Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 107(23): 7055-7070, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37750916

RESUMEN

Feathers become hazardous pollutants when deposited directly into the environment. The rapid expansion of the poultry industry has significantly increased feather waste, necessitating the development of new ways to degrade and utilize feathers. This study investigated the ability of Bacillus licheniformis WHU to digest intact chicken feathers in water. The results indicated that yields of free amino acids, bioactive peptides, and keratin-derived nano-/micro-particles were improved in bacteria- versus purified keratinase-derived feather hydrolysate. Bacteria-derived feather hydrolysate supplementation induced health benefits in mice, including significantly increased intestinal villus height and zonula occludens-1 protein expression, as well as increased secretory immunoglobulin A levels in the intestinal mucosa and superoxide dismutase activity in serum. Additionally, feather hydrolysate supplementation modulated the mouse gut microbiota, reflected by increased relative abundance of probiotics such as Lactobacillus spp., decreased relative abundance of Proteobacteria at the phylum level and pathogens such as Staphylococcus spp., and increased Bacteroidota/Firmicutes ratio. This study developed a simple, cost-effective method to degrade feathers by B. licheniformis WHU digestion, yielding a hydrolysate that can be directly used as a bioactive nutrient resource. The study findings have applications in the livestock, poultry, and aquaculture industries, which have high demands for cheap protein. KEY POINTS: • Bacillus licheniformis could degrade intact feather in water. • The resulting feather hydrolysate shows prebiotic effects on mouse.


Asunto(s)
Bacillus licheniformis , Animales , Ratones , Bacillus licheniformis/metabolismo , Plumas/química , Plumas/metabolismo , Plumas/microbiología , Agua/metabolismo , Pollos , Péptido Hidrolasas/metabolismo , Aves de Corral , Bacterias/metabolismo , Nutrientes , Queratinas/metabolismo
2.
World J Microbiol Biotechnol ; 40(1): 30, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38057391

RESUMEN

Keratinases have drawn increasing attention in recent decades owing to their catalytic versatility and broad applications from agriculture to medicine. In the present study, we isolated a highly keratinolytic and fibrinolytic bacterium from the campus soil and named it Stenotrophomonas sp. LMY based on genetic information. To identify the potential keratinase genes, the genome sequence of the strain was obtained and analyzed. Sequence alignment and comparison revealed that the protein 1_737 (KerZJ) had the highest sequence homology to a reported keratinase KerBL. We recombinantly expressed KerZJ in Escherichia coli Origami™ (DE) pLysS and purified it to homogeneity. KerZJ showed the highest activity at 40 °C and pH 9.0, and metal ions exhibited no significant effects on its activity. Although reducing agents would break the disulfide bonds in KerZJ and reduce its activity, KerZJ still exhibited the ability to hydrolyze feather keratin in the presence of ß-ME. KerZJ could efficiently digest human prion proteins. In addition, KerZJ showed fibrinolytic activity on fibrin plates and effectively eliminated blood clots in a thrombosis mouse model without side effects. Our results suggest that KerZJ is a versatile keratinase with significant potential for keratin treatment, decontamination of prions, and fibrinolytic therapy.


Asunto(s)
Péptido Hidrolasas , Stenotrophomonas , Animales , Humanos , Ratones , Plumas/química , Concentración de Iones de Hidrógeno , Queratinas , Metales/metabolismo , Péptido Hidrolasas/metabolismo , Stenotrophomonas/genética , Stenotrophomonas/metabolismo
3.
World J Microbiol Biotechnol ; 39(1): 8, 2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36350434

RESUMEN

Nattokinase with excellent anti-thrombotic, anti-inflammatory, anti-tumor, and anti-hypertension properties has been used in the development of several healthcare products in many countries. The probiotic Escherichia coli Nissle 1917 (EcN) with anti-inflammatory effect is commonly used to treat inflammatory bowel disease. To determine whether nattokinase could enhance the therapeutic efficacy of EcN in colitis, a recombinant E. coli Nissle 1917 strain (EcNnatto) with nattokinase-expressing ability was successfully constructed, and the protective effect of the engineered strain on mice with experimental chronic colitis was investigated. Although both EcN and EcNnatto strains substantially alleviated the clinical symptoms and pathological abnormalities in colitis mice by regulating gut flora and maintaining intestinal barrier function, the EcNnatto strain was found to perform better than the control strain, based on a further increase in colon length and a downregulation in pro-inflammatory cytokines (IL-6 and TNF-α). Nattokinase expressed in EcN attenuated DSS-induced epithelial damage and restored the mucosal integrity by upregulating the levels of tight junction proteins, including ZO-1 and occludin. The expression level of Lgr5, a marker of intestinal stem cells, was also increased. Moreover, constitutively expressed nattokinase in EcN reversed the gut microbial richness and diversity in colitis mice. Based on our findings, nattokinase could strengthen the capacity of EcN to treat intestinal inflammation.


Asunto(s)
Colitis , Infecciones por Escherichia coli , Probióticos , Animales , Ratones , Antiinflamatorios/metabolismo , Colitis/inducido químicamente , Colitis/prevención & control , Colitis/tratamiento farmacológico , Sulfato de Dextran/efectos adversos , Sulfato de Dextran/metabolismo , Modelos Animales de Enfermedad , Escherichia coli/metabolismo , Infecciones por Escherichia coli/prevención & control , Probióticos/farmacología
4.
Microb Biotechnol ; 16(12): 2278-2291, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37874686

RESUMEN

Vaccines and cell therapeutics based on genetic code expansion are emerging. A crucial step in these therapeutic technologies is the oral administration of non-canonical amino acids (ncAAs) to control pathogen growth and therapeutic protein levels in vivo. Investigating the toxicity effects of ncAAs can help identify more suitable candidates for developing genetic code expansion-based vaccines and cell therapeutics. In this study, we determined the effects of three ncAAs, namely, 4-acetyl-phenylalanine (pAcF), 4-iodo-phenylalanine (pIoF), and 4-methoxy-phenylalanine (pMeoF), commonly used in genetic code expansion-based vaccines and cell therapeutics, on the main organs, serum biochemical parameters, and gut microbiota in mice. We observed that pIoF and pMeoF significantly altered serum biochemical parameters to some extent. Moreover, the alterations in the mouse gut microbial composition were considerably greater after the oral administration of pIoF and pMeoF than after that of pAcF, compared with that in the control mice. These findings suggest that pAcF is more suitable than pIoF and pMeoF for application in genetic code expansion-based vaccines and cell therapeutics as it disturbs the physiological and gut microecological balance in mice to a lesser extent.


Asunto(s)
Microbioma Gastrointestinal , Vacunas , Animales , Ratones , Aminoácidos/metabolismo , Código Genético , Fenilalanina/genética
5.
Front Microbiol ; 13: 864571, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35572711

RESUMEN

5-Hydroxytryptophan (5-HTP) has positive clinical effects on various neuropsychiatric and metabiotic disorders, especially depression. Although it increases serotonin levels in the brain and gastrointestinal tract, its pharmacology remains largely unknown. Our goal was to determine the effects of 5-HTP on the mouse gut microbiome, which has a close relationship with depression through the "microbiota-gut-brain axis." We confirmed that depressive disorder restructures the gut microbial community, and 5-HTP efficiently improves depressive symptoms in mice. Oral administration of 5-HTP significantly restored gut microbiota dysbiosis in mice with depression-like behaviors. The diversity and richness of gut microbial communities and relative abundance of specific microbial taxa at both phylum and genus levels were partially recovered. 5-HTP exhibited some positive effects on restoring the alterations in the concentrations of short-chain fatty acids and brain-derived neurotrophic factors caused by depression in mice. Our results may provide new insights into the pharmacology of 5-HTP in treating depression and other disorders.

6.
Front Bioeng Biotechnol ; 9: 770907, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34733836

RESUMEN

A keratinase from Pseudomonas aeruginosa (KerPA), which belongs to the M4 family of metallopeptidases, was characterised in this study. This enzyme was engineered with non-canonical amino acids (ncAAs) using genetic code expansion. Several variants with enhanced activity and thermostability were identified and the most prominent, Y21pBpF/Y70pBpF/Y114pBpF, showed an increase in enzyme activity and half-life of approximately 1.3-fold and 8.2-fold, respectively. Considering that keratinases usually require reducing agents to efficiently degrade keratin, the Y21pBpF/Y70pBpF/Y114pBpF variant with enhanced activity and stability under reducing conditions may have great significance for practical applications. Molecular Dynamics (MD) was performed to identify the potential mechanisms underlying these improvements. The results showed that mutation with pBpF at specific sites of the enzyme could fill voids, form new interactions, and reshape the local structure of the active site of the enzyme.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA