Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 23(10): 4595-4601, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37154868

RESUMEN

Sliding ferroelectricity associated with interlayer translation is an excellent candidate for ferroelectric device miniaturization. However, the weak polarization gives rise to the poor performance of sliding ferroelectric transistors with a low on/off ratio and a narrow memory window, which restricts its practical application. To address the issue, we propose a facile strategy by regulating the Schottky barrier in sliding ferroelectric semiconductor transistors based on γ-InSe, in which a high performance with a large on/off ratio (106) and a wide memory window (4.5 V) was ultimately acquired. Additionally, the memory window of the device can be further modulated by electrostatic doping or light excitation. These results open up new ways for designing novel ferroelectric devices based on emerging sliding ferroelectricity.

2.
Inorg Chem ; 60(13): 9248-9253, 2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-34132527

RESUMEN

Birefringence, an important optical performance parameter for optoelectronic functional materials, is mainly influenced by the types of anion groups and their spatial arrangement. Inspired by the relationship between the structure and properties of chalcogenides, combined with the dimensional transformation, we successfully synthesized a sulfide compound (Cs2ZnSn3S8) with a two-dimensional layered structure and a large birefringence. The experimental results showed that, compared with Rb10Zn4Sn4S17, Cs2ZnSn3S8 achieved the structural transition from a zero-dimensional arrangement to a two-dimensional lamellar arrangement and achieved a breakthrough of birefringence from 0 to 0.12, which was determined by both experiments and first-principles calculations. These findings demonstrated that Cs2ZnSn3S8 was a potential birefringent material and provided instructions for the study of the synthesis of birefringent materials.

3.
Science ; 385(6704): 57-62, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38843352

RESUMEN

Ferroelectric materials have switchable electrical polarization that is appealing for high-density nonvolatile memories. However, inevitable fatigue hinders practical applications of these materials. Fatigue-free ferroelectric switching could dramatically improve the endurance of such devices. We report a fatigue-free ferroelectric system based on the sliding ferroelectricity of bilayer 3R molybdenum disulfide (3R-MoS2). The memory performance of this ferroelectric device does not show the wake-up effect at low cycles or a substantial fatigue effect after 106 switching cycles under different pulse widths. The total stress time of the device under an electric field is up to 105 s, which is long relative to other devices. Our theoretical calculations reveal that the fatigue-free feature of sliding ferroelectricity is due to the immobile charge defects in sliding ferroelectricity.

4.
Nat Commun ; 14(1): 6838, 2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37891203

RESUMEN

To enhance the efficiency of catalysis, it is crucial to comprehend the behavior of individual nanowires/nanosheets. A developed on-chip microcell facilitates this study by creating a reaction window that exposes the catalyst region of interest. However, this technology's potential application is limited due to frequently-observed variations in data between different cells. In this study, we identify a conductance problem in the reaction windows of non-metallic catalysts as the cause of this issue. We investigate this problem using in-situ electronic/electrochemical measurements and atom-thin nanosheets as model catalysts. Our findings show that a full-open window, which exposes the entire catalyst channel, allows for efficient modulation of conductance, which is ten times higher than a half-open window. This often-overlooked factor has the potential to significantly improve the conductivity of non-metallic catalysts during the reaction process. After examining tens of cells, we develop a vertical microcell strategy to eliminate the conductance issue and enhance measurement reproducibility. Our study offers guidelines for conducting reliable microcell measurements on non-metallic single nanowire/nanosheet catalysts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA