Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Gut ; 73(1): 78-91, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-37553229

RESUMEN

OBJECTIVE: The pathogenesis of sepsis is complex, and the sepsis-induced systemic proinflammatory phase is one of the key drivers of organ failure and consequent mortality. Akkermansia muciniphila (AKK) is recognised as a functional probiotic strain that exerts beneficial effects on the progression of many diseases; however, whether AKK participates in sepsis pathogenesis is still unclear. Here, we evaluated the potential contribution of AKK to lethal sepsis development. DESIGN: Relative abundance of gut microbial AKK in septic patients was evaluated. Cecal ligation and puncture (CLP) surgery and lipopolysaccharide (LPS) injection were employed to establish sepsis in mice. Non-targeted and targeted metabolomics analysis were used for metabolites analysis. RESULTS: We first found that the relative abundance of gut microbial AKK in septic patients was significantly reduced compared with that in non-septic controls. Live AKK supplementation, as well as supplementation with its culture supernatant, remarkably reduced sepsis-induced mortality in sepsis models. Metabolomics analysis and germ-free mouse validation experiments revealed that live AKK was able to generate a novel tripeptide Arg-Lys-His (RKH). RKH exerted protective effects against sepsis-induced death and organ damage. Furthermore, RKH markedly reduced sepsis-induced inflammatory cell activation and proinflammatory factor overproduction. A mechanistic study revealed that RKH could directly bind to Toll-like receptor 4 (TLR4) and block TLR4 signal transduction in immune cells. Finally, we validated the preventive effects of RKH against sepsis-induced systemic inflammation and organ damage in a piglet model. CONCLUSION: We revealed that a novel tripeptide, RKH, derived from live AKK, may act as a novel endogenous antagonist for TLR4. RKH may serve as a novel potential therapeutic approach to combat lethal sepsis after successfully translating its efficacy into clinical practice.


Asunto(s)
Sepsis , Receptor Toll-Like 4 , Porcinos , Humanos , Ratones , Animales , Receptor Toll-Like 4/metabolismo , Sepsis/prevención & control , Transducción de Señal , Verrucomicrobia
2.
Pharmacol Res ; 190: 106714, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36863429

RESUMEN

Ischemic stroke is closely associated with gut microbiota dysbiosis and intestinal barrier dysfunction. Prebiotic intervention could modulate the intestinal microbiota, thus considered a practical strategy for neurological disorders. Puerariae Lobatae Radix-resistant starch (PLR-RS) is a potential novel prebiotic; however, its role in ischemic stroke remains unknown. This study aimed to clarify the effects and underlying mechanisms of PLR-RS in ischemic stroke. Middle cerebral artery occlusion surgery was performed to establish a model of ischemic stroke in rats. After gavage for 14 days, PLR-RS attenuated ischemic stroke-induced brain impairment and gut barrier dysfunction. Moreover, PLR-RS rescued gut microbiota dysbiosis and enriched Akkermansia and Bifidobacterium. We transplanted the fecal microbiota from PLR-RS-treated rats into rats with ischemic stroke and found that the brain and colon damage were also ameliorated. Notably, we found that PLR-RS promoted the gut microbiota to produce a higher level of melatonin. Intriguingly, exogenous gavage of melatonin attenuated ischemic stroke injury. In particular, melatonin attenuated brain impairment via a positive co-occurrence pattern in the intestinal microecology. Specific beneficial bacteria served as leaders or keystone species to promoted gut homeostasis, such as Enterobacter, Bacteroidales_S24-7_group, Prevotella_9, Ruminococcaceae and Lachnospiraceae. Thus, this new underlying mechanism could explain that the therapeutic efficacy of PLR-RS on ischemic stroke at least partly attributed to gut microbiota-derived melatonin. In summary, improving intestinal microecology by prebiotic intervention and melatonin supplementation in the gut were found to be effective therapies for ischemic stroke.


Asunto(s)
Depresores del Sistema Nervioso Central , Microbioma Gastrointestinal , Accidente Cerebrovascular Isquémico , Melatonina , Pueraria , Animales , Ratas , Disbiosis/microbiología , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Melatonina/farmacología , Melatonina/uso terapéutico , Prebióticos , Almidón Resistente , Depresores del Sistema Nervioso Central/farmacología , Depresores del Sistema Nervioso Central/uso terapéutico
3.
Nutrients ; 14(23)2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36501055

RESUMEN

Pre-eclampsia (PE) is a serious pregnancy complication, and gut dysbiosis is an important cause of it. Puerariae lobatae Radix (PLR) is a medicine and food homologous species; however, its effect on PE is unclear. This study aimed to investigate the efficacy of PLR in alleviating PE and its mechanisms. We used an NG-nitro-L-arginine methyl ester (L-NAME)-induced PE mouse model to examine the efficacy of preventive and therapeutic PLR supplementation. The results showed that both PLR interventions alleviated hypertension and proteinuria, increased fetal and placental weights, and elevated the levels of VEGF and PlGF. Moreover, PLR protected the placenta from oxidative stress via activating the Nrf2/HO-1/NQO1 pathway and mitigated placental damage by increasing intestinal barrier markers (ZO-1, Occludin, and Claudin-1) expression and reducing lipopolysaccharide leakage. Notably, preventive PLR administration corrected gut dysbiosis in PE mice, as evidenced by the increased abundance and positive interactions of beneficial bacteria including Bifidobacterium, Blautia, and Turicibacter. Fecal microbiota transplantation confirmed that the gut microbiota partially mediated the beneficial effects of PLR on PE. Our findings revealed that modulating the gut microbiota is an effective strategy for the treatment of PE and highlighted that PLR might be used as an intestinal nutrient supplement in PE patients.


Asunto(s)
Microbioma Gastrointestinal , Preeclampsia , Humanos , Animales , Femenino , Ratones , Embarazo , Preeclampsia/metabolismo , Placenta/metabolismo , Disbiosis/metabolismo , Proteinuria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA