low pH value, high Fe and SO42- concentration, which were mainly attributed to oxidative weathering of pyrite. The most dominant type for abandoned coal-mine drainage was Ca-Mg-SO4, while that of the underground drainage for active mine were mainly Na-SO4 and Na-HCO3 because of high concentration of Na+ from the dissolution of evaporites and clastic rocks. High concentration of the TDS, SO42-, Fe, Mn, et al. made it unsuitable for drinking and domestic use, but part of the coal mine drainage could be used for irrigation at some sites.


Asunto(s)
Minas de Carbón , Agua Subterránea , Contaminantes Químicos del Agua , China , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Calidad del Agua
13.
Bull Environ Contam Toxicol ; 107(6): 1095-1102, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34003318

RESUMEN

Selenium (Se) is an essential trace element for animals and plants. Se in soil has an important influence on the Se intake by animals and plants. To explore the source of Se in soils of the zinc-smelting area in northwest Guizhou, China, 271 topsoils and 50 deep soil samples were collected, and the concentration, speciation and distribution of Se in soils were analysed. The results showed that the concentration of Se in topsoils ranged from 0.2 mg/kg to 1.79 mg/kg, with an average of 0.84 mg/kg, which was more than 2 times of that in deep soil. These observations indicated that Se was enriched in the surface layer of soil. In terms of spatial distribution, high-Se topsoils (> 1.0 mg/kg) were mainly distributed near the zinc smelting area, and topsoil samples with relatively low content of Se were mainly distributed in areas with less human activities influence. The Se occurrence species in topsoils were in the order of residue, organic-binding, humic-acid binding, water-soluble, Fe/Mn/Al oxide-binding, carbonate-binding and ion-exchange. The contribution of residual Se to total Se in topsoil was decisive, and the content of other species of selenium changed slightly. The Se speciation that was residual in soil is difficult for plants to utilize, which is consistent with previous studies on seleniferous soils caused by zinc smelting. These results indicated that the main reason for Se enrichment in the topsoils of northwest Guizhou Province was indigenous zinc smelting.


Asunto(s)
Selenio , Contaminantes del Suelo , Animales , Disponibilidad Biológica , China , Humanos , Selenio/análisis , Suelo , Contaminantes del Suelo/análisis
14.
Planta ; 251(3): 66, 2020 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-32065312

RESUMEN

MAIN CONCLUSION: Glutamine (Gln) is an efficient nitrogen source in promoting aboveground nitrogen and biomass accumulation in ZD958 (an elite maize hybrid with great potential for further genetic improvement) seedlings when conditioning a smaller but adequate root system. Amino acids account for a significant part of nitrogen (N) resources in the soil. However, how amino acid-N affects crop growth remains to be further investigated. Here, glutamine (Gln) application (80% NH4NO3 + 20% Gln; mixed N) enhanced shoot growth of the maize hybrid ZD958. N concentration in the shoot increased, which is associated with favorable increases in SPAD values, GS/GOGAT activities, and accumulation of glutamate, asparagine, total free amino acids and soluble proteins in the shoot under mixed N. On the other hand, root growth was reduced when exposed to Gln as indicated by the significantly lower dry weight, root/shoot ratio, and primary, seminal, crown, and total root lengths, as well as unfavorable physiological alterations. Up-regulation of expression of ZmAMT1.3, ZmNRT2.1, and ZmAAP2 in the root and that of ZmAMT1.1, ZmAMT1.3, and ZmLHT1 in the shoot preconditioned N over-accumulation in the shoot and facilitated shoot growth, presumably via enhancing N translocation to the shoot, when Gln was supplied. Together, Gln is an efficient N source in promoting aboveground N and biomass accumulation in ZD958 seedlings when conditioning a smaller but adequate root system. Notably, ZD958's parental lines Z58 and Chang7-2 displayed a wide range of variations in Gln responses, which may be partially attributed to single nucleotide polymorphisms (SNPs) in cis-elements and coding regions revealed in this study and much larger quantities of unidentified genetic variations between Z58 and Chang7-2. Extensive genetic divergence of these two elite inbred lines implied large potentials for further genetic improvement of ZD958 in relation to organic N use efficiency.


Asunto(s)
Biomasa , Glutamina/farmacología , Hibridación Genética , Nitrógeno/metabolismo , Brotes de la Planta/metabolismo , Plantones/metabolismo , Zea mays/genética , Zea mays/metabolismo , Alelos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Endogamia , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Metaboloma/efectos de los fármacos , Metaboloma/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Brotes de la Planta/efectos de los fármacos , Polimorfismo de Nucleótido Simple/genética , Plantones/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Zea mays/efectos de los fármacos , Zea mays/crecimiento & desarrollo
15.
Proc Natl Acad Sci U S A ; 113(23): 6496-501, 2016 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-27217575

RESUMEN

Plant diversity in experimental systems often enhances ecosystem productivity, but the mechanisms causing this overyielding are only partly understood. Intercropping faba beans (Vicia faba L.) and maize (Zea mays L.) result in overyielding and also, enhanced nodulation by faba beans. By using permeable and impermeable root barriers in a 2-y field experiment, we show that root-root interactions between faba bean and maize significantly increase both nodulation and symbiotic N2 fixation in intercropped faba bean. Furthermore, root exudates from maize promote faba bean nodulation, whereas root exudates from wheat and barley do not. Thus, a decline of soil nitrate concentrations caused by intercropped cereals is not the sole mechanism for maize promoting faba bean nodulation. Intercropped maize also caused a twofold increase in exudation of flavonoids (signaling compounds for rhizobia) in the systems. Roots of faba bean treated with maize root exudates exhibited an immediate 11-fold increase in the expression of chalcone-flavanone isomerase (involved in flavonoid synthesis) gene together with a significantly increased expression of genes mediating nodulation and auxin response. After 35 d, faba beans treated with maize root exudate continued to show up-regulation of key nodulation genes, such as early nodulin 93 (ENOD93), and promoted nitrogen fixation. Our results reveal a mechanism for how intercropped maize promotes nitrogen fixation of faba bean, where maize root exudates promote flavonoid synthesis in faba bean, increase nodulation, and stimulate nitrogen fixation after enhanced gene expression. These results indicate facilitative root-root interactions and provide a mechanism for a positive relationship between species diversity and ecosystem productivity.


Asunto(s)
Fijación del Nitrógeno , Raíces de Plantas/metabolismo , Vicia faba/metabolismo , Zea mays/metabolismo , Agricultura/métodos , Expresión Génica , Genisteína/metabolismo , Isoflavonas/metabolismo , Proteínas de Plantas/genética , Raíces de Plantas/química
16.
Fish Physiol Biochem ; 44(4): 1019-1026, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29725939

RESUMEN

Cytochrome P450 enzymes (CYP enzymes) catalyze important metabolic reactions of exogenous and endogenous substrates, including fatty acid. In this study, we cloned the complete CDS of the cytochrome P450 2AA (CYP2AA) gene from the grass carp (Ctenopharyngodon idella) for the first time. CYP2AA consisted of 1500 bp, which encoded a predicted protein of 499 amino acids. The identities of CYP2AA between C. idella and zebrafish were 86%. It consists of the conserved heme-binding motif FXXGXXXCXG. Quantitative real-time PCR analysis indicated that CYP2AA mRNA in C. idella was highly expressed in liver and adipose tissue. The effects of fish oil and lard oil in diets on expression of CYP2AA mRNA in vivo were also investigated. The fish oil (FO) group exhibited significantly higher CYP2AA expression in adipose tissue than the lard oil (LO) group (P < 0.01), whereas the mRNA expression of CYP2AA was not notably different in liver. It suggested that the high abundance of CYP2AA mRNA expression in adipose tissue could be induced by fish oil. Our findings provided molecular characterization and expression profile of CYP2AA, and enhanced our understanding of CYP2AA in fish lipid metabolism.


Asunto(s)
Carpas/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Dieta , Proteínas de Peces/genética , Transcriptoma , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Carpas/crecimiento & desarrollo , Clonación Molecular , Grasas de la Dieta/administración & dosificación , Aceites de Pescado/administración & dosificación , Regulación de la Expresión Génica , Hígado/efectos de los fármacos , Hígado/metabolismo , Especificidad de Órganos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Homología de Secuencia
17.
Plant Cell Physiol ; 58(2): 342-353, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28007967

RESUMEN

Pollen germination is an essential step towards successful pollination during maize reproduction. How low niutrogen (N) affects pollen germination remains an interesting biological question to be addressed. We found that only low N resulted in a significantly lower germination rate of pollen grains after 4 weeks of low N, phosphorus or potassium treatment in maize production. Importantly, cytological analysis showed 7-fold more micronuclei in male meiocytes under the low N treatment than in the control, indicating that the lower germination rate of pollen grains was partially due to numerous chromosome loss events resulting from preceding meiosis. The appearance of 10 bivalents in the control and low N cells at diakinesis suggested that chromosome pairing and recombination in meiosis I was not affected by low N. Further gene expression analysis revealed dramatic down-regulation of Nuclear Division Cycle 80 (Ndc80) and Regulator of Chromosome Condensation 1 (Rcc1-1) expression and up-regulation of Cell Division Cycle 20 (Cdc20-1) expression, although no significant difference in the expression level of kinetochore foundation proteins Centromeric Histone H3 (Cenh3) and Centromere Protein C (Cenpc) and cohesion regulators Recombination 8 (Rec8) and Shugoshin (Sgo1) was observed. Aberrant modulation of three key meiotic regulators presumably resulted in a high likelihood of erroneous chromosome segregation, as testified by pronounced lagging chromosomes at anaphase I or cell cycle disruption at meiosis II. Thus, we proposed a cytogenetic mechanism whereby low N affects male meiosis and causes a higher chromosome loss frequency and eventually a lower germination rate of pollen grains in a staple crop plant.


Asunto(s)
Germinación/fisiología , Meiosis/fisiología , Nitrógeno/metabolismo , Zea mays/metabolismo , Zea mays/fisiología , Segregación Cromosómica/genética , Segregación Cromosómica/fisiología , Germinación/genética , Meiosis/genética , Nitrógeno/deficiencia , Polen/genética , Polen/metabolismo , Polen/fisiología , Zea mays/genética
18.
Plant Physiol ; 171(2): 1209-29, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27208289

RESUMEN

Flower opening is essential for pollination and thus successful sexual reproduction; however, the underlying mechanisms of its timing control remain largely elusive. We identify a unique cucumber (Cucumis sativus) line '6457' that produces normal ovaries when nutrients are under-supplied, and super ovaries (87%) with delayed corolla opening when nutrients are oversupplied. Corolla opening in both normal and super ovaries is divided into four distinct phases, namely the green bud, green-yellow bud, yellow bud, and flowering stages, along with progressive color transition, cytological tuning, and differential expression of 14,282 genes. In the super ovary, cell division and cell expansion persisted for a significantly longer period of time; the expressions of genes related to photosynthesis, protein degradation, and signaling kinases were dramatically up-regulated, whereas the activities of most transcription factors and stress-related genes were significantly down-regulated; concentrations of cytokinins (CKs) and gibberellins were higher in accordance with reduced cytokinin conjugation and degradation and increased expression of gibberellin biosynthesis genes. Exogenous CK application was sufficient for the genesis of super ovaries, suggesting a decisive role of CKs in controlling the timing of corolla opening. Furthermore, 194 out of 11,127 differentially expressed genes identified in pairwise comparisons, including critical developmental, signaling, and cytological regulators, contained all three types of cis-elements for CK, nitrate, and phosphorus responses in their promoter regions, indicating that the integration of hormone modulation and nutritional regulation orchestrated the precise control of corolla opening in cucumber. Our findings provide a valuable framework for dissecting the regulatory pathways for flower opening in plants.


Asunto(s)
Cucumis sativus/fisiología , Flores/fisiología , Fenómenos Fisiológicos de la Nutrición/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/farmacología , Cucumis sativus/anatomía & histología , Cucumis sativus/efectos de los fármacos , Cucumis sativus/genética , Flores/anatomía & histología , Flores/citología , Flores/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ontología de Genes , Genes de Plantas , Modelos Biológicos , Nitratos/metabolismo , Fósforo/metabolismo , Regiones Promotoras Genéticas/genética , Análisis de Secuencia de ARN , Factores de Tiempo , Transcriptoma/genética
19.
Fish Physiol Biochem ; 43(6): 1487-1500, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28646459

RESUMEN

In this study, two experiments were performed to explore the function of silymarin in adipogenesis in grass carp (Ctenopharyngodon idellus) using in vitro and in vivo models. In experiment 1, differentiated grass carp pre-adipocytes were treated with silymarin for 6 days. Treatment with 100 µg mL-1silymarin (SM100 group) significantly reduced triglyceride accumulation at day 6. The adipogenic gene expression levels of PPARγ, C/EBPα, SREBP1c, FAS, SCD1, and LPL, and the protein expression level of PPARγ were significantly down-regulated in the SM100 group. Additionally, the SM100 group had significantly lower reactive oxygen species production and reduced glutathione contents compared with the control in vitro. In experiment 2, the juvenile grass carp (mean body weight= 27.4 ± 0.17 g) were fed six isonitrogenous and isocaloric diets in a factorial design containing 0, 100, or 200 mg kg-1 silymarin (SM0, SM100, SM200) associated with either 4 or 8% lipid levels (low lipid, LL, and high lipid, HL, respectively) for 82 days. The results demonstrated that dietary silymarin supplementation significantly reduced the elevated intraperitoneal fat index in grass carp fed with high-lipid diets, and the gene expression of adipogenesis (PPARγ, FAS) when supplemented with dietary silymarin was notably lower than when no silymarin was supplemented under the high-lipid diets. Thus, our data suggest that silymarin suppressed lipid accumulation in grass carp both in vitro and in vivo, and the effect might be due to an influence on the expression of adipogenesis factors and ROS production partly associated with effects on antioxidant capability.


Asunto(s)
Adipocitos/efectos de los fármacos , Adipogénesis/efectos de los fármacos , Carpas , Silimarina/farmacología , Adipocitos/fisiología , Alimentación Animal/análisis , Animales , Supervivencia Celular , Grasas de la Dieta/administración & dosificación , Suplementos Dietéticos , Regulación de la Expresión Génica/efectos de los fármacos , Especies Reactivas de Oxígeno , Silimarina/administración & dosificación , Silimarina/química , Superóxido Dismutasa
20.
Planta ; 244(1): 111-24, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26979324

RESUMEN

MAIN CONCLUSION: Developmental inhibition of the maize ear by nitrogen limitation is due to overall down-regulation of nitrogen/carbon metabolism, coordinative hormonal modulation, and probable early senescence. The kernel number is primarily determined from 2 weeks pre-silking to 3 weeks post-silking, largely depending on dynamic nitrogen (N) and carbohydrate metabolism and accumulation in the maize ear. Underlying physiological and molecular mechanisms of kernel abortion caused by N limitation needs to be further investigated. Using a widely grown maize hybrid ZD958, we found that the N deficient ear was shorter, with less biomass accumulation, lower N concentrations, and overall lower concentrations of N assimilates and soluble sugars at 1- or 2-week after silking. Such negative alterations were probably due to significant decreases in activities of nitrate reductase, glutamine synthetase, sucrose phosphate synthetase, and sucrose synthetase in the N deficient maize ear especially after silking. Compensatory up-regulation of corresponding gene expression, together with co-downregulation of gene expression and enzyme activities in certain circumstances, suggested regulatory complexity and mechanistic differentiation from gene expression to functioning at physiological and molecular levels in quickly developing maize ear in counteracting N deficiency. Importantly, auxin, gibberellin, cytokinin, and abscisic acid may act in a coordinative manner to negatively modulate ear development under N limitation, as indicated by their concentration variations and substantial up-regulation of IAA14, GA2-ox1, and CKX12. Lastly, early senescence may occur in the low-N ear driven by interplay of hormone functioning and senescence-related gene regulation.


Asunto(s)
Carbono/metabolismo , Regulación hacia Abajo , Nitrógeno/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Zea mays/metabolismo , Aminoácidos/metabolismo , Compuestos de Amonio/metabolismo , Biomasa , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Glutamato-Amoníaco Ligasa/genética , Glutamato-Amoníaco Ligasa/metabolismo , Nitrato-Reductasa/genética , Nitrato-Reductasa/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Factores de Tiempo , Zea mays/genética , Zea mays/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA