Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Angew Chem Int Ed Engl ; 63(18): e202402007, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38407551

RESUMEN

Pathological hyperphosphorylation and aggregation of microtubule-associated Tau protein contribute to Alzheimer's Disease (AD) and other related tauopathies. Currently, no cure exists for Alzheimer's Disease. Aptamers offer significant potential as next-generation therapeutics in biotechnology and the treatment of neurological disorders. Traditional aptamer selection methods for Tau protein focus on binding affinity rather than interference with pathological Tau. In this study, we developed a new selection strategy to enrich DNA aptamers that bind to surviving monomeric Tau protein under conditions that would typically promote Tau aggregation. Employing this approach, we identified a set of aptamer candidates. Notably, BW1c demonstrates a high binding affinity (Kd=6.6 nM) to Tau protein and effectively inhibits arachidonic acid (AA)-induced Tau protein oligomerization and aggregation. Additionally, it inhibits GSK3ß-mediated Tau hyperphosphorylation in cell-free systems and okadaic acid-mediated Tau hyperphosphorylation in cellular milieu. Lastly, retro-orbital injection of BW1c tau aptamer shows the ability to cross the blood brain barrier and gain access to neuronal cell body. Through further refinement and development, these Tau aptamers may pave the way for a first-in-class neurotherapeutic to mitigate tauopathy-associated neurodegenerative disorders.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Proteínas tau , Humanos , Enfermedad de Alzheimer/metabolismo , Neuronas/metabolismo , Ácido Ocadaico/metabolismo , Ácido Ocadaico/farmacología , Ácido Ocadaico/uso terapéutico , Fosforilación , Proteínas tau/antagonistas & inhibidores , Proteínas tau/metabolismo , Tauopatías/tratamiento farmacológico , Tauopatías/metabolismo , Tauopatías/patología , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/farmacología
2.
Chembiochem ; 22(4): 754-759, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33051959

RESUMEN

Functional nucleic acids (FNAs) are garnering tremendous interest owing to their high modularity and unique bioactivity. Three-dimensional FNAs have been developed to overcome the issues of nuclease degradation and limited cell uptake. We have developed a new facile approach to the synthesis of multiple three-dimensional FNA nanostructures by harnessing photo-polymerization-induced self-assembly. Sgc8 aptamer and CpG oligonucleotide were modified as macro chain-transfer reagents to mediate in situ polymerization and self-assembly. Diverse structures, including micelles, rods, and short worms, afford these two FNAs afford these two FNAs with higher nuclease resistance in serum serum, greater cellular uptake efficiency, and increased bioactivity.


Asunto(s)
Aptámeros de Nucleótidos/química , Nanoestructuras/química , Ácidos Nucleicos/metabolismo , Oligodesoxirribonucleótidos/química , Polímeros/química , Islas de CpG , Metacrilatos/química , Micelas , Ácidos Nucleicos/química , Polimerizacion
3.
J Immunol ; 202(6): 1669-1673, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30728212

RESUMEN

Group 2 innate lymphoid cells (ILC2) are tissue-resident, long-lived innate effector cells implicated in allergy and asthma. Upon activation, mature ILC2 rapidly secrete large amounts of type-2 cytokines and other effector molecules. The molecular pathways that drive ILC2 activation are not well understood. In this study, we report that the transcriptional controller core binding factor ß (CBFß) is required for ILC2 activation. Deletion or inhibition of CBFß did not impair the maintenance of ILC2 at homeostasis but abolished ILC2 activation during allergic airway inflammation. Treatment with CBFß inhibitors prevented ILC2-mediated airway hyperresponsiveness in a mouse model of acute Alternaria allergen inhalation. CBFß promoted expression of key ILC2 genes at both transcriptional and translational levels. CBF transcriptional complex directly bound to Il13 and Vegfa promoters and enhancers, and controlled gene transcription. CBFß further promoted ribosome biogenesis and enhanced gene translation in activated ILC2. Together, these data establish an essential role for CBFß in ILC2 activation.


Asunto(s)
Subunidad beta del Factor de Unión al Sitio Principal/inmunología , Regulación de la Expresión Génica/inmunología , Inmunidad Innata/inmunología , Activación de Linfocitos/inmunología , Linfocitos/inmunología , Animales , Hipersensibilidad/inmunología , Ratones , Ratones Noqueados
4.
Allergy ; 75(4): 841-852, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31833571

RESUMEN

BACKGROUND: Asthma is a complicated chronic inflammatory disorder characterized by airway inflammation and bronchial hyperresponsiveness. Group 2 innate lymphoid cells (ILC2) are tissue-resident innate effector cells that can mediate airway inflammation and hyperresponsiveness through production of IL-5, IL-13 and VEGFA. ILC2 in asthma patients exhibit an activated phenotype. However, molecular pathways that control ILC2 activation are not well understood. METHODS: MYC expression was examined in ILC2 sorted from peripheral blood of healthy controls and asthma patients or cultured with or without activating cytokines. CRISPR knockout technique was used to delete c-Myc in primary murine lung ILC2 or an ILC2 cell line. Cell proliferation was examined, gene expression pattern was profiled by genome-wide microarray analysis, and direct gene targets were identified by Chromatin immunoprecipitation (ChIP). ILC2 responses, airway inflammation and airway hyperresponsiveness were examined in Balb/c mice challenged with Alternaria extracts, with or without treatment with JQ1. RESULTS: ILC2 from asthma patients expressed increased amounts of MYC. Deletion of c-Myc in ILC2 results in reduced proliferation, decreased cytokine production, and reduced expression of many lymphocyte activation genes. ChIP identified Stat6 as a direct gene target of c-Myc in ILC2. In vivo inhibition of c-Myc by JQ1 treatment repressed ILC2 activity and suppressed Alternaria-induced airway inflammation and AHR. CONCLUSION: c-Myc expression is upregulated during ILC2 activation. c-Myc is essential for ILC2 activation and their in vivo pathogenic effects. These findings suggest that targeting c-Myc may unlock novel strategies to combat asthma or asthma exacerbation.


Asunto(s)
Asma , Linfocitos , Animales , Asma/genética , Citocinas , Humanos , Inmunidad Innata , Interleucina-13 , Interleucina-33 , Pulmón , Ratones , Ratones Noqueados , Proteínas Proto-Oncogénicas c-myc
5.
Traffic ; 16(10): 1062-74, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26201836

RESUMEN

NAC with a transmembrane (TM) motif1-like (NTL) transcription factors, containing three regions: the N-terminal NAC domain (ND), the middle regulation region (RR), and the C-terminal TM domain, belong to the tail-anchored proteins. Although these NTLs play numerous essential roles in plants, their subcellular distribution and the mechanism of translocation into the nucleus (NU) remain unclear. In this study, we found that most of the full-length NTLs were localized in the endoplasmic reticulum (ER), with the exception of NTL11 and NTL5, which were restricted to the NU. Furthermore, we found that NTL11 contains a TM domain, whereas NTL5 does not. The ND of all of the NTLs was responsible for nuclear localization in plants. After truncation of the TM domain, NTL8_NR, NTL10_NR and NTL13_NR localized in the cytoplasm (CT) and NU, and other NTL_NRs were only localized in the NU, suggesting that the RR of NTL8, NTL10 and NTL13 contains some inhibitory region to mask the nuclear localization signal sequence in the ND domain and permit their diffusion between CT and NU. Furthermore, the N-terminus of NTL11 was translocated to the NU, but the C-terminus was degraded in Arabidopsis mesophyll protoplasts. The chimeric construct of NTL11_ND with NTL10_RR and TM domain (11ND-10RT) was localized exclusively in the ER, and not in the NU. However, 10ND-11RT was found mainly in the NU. Our results indicated that the TM domain is essential for NTL targeting the ER and the N-terminal fragment, including ND and RR, is translocated into the NU after activation through proteolytic cleavage events upon stimulation by internal and external environmental signals.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Transporte de Proteínas/fisiología , Factores de Transcripción/metabolismo , Arabidopsis/fisiología , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Retículo Endoplásmico/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Señales de Clasificación de Proteína/fisiología , Estructura Terciaria de Proteína , Protoplastos/metabolismo
7.
Cells ; 11(14)2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35883651

RESUMEN

Epithelial-mesenchymal transition (EMT) is implicated in tumor metastasis and therapeutic resistance. It remains a challenge to target cancer cells that have undergone EMT. The Snail family of key EMT-inducing transcription factors directly binds to and transcriptionally represses not only epithelial genes but also a myriad of additional genomic targets that may carry out significant biological functions. Therefore, we reasoned that EMT inherently causes various concomitant phenotypes, some of which may create targetable vulnerabilities for cancer treatment. In the present study, we found that Snail transcription factors bind to the promoters of multiple genes encoding subunits of the AMP-activated protein kinase (AMPK) complex, and expression of AMPK genes was markedly downregulated by EMT. Accordingly, high AMPK expression in tumors correlated with epithelial cell markers and low AMPK expression in tumors was strongly associated with adverse prognosis. AMPK is the principal sensor of cellular energy status. In response to energy stress, AMPK is activated and critically reprograms cellular metabolism to restore energy homeostasis and maintain cell survival. We showed that activation of AMPK by energy stress was severely impaired by EMT. Consequently, EMT cancer cells became hypersensitive to a variety of energy stress conditions and primarily underwent pyroptosis, a regulated form of necrotic cell death. Collectively, the study suggests that EMT impedes the activation of AMPK signaling induced by energy stress and sensitizes cancer cells to pyroptotic cell death under energy stress conditions. Therefore, while EMT promotes malignant progression, it concurrently induces collateral vulnerabilities that may be therapeutically exploited.


Asunto(s)
Transición Epitelial-Mesenquimal , Neoplasias , Piroptosis , Proteínas Quinasas Activadas por AMP/metabolismo , Transición Epitelial-Mesenquimal/genética , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Factores de Transcripción de la Familia Snail , Estrés Fisiológico
8.
Sci Adv ; 6(8): eaaw4651, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32128389

RESUMEN

Chromatin topological organization is instrumental in gene transcription. Gene-enhancer interactions are accommodated in the same CTCF-mediated insulated neighborhoods. However, it remains poorly understood whether and how the 3D genome architecture is dynamically restructured by external signals. Here, we report that LATS kinases phosphorylated CTCF in the zinc finger (ZF) linkers and disabled its DNA-binding activity. Cellular stress induced LATS nuclear translocation and CTCF ZF linker phosphorylation, and altered the landscape of CTCF genomic binding partly by dissociating it selectively from a small subset of its genomic binding sites. These sites were highly enriched for the boundaries of chromatin domains containing LATS signaling target genes. The stress-induced CTCF phosphorylation and locus-specific dissociation from DNA were LATS-dependent. Loss of CTCF binding disrupted local chromatin domains and down-regulated genes located within them. The study suggests that external signals may rapidly modulate the 3D genome by affecting CTCF genomic binding through ZF linker phosphorylation.


Asunto(s)
Factor de Unión a CCCTC/metabolismo , Proteínas Quinasas/metabolismo , Sitios de Unión , Factor de Unión a CCCTC/química , Cromatina/genética , Cromatina/metabolismo , Genómica/métodos , Humanos , Lipoproteínas/metabolismo , Modelos Biológicos , Fosforilación , Unión Proteica , Transducción de Señal , Estrés Fisiológico , Dedos de Zinc
9.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 33(5): 650-658, 2019 May 15.
Artículo en Zh | MEDLINE | ID: mdl-31090363

RESUMEN

OBJECTIVE: To summarize the effect of cartilage progenitor cells (CPCs) and microRNA-140 (miR-140) on the repair of osteoarthritic cartilage injury, and analyze their clinical prospects. METHODS: The recent researches regarding the CPCs, miR-140, and repair of cartilage in osteoarthritis (OA) disease were extensively reviewed and summarized. RESULTS: CPCs possess the characteristics of self-proliferation, expression of stem cell markers, and multi-lineage differentiation potential, and their chondrogenic ability is superior to other tissues-derived mesenchymal stem cells. CPCs are closely related to the development of OA, but the autonomic activation and chondrogenic ability of CPCs around the osteoarthritic cartilage lesion cannot meet the requirements of complete cartilage repair. miR-140 specifically express in cartilage, and has the potential to activate CPCs by inhibiting key molecules of Notch signaling pathway and enhance its chondrogenic ability, thus promoting the repair of osteoarthritic cartilage injury. Intra-articular delivery of drugs is one of the main methods of OA treatment, although intra-articular injection of miR-140 has a significant inhibitory effect on cartilage degeneration in rats, it also exhibit some limitations such as non-targeted aggregation, low bioavailability, and rapid clearance. So it is a good application prospect to construct a carrier with good safety, cartilage targeting, and high-efficiency for miR-140 based on articular cartilage characteristics. In addition, CPCs are mainly dispersed in the cartilage surface, while OA cartilage injury also begins from this layer, it is therefore essential to emphasize early intervention of OA. CONCLUSION: miR-140 has the potential to activate CPCs and promote the repair of cartilage injury in early OA, and it is of great clinical significance to further explore the role of miR-140 in OA etiology and to develop new OA treatment strategies based on miR-140.


Asunto(s)
Cartílago Articular , Osteoartritis , Animales , Condrocitos , Condrogénesis , MicroARNs , Ratas , Células Madre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA