Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Differentiation ; 135: 100742, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38104501

RESUMEN

Hepatic organoids might provide a golden opportunity for realizing precision medicine in various hepatic diseases. Previously described hepatic organoid protocols from pluripotent stem cells rely on complicated multiple differentiation steps consisting of both 2D and 3D differentiation procedures. Therefore, the spontaneous formation of hepatic organoids from 2D monolayer culture is associated with a low-throughput production, which might hinder the standardization of hepatic organoid production and hamper the translation of this technology to the clinical or industrial setting. Here we describe the stepwise and fully 3D production of hepatic organoids from human pluripotent stem cells. We optimized every differentiation step by screening for optimal concentrations and timing of differentiation signals in each differentiation step. Hepatic organoids are stably expandable without losing their hepatic functionality. Moreover, upon treatment of drugs with known hepatotoxicity, we found hepatic organoids are more sensitive to drug-induced hepatotoxicity compared with 2D hepatocytes differentiated from PSCs, making them highly suitable for in vitro toxicity screening of drug candidates. The standardized fully 3D protocol described in the current study for producing functional hepatic organoids might serve as a novel platform for the industrial and clinical translation of hepatic organoid technology.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Humanos , Diferenciación Celular/genética , Organoides
2.
Reprod Domest Anim ; 59(4): e14565, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38646981

RESUMEN

Mangiferin (MGN) is primarily found in the fruits, leaves, and bark of plants of the Anacardiaceae family, including mangoes. MGN exhibits various pharmacological effects, such as protection of the liver and gallbladder, anti-lipid peroxidation, and cancer prevention. This study aimed to investigate the effects of MGN supplementation during in vitro culture (IVC) on the antioxidant capacity of early porcine embryos and the underlying mechanisms involved. Porcine parthenotes in the IVC medium were exposed to different concentrations of MGN (0, 0.01, 0.1, and 1 µM). The addition of 0.1 µM MGN significantly increased the blastocyst formation rate of porcine embryos while reducing the apoptotic index and autophagy. Furthermore, the expression of antioxidation-related (SOD2, GPX1, NRF2, UCHL1), cell pluripotency (SOX2, NANOG), and mitochondria-related (TFAM, PGC1α) genes was upregulated. In contrast, the expression of apoptosis-related (CAS3, BAX) and autophagy-related (LC3B, ATG5) genes decreased after MGN supplementation. These findings suggest that MGN improves early porcine embryonic development by reducing oxidative stress-related genes.


Asunto(s)
Técnicas de Cultivo de Embriones , Desarrollo Embrionario , Estrés Oxidativo , Xantonas , Animales , Estrés Oxidativo/efectos de los fármacos , Desarrollo Embrionario/efectos de los fármacos , Xantonas/farmacología , Técnicas de Cultivo de Embriones/veterinaria , Apoptosis/efectos de los fármacos , Antioxidantes/farmacología , Autofagia/efectos de los fármacos , Porcinos , Blastocisto/efectos de los fármacos , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Partenogénesis
3.
Reprod Domest Anim ; 59(6): e14631, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38828566

RESUMEN

This study examines the impact of Notoginsenoside R1 (NGR1), a compound from Panax notoginseng, on the maturation of porcine oocytes and their embryonic development, focusing on its effects on antioxidant levels and mitochondrial function. This study demonstrates that supplementing in vitro maturation (IVM) medium with NGR1 significantly enhances several biochemical parameters. These include elevated levels of glutathione (GSH), nuclear factor erythrocyte 2-related factor 2 (NRF2) and mRNA expression of catalase (CAT) and GPX. Concurrently, we observed a decrease in reactive oxygen species (ROS) levels and an increase in JC-1 immunofluorescence, mitochondrial distribution, peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α) and nuclear NRF2 mRNA levels. Additionally, there was an increase in ATP production and lipid droplets (LDs) immunofluorescence. These biochemical improvements correlate with enhanced embryonic outcomes, including a higher blastocyst rate, increased total cell count, enhanced proliferative capacity and elevated octamer-binding transcription factor 4 (Oct4) and superoxide dismutase 2 (Sod2) gene expression. Furthermore, NGR1 supplementation resulted in decreased apoptosis, reduced caspase 3 (Cas3) and BCL2-Associated X (Bax) mRNA levels and decreased glucose-regulated protein 78 kD (GRP78) immunofluorescence in porcine oocytes undergoing in vitro maturation. These findings suggest that NGR1 plays a crucial role in promoting porcine oocyte maturation and subsequent embryonic development by providing antioxidant levels and mitochondrial protection.


Asunto(s)
Antioxidantes , Desarrollo Embrionario , Ginsenósidos , Técnicas de Maduración In Vitro de los Oocitos , Mitocondrias , Oocitos , Animales , Antioxidantes/farmacología , Ginsenósidos/farmacología , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Mitocondrias/efectos de los fármacos , Desarrollo Embrionario/efectos de los fármacos , Oocitos/efectos de los fármacos , Femenino , Porcinos , Especies Reactivas de Oxígeno/metabolismo , Técnicas de Cultivo de Embriones/veterinaria
4.
Reprod Biomed Online ; 47(2): 103211, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37246104

RESUMEN

RESEARCH QUESTION: Does the addition of an antioxidant agent, xanthoangelol (XAG), to the culture medium improve in-vitro development of porcine embryos? DESIGN: Early porcine embryos were incubated in the presence of 0.5 µmol/l XAG in in-vitro culture (IVC) media and analysed using various techniques, including immunofluorescence staining, reactive oxygen species (ROS) detection, TdT-mediated dUTP nick-end labelling (TUNEL), and reverse transcription followed by quantitative polymerase chain reaction (RT-qPCR). RESULTS: The addition of 0.5 µmol/l XAG to IVC media increased the rate of blastocyst formation, total cell number, glutathione concentrations and proliferative capacity, while reducing reactive oxygen species concentrations, apoptosis and autophagy. In addition, upon XAG treatment, the abundance of mitochondria and mitochondrial membrane potential significantly increased (both P < 0.001), and the genes related to mitochondrial biogenesis (TFAM, NRF1 and NRF2) were significantly up-regulated (all P < 0.001). XAG treatment also significantly increased the endoplasmic reticulum abundance (P < 0.001) and reduced the concentrations of endoplasmic reticulum stress (ERS) marker GRP78 (P = 0.003) and expression of the ERS-related genes EIF2α, GRP78, CHOP, ATF6, ATF4, uXBP1 and sXBP 1 (all P < 0.001). CONCLUSION: XAG promotes early embryonic development in porcine embryos in vitro by reducing oxidative stress, enhancing mitochondrial function and relieving ERS.


Asunto(s)
Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico , Embarazo , Animales , Femenino , Porcinos , Especies Reactivas de Oxígeno/metabolismo , Desarrollo Embrionario , Apoptosis , Mitocondrias/metabolismo , Estrés Oxidativo
5.
J Reprod Dev ; 69(1): 10-17, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36403957

RESUMEN

Dihydromyricetin (DHM), a dihydroflavonoid compound, exhibits a variety of biological activities, including antitumor activity. However, the effects of DHM on mammalian reproductive processes, especially during early embryonic development, remain unclear. In this study, we added DHM to porcine zygotic medium to explore the influence and underlying mechanisms of DHM on the developmental competence of parthenogenetically activated porcine embryos. Supplementation with 5 µM DHM during in vitro culture (IVC) significantly improved blastocyst formation rate and increased the total number of cells in porcine embryos. Further, DHM supplementation also improved glutathione levels and mitochondrial membrane potential; reduced natural reactive oxygen species levels in blastomeres and apoptosis rate; upregulated Nanog, Oct4, SOD1, SOD2, Sirt1, and Bcl2 expression; and downregulated Beclin1, ATG12, and Bax expression. Collectively, DHM supplementation regulated oxidative stress during IVC and could act as a potential antioxidant during in vitro porcine oocytes maturation.


Asunto(s)
Blastocisto , Oocitos , Femenino , Embarazo , Porcinos , Animales , Oocitos/metabolismo , Blastocisto/metabolismo , Estrés Oxidativo , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Especies Reactivas de Oxígeno/metabolismo , Desarrollo Embrionario , Suplementos Dietéticos , Mamíferos/metabolismo
6.
Zygote ; 31(5): 451-456, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37337719

RESUMEN

Mammalian oocytes not fertilized immediately after ovulation can undergo ageing and a rapid decline in quality. The addition of antioxidants can be an efficient approach to delaying the oocyte ageing process. Onion peel extract (OPE) contains quercetin and other flavonoids with natural antioxidant activities. In this study, we investigated the effect of OPE on mouse oocyte ageing and its mechanism of action. The oocytes were aged in vitro in M16 medium for 16 h after adding OPE at different concentrations (0, 50, 100, 200, and 500 µg/ml). The addition of 100 µg/ml OPE reduced the oocyte fragmentation rate, decreased the reactive oxygen species (ROS) level, increased the glutathione (GSH) level, and improved the mitochondrial membrane potential compared with the control group. The addition of OPE also increased the expression of SOD1, CAT, and GPX3 genes, and the caspase-3 activity in OPE-treated aged oocytes was significantly lower than that in untreated aged oocytes and similar to that in fresh oocytes. These results indicated that OPE delayed mouse oocyte ageing by reducing oxidative stress and apoptosis and enhancing mitochondrial function.


Asunto(s)
Antioxidantes , Cebollas , Femenino , Ratones , Animales , Cebollas/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Oocitos , Quercetina/farmacología , Estrés Oxidativo , Glutatión/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Mamíferos
7.
Reprod Domest Anim ; 58(11): 1583-1594, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37696770

RESUMEN

Notoginsenoside R1 (NGR1), derived from the Panax notoginseng root and rhizome, exhibits diverse pharmacological influences on the brain, neurons, and osteoblasts, such as antioxidant effects, mitochondrial function protection, energy metabolism regulation, and inhibition of oxygen radicals, apoptosis, and cellular autophagy. However, its effect on early porcine embryonic development remains unclear. Therefore, we investigated NGR1's effects on blastocyst quality, reactive oxygen species (ROS) levels, glutathione (GSH) levels, mitochondrial function, and embryonic development-related gene expression in porcine embryos by introducing NGR1 during the in vitro culture (IVC) of early porcine embryos. Our results indicate that an addition of 1 µM NGR1 significantly increased glutathione (GSH) levels, blastocyst formation rate, and total cell number and proliferation capacity; decreased ROS levels and apoptosis rates in orphan-activated porcine embryos; and improved intracellular mitochondrial distribution, enhanced membrane potential, and reduced autophagy. In addition, pluripotency-related factor levels were elevated (NANOG and octamer-binding transcription factor 4 [OCT4]), antioxidant-related genes were upregulated (nuclear factor-erythroid 2-related factor 2 [NRF2]), and apoptosis- (caspase 3 [CAS3]) and autophagy-related genes (light chain 3 [LC3B]) were downregulated. These results indicate that NGR1 can enhance early porcine embryonic development by protecting mitochondrial function.


Asunto(s)
Desarrollo Embrionario , Partenogénesis , Porcinos , Animales , Especies Reactivas de Oxígeno/metabolismo , Antioxidantes/farmacología , Mitocondrias/metabolismo , Blastocisto , Glutatión/metabolismo , Apoptosis
8.
Reprod Domest Anim ; 57(10): 1255-1266, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35780288

RESUMEN

Oroxin A (OA) is a flavonoid isolated from Oroxylum indicum (L.) Kurz that has various biological activities, including antioxidant activities. This study aimed to examine the viability of using OA in an in vitro culture (IVC) medium for its antioxidant effects and related molecular mechanisms on porcine blastocyst development. In this study, we investigated the effects of OA on early porcine embryo development via terminal deoxynucleotidyl transferase dUTP nick-end labeling, 5-ethynyl-2'-deoxyuridine labeling, quantitative reverse transcription PCR, and immunocytochemistry. Embryos cultured in the IVC medium supplemented with 2.5 µM of OA had an increased blastocyst formation rate, total cell number, and proliferation capacity, along with a low apoptosis rate. OA supplementation decreased reactive oxygen species levels while increasing glutathione levels. OA-treated embryos exhibited an improved intracellular mitochondrial membrane potential and reduced autophagy. Moreover, levels of pluripotency- and antioxidant-related genes were upregulated, whereas those of apoptosis- and autophagy-related genes were downregulated by OA addition. In conclusion, OA improves preimplantation embryonic development by reducing oxidative stress and enhancing mitochondrial function.


Asunto(s)
Técnicas de Cultivo de Embriones , Flavonas , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Apoptosis , Autofagia , Blastocisto , ADN Nucleotidilexotransferasa/metabolismo , ADN Nucleotidilexotransferasa/farmacología , Técnicas de Cultivo de Embriones/veterinaria , Desarrollo Embrionario , Flavonas/metabolismo , Flavonas/farmacología , Glucósidos , Glutatión/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Porcinos
9.
Water Sci Technol ; 83(10): 2309-2326, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34032612

RESUMEN

Subsurface wastewater infiltration (SWI) is an environmentally friendly technology for the advanced treatment of domestic sewage. Clogging (including physical, chemical and biological clogging) of the porous medium not only directly reduces the hydraulic load (treatment efficiency), but also reduces the service life. Although clogging has become one of the key issues discussed in several reports, there are still several gaps in understanding, especially in its occurrence process and identification. SWI clogging causes, development process and solutions are different from those of constructed wetlands. This article quotes some reports on constructed wetlands to provide technical ideas and reference for revealing SWI clogging problems. Based on the analysis of the clogging genesis, this review gathers the main factors that affect the degree of clogging, and new methods for the identification of clogging conditions. Some preventive and unclogging measures/strategies are presented. Finally, it is suggested that to effectively alleviate the clogging phenomenon and extend the service life, priority should be given to the comprehensive analysis of wastewater quality and solid constituents accumulated in the pores. Then, the effectiveness of in-situ strategies, such as alternating operation will be the main focuses of future research.


Asunto(s)
Eliminación de Residuos Líquidos , Aguas Residuales , Porosidad , Aguas del Alcantarillado , Humedales
10.
Cryobiology ; 97: 110-122, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33011172

RESUMEN

The present study analyzed the relationship between bovine oocytes developmental competence and mRNA expression of apoptotic and mitochondrial genes following the change of vitrification temperatures (VTs) and cryoprotectant agent concentrations (CPAs). Cumulus oocyte complexes were randomly divided into five groups: control, vitrified in liquid nitrogen (LN; -196 °C) with 5.6 M CPAs (LN 5.6 M), LN with 6.6 M CPAs (LN 6.6 M), liquid helium (LHe; -269 °C) with 5.6 M CPAs (LHe 5.6 M), and LHe with 6.6 M CPAs (LHe 6.6 M). After vitrification and warming, oocytes of vitrified and control groups were subjected to in vitro maturation (IVM), in vitro fertilization and in vitro culture. The blastocyst rate in LHe 5.6 M group was the highest among the four vitrified groups (13.7% vs. 9.4%, 1.3%, and 8.4%; P < 0.05). The mRNA expression level of 8 apoptotic- and 12 mitochondria-related genes were detected through qRT-PCR after IVM. Lower VT (LHe, -269 °C) positively affected the mRNA expression levels of apoptotic genes (BAD, BID, BTK, TP53, and TP53I3) and mitochondrial genes (COX6B1, DERA, FIS1, NDUFA1, NDUFA4, PRDX2, SLC25A5, TFB1M, and UQCRB), and reduced oxidative stress from freezing. Decreased CPAs (5.6 M) positively affected mRNA expression levels of apoptotic genes (BAD, BCL2A1, BID, and CASP3) in LHe vitrification but negatively affected apoptotic genes (BAD, BAX, BID, BTK, and BCL2A1) in LN vitrification. In conclusion, decreased VTs and CPAs in LHe vitrification may increase the blastocyst rate by changing the mRNA expression levels of these apoptotic and mitochondrial genes for the vitrified oocytes.


Asunto(s)
Genes Mitocondriales , Vitrificación , Animales , Bovinos , Criopreservación/métodos , Oocitos , ARN Mensajero/genética , Temperatura
11.
J Reprod Dev ; 65(6): 499-506, 2019 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-31474647

RESUMEN

L-carnitine (LC) is well known for its antioxidant activity. In this study, we explored the potential mechanistic effects of LC supplementation on aged bovine oocytes in vitro. We showed that in-vitro maturation could enhance the subsequent developmental capacity of aging oocytes, when supplemented with LC. After in vitro fertilization, the blastocyst formation rate in the aged oocytes post-LC treatment significantly increased compared to that in untreated aged oocytes (29.23 ± 2.20% vs. 20.90 ± 3.05%). Furthermore, after LC treatment, the level of intracellular reactive oxygen species in aged oocytes significantly decreased, and glutathione levels significantly increased, compared to those in untreated aged oocytes. Mitochondrial membrane potential, the percentage of early apoptotic oocytes, and caspase-3 activity were significantly reduced in LC-treated aged oocytes compared to those in untreated aged oocytes. Furthermore, during in vitro aging, the mRNA levels of the anti-apoptotic genes, Bcl-xl and survivin in LC-treated aged oocytes were significantly higher than those in untreated aged oocytes. Overall, these results indicate that at least in in vitro conditions, LC can prevent the aging of bovine oocytes and improve the developmental capacity of bovine embryo.


Asunto(s)
Bovinos , Senescencia Celular/efectos de los fármacos , Citoprotección/efectos de los fármacos , Desarrollo Embrionario/efectos de los fármacos , Oocitos/efectos de los fármacos , Animales , Carnitina/farmacología , Bovinos/embriología , Bovinos/fisiología , Células Cultivadas , Senescencia Celular/genética , Embrión de Mamíferos , Desarrollo Embrionario/genética , Femenino , Glutatión/metabolismo , Técnicas de Maduración In Vitro de los Oocitos/métodos , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Oocitos/fisiología , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Especies Reactivas de Oxígeno/metabolismo
12.
Pharmacology ; 104(5-6): 235-243, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31357205

RESUMEN

BACKGROUNDS: (6aS, 10S, 11aR, 11bR, 11cS)-10-methylaminododecahydro-3a, 7a-diaza-benzo (de) anthracene-8-thione (MASM), a novel derivative of matrine, exhibits better anti-inflammatory activity. This study was designed to evaluate the protective effect of MASM on acute and chronic liver injuries and explore the possible mechanisms. METHODS: Acute and chronic liver injury models were established by the CCl4 intraperitoneal injection and the protective effect of MASM was assessed by biochemical and histological examination. The infiltration of different monocyte subsets into the liver was characterized and analyzed by flow cytometry. The in vitro effect of MASM on liver nonparenchymal cells was evaluated by real-time PCR and transwell chemotaxis assays. RESULTS: Administration of MASM markedly attenuated acute liver injury and liver fibrosis induced by CCl4 injection. Meanwhile, the infiltrations of Gr1hi monocytes in injured livers and induced hepatic expression of monocyte chemoattractant protein-1 (MCP-1) were greatly inhibited. Cellular experiments demonstrated that MASM not only decreased the expression of MCP-1 but also inhibited its chemotactic activity. CONCLUSIONS: This study demonstrates that the protective effect of MASM on liver injury could be contributed to the suppression of Gr1hi monocyte infiltration to the liver and the inhibition of MCP-1 production and activity. These findings provide new insights into the protective role of MASM in liver injury.


Asunto(s)
Alcaloides/uso terapéutico , Antracenos/farmacología , Antiinflamatorios/uso terapéutico , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Cirrosis Hepática/tratamiento farmacológico , Monocitos/efectos de los fármacos , Quinolizinas/uso terapéutico , Tionas/farmacología , Alcaloides/farmacología , Animales , Antracenos/uso terapéutico , Antiinflamatorios/farmacología , Antígenos Ly/inmunología , Tetracloruro de Carbono , Enfermedad Hepática Inducida por Sustancias y Drogas/inmunología , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Quimiocina CCL2/inmunología , Hígado/efectos de los fármacos , Hígado/inmunología , Hígado/patología , Cirrosis Hepática/inmunología , Cirrosis Hepática/patología , Masculino , Ratones Endogámicos C57BL , Monocitos/inmunología , Quinolizinas/farmacología , Tionas/uso terapéutico , Matrinas
13.
Water Sci Technol ; 80(9): 1715-1724, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32039903

RESUMEN

One of the effective ways to remove halogenated disinfection by-products (DBPs) from drinking water is the application of ultrafiltration technology. However, membrane fouling is an important factor affecting the service life and treatment effect. In this study, the electrocoagulation/oxidation-ultrafiltration (EC/O-UF) process was used to remove the precursor substance that produced DBPs, i.e. dissolved organic matters (DOMs). Operating parameters were optimized from the matching of different flocculant morphology to low concentration DOM. The degree of membrane fouling was characterized by analyzing DOMs concentration and membrane flux. The results showed that the optimal conditions for the production of Alb were: current density 10 A/m2, hydraulic retention time 10 min, and initial pH 5.0-7.0. Under these conditions, the production of flocculant Alb could reach 58-61%, 94-97% DOMs were removed by EC/O-UF.


Asunto(s)
Agua Potable , Purificación del Agua , Electrocoagulación , Membranas Artificiales , Ultrafiltración
14.
Mol Hum Reprod ; 23(3): 166-176, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28364522

RESUMEN

Study question: What is the function of Spindlin 1 (Spin1) in metaphase II stage oocytes in pigs? Summary answer: Depletion of Spin1 induces spontaneous oocyte activation and overexpression of Spin1 causes multinuclear formation through induction of DNA damage in porcine oocytes. What is known already: Little is known about the function of Spin1 in oocytes and embryos. In mouse oocytes, Spin1 is specifically expressed during gametogenesis and is essential for meiotic resumption. In somatic cells, Spin1 promotes cancer cell proliferation and activates WNT/T-cell factor signaling. Study design size, duration: After knockdown (KD) or overexpression of Spin1 in porcine MII-stage oocytes, MII maintenance was checked following additional culture for 24 h. Investigated parthenotes were cultured up to the four cell (72 h) or blastocyst (7 days) stages. Participants/materials, setting, methods: Spin1 was knocked down in porcine oocytes and embryos via microinjection of pig Spin1-targeting siRNA. For Spin1 overexpression, porcine Spin1-eGFP cRNA was generated. Additionally, for rescue experiments, cRNA encoding siRNA-resistant mouse Spin1 was added to the pig Spin1-targeting siRNA. For the overexpression and rescue experiments, microinjection and culture were performed using the same methods as the KD experiments. Main results and the role of chance: KD of Spin1 in MII-stage porcine oocytes reduced metaphase-promoting factor and mitogen-activated protein kinase activities, resulting in spontaneous pronuclear formation without calcium activation. However, the DNA damage response was triggered by Spin1 overexpression, generating the checkpoint protein γH2A.X. Furthermore, Spin1 overexpression blocked metaphase-anaphase transition and led to multinucleation in oocytes and embryos. Large scale data: None. Limitations, reasons for caution: This study is based on in vitro investigations with abnormal expression levels of Spin1. This may or may not accurately reflect the situation in vivo. Wider implications of the findings: Spin1 is essential to maintain MII arrest, but a high level of Spin1 induces DNA damage in oocytes and embryos. Thus, a system to accurately regulate Spin1 expression operates in porcine MII-stage oocytes and embryos. Study funding and competing interest(s): This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2015R1D1A1A01057629). The authors declare no competing financial interests.


Asunto(s)
Blastocisto/metabolismo , Proteínas de Ciclo Celular/genética , Regulación del Desarrollo de la Expresión Génica , Metafase , Proteínas Asociadas a Microtúbulos/genética , Oocitos/metabolismo , Fosfoproteínas/genética , Animales , Blastocisto/citología , Calcio/metabolismo , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/metabolismo , Inestabilidad Cromosómica , Daño del ADN , Embrión de Mamíferos , Femenino , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Ratones , Proteínas Asociadas a Microtúbulos/antagonistas & inhibidores , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Oocitos/citología , Oocitos/crecimiento & desarrollo , Fosfoproteínas/antagonistas & inhibidores , Fosfoproteínas/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Porcinos
15.
Water Sci Technol ; 76(7-8): 2158-2166, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29068345

RESUMEN

In this field study, the impacts of influent loadings and drying-wetting cycles on N2O emission in a subsurface wastewater infiltration (SWI) system were investigated. N2O emitted under different operation conditions were quantified using static chamber and gas chromatograph techniques. N2O conversion rate decreased from 6.6 ± 0.1% to 2.7 ± 0.1% with an increase in hydraulic loading (HL) from 0.08 to 0.24 m3/m2·d. By contrast, N2O conversion rate increased with increasing pollutant loading (PL) up to 8.2 ± 0.5% (PL 4.2 g N/m2·d) above which conversion rate decreased, confirming that N2O production was under the interaction of nitrification and denitrification. Taking into consideration the pollutants (chemical oxygen demand (COD), NH4+-N, NO3--N and total nitrogen (TN)) removal ratio and N2O emission, optimal loading ranges and drying-wetting modes were suggested as HL 0.08-0.12 m3/m2·d, PL 3.2-3.7 g N/m2·d and 12 h:12 h, respectively. The results revealed that in SWI systems, conversion ratio of influent nitrogen to N2O could be between 4.5% and a maximum of 7.0%.


Asunto(s)
Filtración/métodos , Nitrógeno/química , Aguas Residuales/química , Contaminantes Químicos del Agua/química , Análisis de la Demanda Biológica de Oxígeno , Reactores Biológicos , Desnitrificación , Nitrificación , Dióxido de Nitrógeno , Eliminación de Residuos Líquidos/instrumentación , Eliminación de Residuos Líquidos/métodos
16.
Artículo en Inglés | MEDLINE | ID: mdl-28541771

RESUMEN

During a 12-month study period, the levels, distributions, sources and ecological risk of 16 polycyclic aromatic hydrocarbons (PAHs) were investigated in subsurface water of Shenyang (the largest urban industrial relocation base in China). The results showed that ΣPAH concentration ranged from 0.21 to 1.07 µg/L, in descending order as follows, summer, autumn, spring and winter. Comparing with the situations before relocation, there was a significant decrease in Fluorene, Phenanthrene and Anthracene levels. The content of Banzo[a]pyrene was in high level. Relatively high 16 EPA-PAHs concentrations were observed at downstream sites suggesting that after the industrial relocation, residual 16 EPA-PAHs in soil and sediments could be desorbed and resuspended in water. From a global perspective, contamination of subsurface water PAHs can be categorized as moderate level. Source analysis suggested that without industrial waste input, pyrogenic soureces were the major contributors for PAHs pollution in winter. Petrogenic and pyrogenic inputs were equally important sources for PAHs pollution in other seasons. Due to incomplete combustion of wood and coal, ecological risk of Banzo[a]pyrene was high in the winter, indicating that to alleviate 16 EPA-PAH contamination, segmented remediation and energy structure adjustment would be equally important in urban industrial relocation areas.


Asunto(s)
Monitoreo del Ambiente/métodos , Residuos Industriales/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Ríos/química , Contaminantes Químicos del Agua/análisis , China , Sedimentos Geológicos/química , Medición de Riesgo , Estaciones del Año , Urbanización
17.
J Infect Dis ; 214(11): 1762-1772, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27658692

RESUMEN

BACKGROUND: MASM, a novel derivative of matrine, has inhibitory effects on activation of macrophages, dendritic cells, and hepatic stellate cells and binds to ribosomal protein S5 (RPS5). This study was designed to evaluate the effect of MASM on murine-established lethal sepsis and its mechanisms. METHODS: Mouse peritoneal macrophages and RAW264.7 cells that were infected with recombinant lentiviruses encoding shRPS5 were incubated with lipopolysaccharide (LPS) in the absence or presence of MASM in vitro. Endotoxemia induced by LPS injection and sepsis induced by cecal ligation and puncture was followed by MASM treatment. RESULTS: MASM markedly attenuated LPS-induced release and messenger RNA expression of tumor necrosis factor α, interleukin 6, and NO/inducible NO synthase in murine peritoneal macrophages and RAW264.7 cells. Meanwhile, MASM inhibited LPS-induced activation of nuclear factor κB and MAPK pathways. Consistently, RPS5 suppressed LPS-induced inflammatory responses and at least in part mediated the antiinflammatory effect of MASM in vitro. Remarkably, delayed administration of MASM could significantly reduce mortality in mouse sepsis models, which was associated with the reduction in the inflammatory response, the attenuation in multiple organ injury, and the enhanced bacterial clearance. CONCLUSIONS: MASM could be further explored for the treatments of sepsis, especially for administration later after the onset of sepsis.


Asunto(s)
Alcaloides/administración & dosificación , Factores Inmunológicos/administración & dosificación , Inflamación/tratamiento farmacológico , Inflamación/patología , Quinolizinas/administración & dosificación , Sepsis/tratamiento farmacológico , Sepsis/patología , Animales , Modelos Animales de Enfermedad , Lipopolisacáridos/toxicidad , Masculino , Ratones , Ratones Endogámicos C57BL , Células RAW 264.7/efectos de los fármacos , Células RAW 264.7/inmunología , Análisis de Supervivencia , Matrinas
18.
Anal Bioanal Chem ; 408(19): 5359-67, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27225174

RESUMEN

Identification of bioactive compounds directly from complex herbal extracts is a key issue in the study of Chinese herbs. The present study describes the establishment and application of a sensitive, efficient, and convenient method based on surface plasmon resonance (SPR) biosensors for screening active ingredients targeting tumor necrosis factor receptor type 1 (TNF-R1) from Chinese herbs. Concentration-adjusted herbal extracts were subjected to SPR binding assay, and a remarkable response signal was observed in Rheum officinale extract. Then, the TNF-R1-bound ingredients were recovered, enriched, and analyzed by UPLC-QTOF/MS. As a result, physcion-8-O-ß-D-monoglucoside (PMG) was identified as a bioactive compound, and the affinity constant of PMG to TNF-R1 was determined by SPR affinity analysis (K D = 376 nM). Pharmacological assays revealed that PMG inhibited TNF-α-induced cytotoxicity and apoptosis in L929 cells via TNF-R1. Although PMG was a trace component in the chemical constituents of the R. officinale extract, it had considerable anti-inflammatory activities. It was found for the first time that PMG was a ligand for TNF receptor from herbal medicines. The proposed SPR-based screening method may prove to be an effective solution to analyzing bioactive components of Chinese herbs and other complex drug systems. Graphical abstract Scheme of the method based on SPR biosensor for screening and recovering active ingredients from complex herbal extracts and UPLC-MS for identifying them. Scheme of the method based on SPR biosensor for screening and recovering active ingredients from complex herbal extracts and UPLC-MS for identifying them.


Asunto(s)
Técnicas Biosensibles/instrumentación , Cromatografía Líquida de Alta Presión/métodos , Medicamentos Herbarios Chinos/química , Espectroscopía de Resonancia Magnética/instrumentación , Mapeo de Interacción de Proteínas/métodos , Receptores del Factor de Necrosis Tumoral/química , Resonancia por Plasmón de Superficie/instrumentación , Sitios de Unión , Técnicas Biosensibles/métodos , Descubrimiento de Drogas/métodos , Diseño de Equipo , Análisis de Falla de Equipo , Ligandos , Espectroscopía de Resonancia Magnética/métodos , Extractos Vegetales/química , Plantas Medicinales/química , Unión Proteica , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
19.
Ann Rheum Dis ; 74(7): 1432-40, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24651621

RESUMEN

OBJECTIVES: Mammalian target of rapamycin (mTOR) (a serine/threonine protein kinase) is a major repressor of autophagy, a cell survival mechanism. The specific in vivo mechanism of mTOR signalling in OA pathophysiology is not fully characterised. We determined the expression of mTOR and known autophagy genes in human OA cartilage as well as mouse and dog models of experimental OA. We created cartilage-specific mTOR knockout (KO) mice to determine the specific role of mTOR in OA pathophysiology and autophagy signalling in vivo. METHODS: Inducible cartilage-specific mTOR KO mice were generated and subjected to mouse model of OA. Human OA chondrocytes were treated with rapamycin and transfected with Unc-51-like kinase 1 (ULK1) siRNA to determine mTOR signalling. RESULTS: mTOR is overexpressed in human OA cartilage as well as mouse and dog experimental OA. Upregulation of mTOR expression co-relates with increased chondrocyte apoptosis and reduced expression of key autophagy genes during OA. Subsequently, we show for the first time that cartilage-specific ablation of mTOR results in increased autophagy signalling and a significant protection from destabilisation of medial meniscus (DMM)-induced OA associated with a significant reduction in the articular cartilage degradation, apoptosis and synovial fibrosis. Furthermore, we show that regulation of ULK1/adenosine monophosphate-activated protein kinase (AMPK) signalling pathway by mTOR may in part be responsible for regulating autophagy signalling and the balance between catabolic and anabolic factors in the articular cartilage. CONCLUSIONS: This study provides a direct evidence of the role of mTOR and its downstream modulation of autophagy in articular cartilage homeostasis.


Asunto(s)
Autofagia/fisiología , Cartílago Articular/metabolismo , Cartílago Articular/patología , Osteoartritis/metabolismo , Osteoartritis/prevención & control , Serina-Treonina Quinasas TOR/deficiencia , Regulación hacia Arriba/fisiología , Proteínas Quinasas Activadas por AMP/metabolismo , Anciano , Anciano de 80 o más Años , Animales , Apoptosis/fisiología , Homólogo de la Proteína 1 Relacionada con la Autofagia , Cartílago Articular/efectos de los fármacos , Células Cultivadas , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Condrocitos/patología , Modelos Animales de Enfermedad , Perros , Silenciador del Gen , Humanos , Inmunosupresores/farmacología , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Metaloproteinasa 13 de la Matriz/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Osteoartritis/patología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/fisiología , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/metabolismo
20.
Ann Rheum Dis ; 74(3): 569-78, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25573665

RESUMEN

OBJECTIVES: We have previously shown that peroxisome proliferator-activated receptor gamma (PPARγ), a transcription factor, is essential for the normal growth and development of cartilage. In the present study, we created inducible cartilage-specific PPARγ knockout (KO) mice and subjected these mice to the destabilisation of medial meniscus (DMM) model of osteoarthritis (OA) to elucidate the specific in vivo role of PPARγ in OA pathophysiology. We further investigated the downstream PPARγ signalling pathway responsible for maintaining cartilage homeostasis. METHODS: Inducible cartilage-specific PPARγ KO mice were generated and subjected to DMM model of OA. We also created inducible cartilage-specific PPARγ/mammalian target for rapamycin (mTOR) double KO mice to dissect the PPARγ signalling pathway in OA. RESULTS: Compared with control mice, PPARγ KO mice exhibit accelerated OA phenotype with increased cartilage degradation, chondrocyte apoptosis, and the overproduction of OA inflammatory/catabolic factors associated with the increased expression of mTOR and the suppression of key autophagy markers. In vitro rescue experiments using PPARγ expression vector reduced mTOR expression, increased expression of autophagy markers and reduced the expression of OA inflammatory/catabolic factors, thus reversing the phenotype of PPARγ KO mice chondrocytes. To dissect the in vivo role of mTOR pathway in PPARγ signalling, we created and subjected PPARγ-mTOR double KO mice to the OA model to see if the genetic deletion of mTOR in PPARγ KO mice (double KO) can rescue the accelerated OA phenotype observed in PPARγ KO mice. Indeed, PPARγ-mTOR double KO mice exhibit significant protection/reversal from OA phenotype. SIGNIFICANCE: PPARγ maintains articular cartilage homeostasis, in part, by regulating mTOR pathway.


Asunto(s)
Cartílago Articular/metabolismo , Osteoartritis de la Rodilla/metabolismo , PPAR gamma/genética , Serina-Treonina Quinasas TOR/genética , Animales , Modelos Animales de Enfermedad , Meniscos Tibiales/cirugía , Ratones , Ratones Noqueados , PPAR gamma/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA