RESUMEN
Computational drug repositioning, which involves identifying new indications for existing drugs, is an increasingly attractive research area due to its advantages in reducing both overall cost and development time. As a result, a growing number of computational drug repositioning methods have emerged. Heterogeneous network-based drug repositioning methods have been shown to outperform other approaches. However, there is a dearth of systematic evaluation studies of these methods, encompassing performance, scalability and usability, as well as a standardized process for evaluating new methods. Additionally, previous studies have only compared several methods, with conflicting results. In this context, we conducted a systematic benchmarking study of 28 heterogeneous network-based drug repositioning methods on 11 existing datasets. We developed a comprehensive framework to evaluate their performance, scalability and usability. Our study revealed that methods such as HGIMC, ITRPCA and BNNR exhibit the best overall performance, as they rely on matrix completion or factorization. HINGRL, MLMC, ITRPCA and HGIMC demonstrate the best performance, while NMFDR, GROBMC and SCPMF display superior scalability. For usability, HGIMC, DRHGCN and BNNR are the top performers. Building on these findings, we developed an online tool called HN-DREP (http://hn-drep.lyhbio.com/) to facilitate researchers in viewing all the detailed evaluation results and selecting the appropriate method. HN-DREP also provides an external drug repositioning prediction service for a specific disease or drug by integrating predictions from all methods. Furthermore, we have released a Snakemake workflow named HN-DRES (https://github.com/lyhbio/HN-DRES) to facilitate benchmarking and support the extension of new methods into the field.
Asunto(s)
Benchmarking , Reposicionamiento de Medicamentos , Reposicionamiento de Medicamentos/métodos , Humanos , Biología Computacional/métodos , Programas Informáticos , AlgoritmosRESUMEN
Correction and removal of expression of concern for 'Total synthesis of tubulysin U and N14-desacetoxytubulysin H' by Bohua Long et al., Org. Biomol. Chem., 2020, 18, 5349-5353, https://doi.org/10.1039/D0OB01109F.
RESUMEN
By inducing steric activation of the 10CH bond with a 12-acyl group to form a key imine oxime intermediate, 20 novel (10S)-10,12-disubstituted aloperine derivatives were successfully synthesized and assessed for their antiviral efficacy against HCoV-OC43. Of them, compound 3i exhibited the moderate activities against HCoV-OC43, as well as against the SARS-CoV-2 variant EG.5.1 with the comparable EC50 values of 4.7 and 4.1 µM. A mechanism study revealed that it inhibited the protease activity of host TMPRSS2 by binding to an allosteric site, rather than the known catalytic center, different from that of camostat. Also, the combination of compound 3i and molnupiravir, as an RdRp inhibitor, showed an additive antiviral effect against HCoV-OC43. The results provide a new binding mode and lead compound for targeting TMPRSS2, with an advantage in combating broad-spectrum coronavirus.
Asunto(s)
Sitio Alostérico , Antivirales , Coronavirus Humano OC43 , Quinolizidinas , Serina Endopeptidasas , Antivirales/farmacología , Antivirales/química , Antivirales/síntesis química , Serina Endopeptidasas/metabolismo , Humanos , Coronavirus Humano OC43/efectos de los fármacos , Coronavirus Humano OC43/química , Quinolizidinas/química , Quinolizidinas/farmacología , Quinolizidinas/síntesis química , Sitio Alostérico/efectos de los fármacos , Relación Estructura-Actividad , Descubrimiento de Drogas , SARS-CoV-2/efectos de los fármacos , Estructura Molecular , Pruebas de Sensibilidad Microbiana , Relación Dosis-Respuesta a DrogaRESUMEN
Thirty new tricyclicmatrinic derivatives were successively synthesized and evaluated for their inhibitory activity on the accumulation of triglycerides (TG) in AML12 cells, using 12 N-m-trifluoromethylbenzenesulfonyl matrine (1) as the hit compound. Among the analogues, compound 7n possessing 11-trimethylbutylamine quaternary exerted the highest in vitro TG-lowering potency, as well as a good safety profile. 7n significantly attenuated the hepatic injury and steatosis, and ameliorated dyslipidemia and dysglycemia in the mice with non-alcoholic fatty liver disease (NAFLD) induced by a high-fat diet. Primary mechanism study revealed that upregulation of peroxisome proliferator-activated receptors α (PPARα)-carnitine palmitoyltransferase 1A (CPT1A) pathway mediated the efficacy of 7n. Our study provides powerful information for developing this kind of compound into a new class of anti-NAFLD candidates, and compound 7n is worthy of further investigation as an ideal lead compound.
Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Matrinas , Triglicéridos/metabolismo , Hígado/metabolismo , PPAR alfa/metabolismo , Ratones Endogámicos C57BLRESUMEN
Effective and safe implementation of precision oncology for breast cancer is a vital strategy to improve patient outcomes, which relies on the application of reliable biomarkers. As 'liquid biopsy' and novel resource for biomarkers, exosomes provide a promising avenue for the diagnosis and treatment of breast cancer. Although several exosome-related databases have been developed, there is still lacking of an integrated database for exosome-based biomarker discovery. To this end, a comprehensive database ExoBCD (https://exobcd.liumwei.org) was constructed with the combination of robust analysis of four high-throughput datasets, transcriptome validation of 1191 TCGA cases and manual mining of 950 studies. In ExoBCD, approximately 20 900 annotation entries were integrated from 25 external sources and 306 exosomal molecules (49 potential biomarkers and 257 biologically interesting molecules). The latter could be divided into 3 molecule types, including 121 mRNAs, 172 miRNAs and 13 lncRNAs. Thus, the well-linked information about molecular characters, experimental biology, gene expression patterns, overall survival, functional evidence, tumour stage and clinical use were fully integrated. As a data-driven and literature-based paradigm proposed of biomarker discovery, this study also demonstrated the corroborative analysis and identified 36 promising molecules, as well as the most promising prognostic biomarkers, IGF1R and FRS2. Taken together, ExoBCD is the first well-corroborated knowledge base for exosomal studies of breast cancer. It not only lays a foundation for subsequent studies but also strengthens the studies of probing molecular mechanisms, discovering biomarkers and developing meaningful clinical use.
Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/metabolismo , Bases de Datos Factuales , Exosomas/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Femenino , Perfilación de la Expresión Génica , Ontología de Genes , Humanos , Internet , Pronóstico , Análisis de SupervivenciaRESUMEN
Expression of concern for 'Total synthesis of tubulysin U and N14-desacetoxytubulysin H' by Bohua Long et al., Org. Biomol. Chem., 2020, 18, 5349-5353, https://doi.org/10.1039/D0OB01109F.
RESUMEN
The use of mobile phones has become one of the major threats to road safety, especially in young novice drivers. To avoid crashes induced by distraction, adaptive distraction mitigation systems have been developed that can determine how to detect a driver's distraction state. A driving simulator experiment was conducted in this paper to better explore the relationship between drivers' cognitive distractions and traffic safety, and to better analyze the mechanism of distracting effects on young drivers during the driving process. A total of 36 participants were recruited and asked to complete an n-back memory task while following the lead vehicle. Drivers' vehicle control behavior was collected, and an ANOVA was conducted on both lateral driving performance and longitudinal driving performance. Indicators from three aspects, i.e., lateral indicators only, longitudinal indicators only, and combined lateral and longitudinal indicators, were inputted into both SVM and random forest models, respectively. Results demonstrated that the SVM model with parameter optimization outperformed the random forest model in all aspects, among which the genetic algorithm had the best parameter optimization effect. For both lateral and longitudinal indicators, the identification effect of lateral indicators was better than that of longitudinal indicators, probably because drivers are more inclined to control the vehicle in lateral operation when they were cognitively distracted. Overall, the comprehensive model built in this paper can effectively identify the distracted state of drivers and provide theoretical support for control strategies of driving distraction.
Asunto(s)
Conducción de Automóvil , Conducción Distraída , Humanos , Atención , Máquina de Vectores de Soporte , Bosques Aleatorios , Cognición , Accidentes de Tránsito/prevención & controlRESUMEN
Label-free quantification (LFQ) with a specific and sequentially integrated workflow of acquisition technique, quantification tool and processing method has emerged as the popular technique employed in metaproteomic research to provide a comprehensive landscape of the adaptive response of microbes to external stimuli and their interactions with other organisms or host cells. The performance of a specific LFQ workflow is highly dependent on the studied data. Hence, it is essential to discover the most appropriate one for a specific data set. However, it is challenging to perform such discovery due to the large number of possible workflows and the multifaceted nature of the evaluation criteria. Herein, a web server ANPELA (https://idrblab.org/anpela/) was developed and validated as the first tool enabling performance assessment of whole LFQ workflow (collective assessment by five well-established criteria with distinct underlying theories), and it enabled the identification of the optimal LFQ workflow(s) by a comprehensive performance ranking. ANPELA not only automatically detects the diverse formats of data generated by all quantification tools but also provides the most complete set of processing methods among the available web servers and stand-alone tools. Systematic validation using metaproteomic benchmarks revealed ANPELA's capabilities in 1 discovering well-performing workflow(s), (2) enabling assessment from multiple perspectives and (3) validating LFQ accuracy using spiked proteins. ANPELA has a unique ability to evaluate the performance of whole LFQ workflow and enables the discovery of the optimal LFQs by the comprehensive performance ranking of all 560 workflows. Therefore, it has great potential for applications in metaproteomic and other studies requiring LFQ techniques, as many features are shared among proteomic studies.
Asunto(s)
Proteínas/química , Proteómica/métodos , Flujo de Trabajo , Internet , Reproducibilidad de los ResultadosRESUMEN
OBJECTIVE: This study aims to explore the effects of miR-342-3p on liver cancer stem cells (LCSC) and related mechanism. METHODS: LCSC were sorted using immunomagnetic beads and flow cytometry was used to determine CD133+ and CD133- sorted cells. The self-renewal ability and growth ability of LCSC were measured by tumor spheroid formation assay and soft agar colony formation assay. Protein and mRNA expressions of CD44, ALDH1, Bmi1, Sox2 and Oct4 were detected by western blot and quantitative PCR. The relationship between miR-342-3p and HDAC7 was analyzed by dual-luciferase assay. The acetylation level of H3 protein was measured by acetyl Lysine antibody. RESULTS: miR-342-3p overexpression in LCSC lead to lower tumor volume, reduced tumor spheroid formation and agar colony formation rates, as well as lower mRNA and protein expressions of CD44, ALDH1, Bmi1, Sox2, and Oct4. Dual-luciferase reporter assay confirmed HDAC7 as a target gene of miR-342-3p. Inhibition of HDAC7 or overexpression of PTEN suppressed the carcinogenicity and stemness of LCSC. PTEN expression was increased in sh-HDAC7 group and decreased in pcDNA3.1-HDAC7 group. HDAC7 promoted H3 deacetylation and inhibited PTEN expression. Overexpression of HDAC7 or silencing of PTEN could reverse the inhibitory effect of overexpression of miR-342-3p on LCSC carcinogenicity and cell stemness. CONCLUSION: MiR-342-3p inhibited LCSC oncogenicity and cell stemness by promoting PTEN and inhibiting HDAC7.
Asunto(s)
MicroARNs , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Hígado/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patologíaRESUMEN
Twenty-three new riminophenazine and pyrido[3,2-b]quinoxaline derivatives were prepared and examined for their antimycobacterial activities against Mycobacterium marinum and Mycobacterium tuberculosis H37Rv, taking clofazimine (1) as the lead. Structure-activity relationship (SAR) analysis revealed that the introduction of a heterocycle or diethylamine substituted benzene moiety on the N-5 atom might be beneficial for activity. The most potent compound 7m also displayed enhanced activity against wild-type as well as multidrug-resistant (MDR) and extensively drug-resistant (XDR) TB clinical isolates, with the MICs ranging from 0.08 to 1.25 µg/mL, especially effective toward strain M20A507, resistant to 1. Further mechanism study indicated that its anti-TB activity was independent of cell membrane disruption, but related to NDH-2 reduction and the resulting high ROS production. Our study provides instructive guidance for the further development of clofazimine derivatives into promising antimicrobial agents against MDR and XDR TB.
Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Antituberculosos/farmacología , Clofazimina/farmacología , Humanos , Pruebas de Sensibilidad Microbiana , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/microbiologíaRESUMEN
Knowledge of therapeutic targets and early drug candidates is useful for improved drug discovery. In particular, information about target regulators and the patented therapeutic agents facilitates research regarding druggability, systems pharmacology, new trends, molecular landscapes, and the development of drug discovery tools. To complement other databases, we constructed the Therapeutic Target Database (TTD) with expanded information about (i) target-regulating microRNAs and transcription factors, (ii) target-interacting proteins, and (iii) patented agents and their targets (structures and experimental activity values if available), which can be conveniently retrieved and is further enriched with regulatory mechanisms or biochemical classes. We also updated the TTD with the recently released International Classification of Diseases ICD-11 codes and additional sets of successful, clinical trial, and literature-reported targets that emerged since the last update. TTD is accessible at http://bidd.nus.edu.sg/group/ttd/ttd.asp. In case of possible web connectivity issues, two mirror sites of TTD are also constructed (http://db.idrblab.org/ttd/ and http://db.idrblab.net/ttd/).
Asunto(s)
Biología Computacional/métodos , Bases de Datos Factuales , Descubrimiento de Drogas , Terapia Molecular Dirigida , Programas Informáticos , Biomarcadores , Descubrimiento de Drogas/métodos , Humanos , Ligandos , Interfaz Usuario-Computador , Navegador WebRESUMEN
Krüppel-like factor 2 (KLF2) is an atherosclerotic protective transcription factor that maintains endothelial cell homeostasis through its anti-inflammatory, anti-oxidant, and antithrombotic properties. The aim of this study was to discover KLF2 activators from microbial secondary metabolites and explore their potential molecular mechanisms. By using a high-throughput screening model based on a KLF2 promoter luciferase reporter assay, column chromatography, electrospray ionization mass spectrometry (ESI-MS), and nuclear magnetic resonance (NMR) spectra, trichostatin D (TSD) was isolated from the rice fermentation of Streptomyces sp. CPCC203909 and identified as a novel KLF2 activator. Real-time-quantitative polymerase chain reaction (RT-qPCR) results showed that TSD upregulated the mRNA level of KLF2 in endothelial cells. Functional assays showed that TSD attenuated monocyte adhesion to endothelial cells, decreased vascular cell adhesion protein 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1) expression, and exhibited an anti-inflammatory effect in tumor necrosis factor alpha (TNFα)-induced endothelial cells. We further demonstrated through siRNA and western blot assays that the effects of TSD on monocyte adhesion and inflammation in endothelial cells were partly dependent on upregulating KLF2 expression and then inhibiting the NOD-like receptor protein 3 (NLRP3)/Caspase-1/interleukin-1beta (IL-1ß) signaling pathway. Furthermore, histone deacetylase (HDAC) overexpression and molecular docking analysis results showed that TSD upregulated KLF2 expression by inhibiting HDAC 4, 5, and 7 activities. Taken together, TSD was isolated from the fermentation of Streptomyces sp. CPCC203909 and first reported as a potential activator of KLF2 in this study. Furthermore, TSD upregulated KLF2 expression by inhibiting HDAC 4, 5, and 7 and attenuated endothelial inflammation via regulation of the KLF2/NLRP3/Caspase-1/IL-1ß signaling pathway.
Asunto(s)
Células Endoteliales , Factor de Necrosis Tumoral alfa , Humanos , Factor de Necrosis Tumoral alfa/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Células Endoteliales/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Simulación del Acoplamiento Molecular , Inflamación/patología , Molécula 1 de Adhesión Celular Vascular/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/metabolismo , Caspasas/metabolismoRESUMEN
Hypoxia is an important pathological phenomenon, and it can induce many tumor microenvironment changes, such as accumulations of intracellular lactic acid, decrease of tumor microenvironment pH value, and regulate a series of physiological and pathological processes such as adhesion, metastasis, and immune escape. Hypoxic tumor cells act as a key target for treating tumor. In this research, we designed and prepared PEG-nitroimidazole grafts, PEG-NI, and FA-PEG-NI. We first explored their physical and chemical properties to serve as a drug carrier. Then, the hypoxia-sensitive properties such as particle size changes and drug release were investigated. Finally, the tumor targeting ability was studied in vitro and in vivo, and anti-tumor capacity was determined. Both grafts showed excellent property as a nanodrug carrier and showed favorable drug encapsulation ability of sorafenib with the help of the hydrophobic chain of 6-(BOC-amino) hexyl bromide. The micelles responded to the hypoxic tumor environment with chemical and spatial structure changes leading to sensitive and fast drug release. With the modification of folic acid, FA-PEG-NI gained tumor targeting ability in vivo. FA-PEG-NI graft proved a potential targeting drug delivery system in the treatment of hypoxic hepatocellular carcinoma.
Asunto(s)
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Nitroimidazoles , Antineoplásicos/química , Carcinoma Hepatocelular/tratamiento farmacológico , Línea Celular Tumoral , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Ácido Fólico/química , Humanos , Hipoxia/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Micelas , Polietilenglicoles/química , Microambiente TumoralRESUMEN
So far, there is still no specific drug against COVID-19. Taking compound 1 with anti-EBOV activity as the lead, fifty-four 12N-substituted aloperine derivatives were synthesized and evaluated for the anti-SARS-CoV-2 activities using pseudotyped virus model. Among them, 8a exhibited the most potential effects against both pseudotyped and authentic SARS-CoV-2, as well as SARS-CoV and MERS-CoV, indicating a broad-spectrum anti-coronavirus profile. The mechanism study disclosed that 8a might block a late stage of viral entry, mainly via inhibiting host cathepsin B activity rather than directly targeting cathepsin B protein. Also, 8a could significantly reduce the release of multiple inflammatory cytokines in a time- and dose-dependent manner, such as IL-6, IL-1ß, IL-8 and MCP-1, the major contributors to cytokine storm. Therefore, 8a is a promising agent with the advantages of broad-spectrum anti-coronavirus and anti-cytokine effects, thus worthy of further investigation.
Asunto(s)
Antivirales/farmacología , Piperidinas/farmacología , Quinolizidinas/farmacología , SARS-CoV-2/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , Animales , Antivirales/síntesis química , Antivirales/farmacocinética , Antivirales/toxicidad , Catepsina B/antagonistas & inhibidores , Chlorocebus aethiops , Citocinas/metabolismo , Células HEK293 , Humanos , Masculino , Ratones , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Piperidinas/síntesis química , Piperidinas/farmacocinética , Piperidinas/toxicidad , Quinolizidinas/síntesis química , Quinolizidinas/farmacocinética , Quinolizidinas/toxicidad , Ratas Sprague-Dawley , Relación Estructura-Actividad , Células VeroRESUMEN
Twenty-nine 12 N-substituted aloperine derivatives were synthesized and screened for suppression on PD-L1 expression in H460 cells, as a continuation of our work. Systematic structural modifications led to the identification of compound 6b as the most active PD-L1 modulator. Compound 6b could significantly down-regulate both constitutive and inductive PD-L1 expression in NSCLC cells, and successively enhance the cytotoxicity of co-cultured T cells against tumor cells at the concentration of 20 µM. Also, it exhibited a moderate in vivo anticancer efficacy against Lewis tumor xenograft with a stable PK and safety profile. The mechanism study indicated that 6b mediated the degradation of PD-L1 through a proteasome pathway, rather than a lysosome route. These results provided the powerful information for cancer immunotherapy of aloperine derivatives with unique endocyclic skeleton by targeting PD-L1 to activate immune cells to kill cancer cells.
Asunto(s)
Antineoplásicos/farmacología , Antígeno B7-H1/antagonistas & inhibidores , Regulación hacia Abajo/efectos de los fármacos , Inhibidores de Puntos de Control Inmunológico/farmacología , Complejo de la Endopetidasa Proteasomal/metabolismo , Quinolizidinas/farmacología , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Inhibidores de Puntos de Control Inmunológico/síntesis química , Inhibidores de Puntos de Control Inmunológico/química , Ratones , Ratones Endogámicos , Estructura Molecular , Quinolizidinas/síntesis química , Quinolizidinas/química , Relación Estructura-ActividadRESUMEN
Proteins in a human body continuously undergo glycation reactions with reducing sugars, forming early as well as advanced glycation end-products (AGEs) which are highly disease-relevant. Specifically, N-1-(deoxyfructosyl) valine of ß-hemoglobin (HbA1c) has been considered as a marker of diabetes, but the exact map of glycated Hb peptides corelated with diabetes in different stages is poorly studied. Here, the pseudotargeted parallel reaction monitoring (PRM) method combined with relative retention time (iRT) endogenous peptides was proposed for exploring the roles of deoxyfructosyl (DF-), carboxymethyl (CM-), and carboxyethyl (CE-) based Hb modifications in clinical prognosis and diagnosis of type 2 diabetes mellitus (T2DM) and its complication. For building the pseudotargeted list, data-dependent acquisition (DDA) combined with multiple enzyme digestion was employed for the comprehensive identification of the three types of modification in vitro Hb and in vivo Hb. The introduction of the endogenous iRT peptides during PRM analysis facilitates being able to obtain accurate quantitative results. When applying this new strategy to quantify the three kinds of glycated Hb peptides in clinical samples, patients with T2DM in different pathophysiological conditions were fully distinguished from the controls, indicating the necessity of adopting multiple glycation types for the improved diagnosis of T2DM. Taken together, the newly developed pseudotargeted PRM method not only expands the horizons of glycated Hb by reliably assessing the actual status of T2DM but also reveals that endogenous iRT might be a viable option for label-free quantitative analysis.
Asunto(s)
Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/diagnóstico , Hemoglobina Glucada/análisis , Espectrometría de Masas/métodos , Secuencia de Aminoácidos , Hemoglobina Glucada/química , Humanos , Modelos Moleculares , Conformación ProteicaRESUMEN
Astrocyte elevated gene-1 (AEG-1) plays a critical role in the development, progression, and metastasis of a variety of cancers, including non-small-cell lung cancer (NSCLC). The objective of the current study is to unravel the upstream signaling of AEG-1. A cohort of 28 NSCLC tissues and 30 normal tissues were collected. Quantitative reverse transcription-polymerase chain reaction and Western blotting were used to examine AEG-1, migration, and invasion related markers in NSCLC cells. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay coupled with colony formation assay were conducted to monitor cell growth. Transwell assay was performed to determine cell migration and invasion. Apoptotic cells were detected by costaining with Annexin-V-fluorescein isothiocyanate and propidium iodide. Immunofluorescent staining was used to observe the levels of migration and invasion related markers. Xenograft models were used to investigate tumor formation in vivo. Dual-luciferase reporter assay and RNA immunoprecipitation were carried out to determine the interaction between circMTDH.4 and miR-630, as well as the associated between miR-630 and AEG-1. AEG-1 was highly expressed in NSCLC tissues and cell lines. Silencing of AEG-1 inhibited cell proliferation, migration, invasion, and chemoresistance/radioresistance in NCI-H1650 and A549 cells. circMTDH.4 regulated AEG-1 expression via sponging miR-630. Knockdown of circMTDH.4 and/or overexpression of miR-630 inhibited chemoresistance and radioresistance in NSCLC cells, whereas overexpression of AEG-1 or knockdown of miR-630 exerted rescue effects. circMTDH.4/miR-630/AEG-1 axis is responsible for chemoresistance and radioresistance in NSCLC cells.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/genética , Proteínas de la Membrana/genética , MicroARNs/genética , ARN Circular/genética , Proteínas de Unión al ARN/genética , Células A549 , Animales , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/terapia , Línea Celular Tumoral , Quimioradioterapia , Resistencia a Antineoplásicos/genética , Femenino , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/terapia , Ratones Endogámicos BALB C , Ratones Desnudos , Invasividad Neoplásica , Interferencia de ARN , Tolerancia a Radiación/genética , Trasplante HeterólogoRESUMEN
Lymph nodes are proposed as the intriguing target in cancer immunotherapy, and cellular immunity is vital for vaccines to fight against cancer. However, inefficient delivery of vaccines to lymph nodes and deficient lysosomal escape of antigens result in weak cellular immunity, which restrains the strength of vaccines in inducing antitumor immune responses. Hence, dendritic cell membrane (DCM)/histidine-modified stearic acid-grafted chitosan (HCtSA)/ovalbumin (OVA) micelles, as pH-responsive biomimetic vaccines, were fabricated to target lymph nodes and induce cellular immunity for enhanced antitumor immune responses. DCM/HCtSA/OVA micelles exhibited pH-dependent antigen release behavior, which resulted in efficient escape of antigens from dendritic cell (DC) lysosomes. Besides, DCM/HCtSA/OVA micelles accumulated and reserved in the lymph nodes, which ensured effective uptake by DCs. Importantly, DCM/HCtSA/OVA micelles induced potent T cell immune responses, promoted secretion of antitumor-related cytokines, and notably inhibited tumor growth. Overall, DCM/HCtSA/OVA micelles exhibit great potential in targeted immunotherapy and can provide guidance for the design of vaccines.
Asunto(s)
Vacunas contra el Cáncer , Vacunas , Animales , Antígenos , Biomimética , Células Dendríticas , Concentración de Iones de Hidrógeno , Inmunidad Celular , Ganglios Linfáticos , Ratones , Ratones Endogámicos C57BL , Micelas , OvalbúminaRESUMEN
A concise and efficient procedure for the total synthesis of tubulysin U and N14-desacetoxytubulysin H has been developed with high stereoselectivity on a gram scale. This synthesis features an elegant cascade one-pot process to install the challenging thiazole moiety and the employment of stereoselective reductions and a series of high-yield mild reactions to ensure the requisite stereochemistry, reaction scale, and yield and to avoid the vexing epimerization occurring during peptide formation.
RESUMEN
BACKGROUND Chinese hawthorn (Crataegus pinnatifida) fruit is a traditional Chinese medicine for treatment of digestive system and cardiovascular diseases. The fruit contains polyphenol compounds, such as epicatechin, that have anti-inflammatory activity. This study aimed to investigate the effects of an alcohol extract of hawthorn fruit (HAE) on inflammation and oxidative stress in rats with doxorubicin-induced chronic heart failure (CHF). MATERIAL AND METHODS Rats were intraperitoneally injected with doxorubicin to induce CHF and subsequently treated with HAE intragastrically once daily for 6 weeks. At the end of the experiment, echocardiographic and hemodynamic parameters were assessed, and enzyme-linked immunoassays were used to detect the levels of cardiac injury markers (brain natriuretic peptide, creatine kinase-MB, aspartate aminotransferase, lactate dehydrogenase, copeptin, and adrenomedullin), oxidative stress markers (glutathione peroxidase and malondialdehyde), and inflammatory cytokines (interleukin [IL]-6, IL-8, IL-1ß, and tumor necrosis factor-a). The IL-1ß, IL-6, glutathione peroxidase-1, and catalase mRNA levels were also measured by quantitative real-time polymerase chain reaction. RESULTS Our findings indicated that HAE exerts a cardioprotective effect, as shown by improved echocardiographic and hemodynamic parameters, decreased activity of serum myocardial enzymes, reduced serum levels of CHF markers, and inhibited inflammatory response in cardiac tissue. In addition, HAE treatment downregulated the mRNA expression of IL-1ß and tumor necrosis factor-alpha and upregulated the mRNA expression of glutathione peroxidase-1 and catalase compared with untreated doxorubicin-induced CHF rats. CONCLUSIONS HAE shows promise for the prevention and treatment of CHF. The cardioprotective effect of HAE appears to be related to inhibition of both the inflammatory response and oxidative stress in vivo.