Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 52(2): 357-373.e9, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32049051

RESUMEN

Clearance of apoptotic cells by macrophages prevents excessive inflammation and supports immune tolerance. Here, we examined the effect of blocking apoptotic cell clearance on anti-tumor immune response. We generated an antibody that selectively inhibited efferocytosis by phagocytic receptor MerTK. Blockade of MerTK resulted in accumulation of apoptotic cells within tumors and triggered a type I interferon response. Treatment of tumor-bearing mice with anti-MerTK antibody stimulated T cell activation and synergized with anti-PD-1 or anti-PD-L1 therapy. The anti-tumor effect induced by anti-MerTK treatment was lost in Stinggt/gt mice, but not in Cgas-/- mice. Abolishing cGAMP production in Cgas-/- tumor cells, depletion of extracellular ATP, or inactivation of the ATP-gated P2X7R channel also compromised the effects of MerTK blockade. Mechanistically, extracellular ATP acted via P2X7R to enhance the transport of extracellular cGAMP into macrophages and subsequent STING activation. Thus, MerTK blockade increases tumor immunogenicity and potentiates anti-tumor immunity, which has implications for cancer immunotherapy.


Asunto(s)
Macrófagos/inmunología , Proteínas de la Membrana/metabolismo , Neoplasias/inmunología , Nucleótidos Cíclicos/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Tirosina Quinasa c-Mer/inmunología , Adenosina Trifosfato/metabolismo , Animales , Apoptosis , Antígeno B7-H1/inmunología , Células Cultivadas , Femenino , Inmunidad Innata , Inmunoterapia , Interferón Tipo I/metabolismo , Macrófagos/metabolismo , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/terapia , Nucleotidiltransferasas/deficiencia , Nucleotidiltransferasas/metabolismo , Fagocitosis , Receptor de Muerte Celular Programada 1/inmunología , Receptores Purinérgicos P2X7/deficiencia , Transducción de Señal/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto , Tirosina Quinasa c-Mer/genética
2.
J Immunol ; 210(8): 1166-1176, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36881873

RESUMEN

Efferocytosis is a phagocytic process by which apoptotic cells are cleared by professional and nonprofessional phagocytic cells. In tumors, efferocytosis of apoptotic cancer cells by tumor-associated macrophages prevents Ag presentation and suppresses the host immune response against the tumor. Therefore, reactivating the immune response by blockade of tumor-associated macrophage-mediated efferocytosis is an attractive strategy for cancer immunotherapy. Even though several methods have been developed to monitor efferocytosis, an automated and high-throughput quantitative assay should offer highly desirable advantages for drug discovery. In this study, we describe a real-time efferocytosis assay with an imaging system for live-cell analysis. Using this assay, we successfully discovered potent anti-MerTK Abs that block tumor-associated macrophage-mediated efferocytosis in mice. Furthermore, we used primary human and cynomolgus monkey macrophages to identify and characterize anti-MerTK Abs for potential clinical development. By studying the phagocytic activities of different types of macrophages, we demonstrated that our efferocytosis assay is robust for screening and characterization of drug candidates that inhibit unwanted efferocytosis. Moreover, our assay is also applicable to investigating the kinetics and molecular mechanisms of efferocytosis/phagocytosis.


Asunto(s)
Apoptosis , Neoplasias , Ratones , Humanos , Animales , Tirosina Quinasa c-Mer , Macaca fascicularis , Fagocitosis , Macrófagos , Neoplasias/patología
3.
Proc Natl Acad Sci U S A ; 117(18): 9952-9963, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32345717

RESUMEN

Genetic polymorphisms in the region of the trimeric serine hydrolase high-temperature requirement 1 (HTRA1) are associated with increased risk of age-related macular degeneration (AMD) and disease progression, but the precise biological function of HtrA1 in the eye and its contribution to disease etiologies remain undefined. In this study, we have developed an HtrA1-blocking Fab fragment to test the therapeutic hypothesis that HtrA1 protease activity is involved in the progression of AMD. Next, we generated an activity-based small-molecule probe (ABP) to track target engagement in vivo. In addition, we used N-terminomic proteomic profiling in preclinical models to elucidate the in vivo repertoire of HtrA1-specific substrates, and identified substrates that can serve as robust pharmacodynamic biomarkers of HtrA1 activity. One of these HtrA1 substrates, Dickkopf-related protein 3 (DKK3), was successfully used as a biomarker to demonstrate the inhibition of HtrA1 activity in patients with AMD who were treated with the HtrA1-blocking Fab fragment. This pharmacodynamic biomarker provides important information on HtrA1 activity and pharmacological inhibition within the ocular compartment.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Anticuerpos Antiidiotipos/farmacología , Atrofia Geográfica/tratamiento farmacológico , Serina Peptidasa A1 que Requiere Temperaturas Altas/genética , Degeneración Macular/tratamiento farmacológico , Proteínas Adaptadoras Transductoras de Señales/aislamiento & purificación , Anciano , Animales , Anticuerpos Antiidiotipos/genética , Anticuerpos Antiidiotipos/inmunología , Biomarcadores/sangre , Progresión de la Enfermedad , Femenino , Predisposición Genética a la Enfermedad , Genotipo , Atrofia Geográfica/sangre , Atrofia Geográfica/genética , Atrofia Geográfica/inmunología , Serina Peptidasa A1 que Requiere Temperaturas Altas/antagonistas & inhibidores , Humanos , Fragmentos Fab de Inmunoglobulinas/inmunología , Fragmentos Fab de Inmunoglobulinas/farmacología , Degeneración Macular/sangre , Degeneración Macular/genética , Degeneración Macular/inmunología , Masculino , Polimorfismo de Nucleótido Simple/genética , Proteoma/genética , Proteoma/inmunología , Ratas , Retina/efectos de los fármacos , Retina/inmunología , Retina/patología , Bibliotecas de Moléculas Pequeñas/farmacología
4.
Bioconjug Chem ; 33(10): 1837-1851, 2022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-36153839

RESUMEN

Here, we explore whether PEGylation of antibodies can modulate their biodistribution to the eye, an organ once thought to be immune privileged but has recently been shown to be accessible to IV-administered large molecules, such as antibodies. We chose to PEGylate an anti-MerTK antibody, a target with known potential for ocular toxicity, to minimize biodistribution to retinal pigment epithelial cells (RPEs) in the eye by increasing the hydrodynamic volume of the antibody. We used site-specific conjugation to an engineered cysteine on anti-MerTK antibody to chemically attach 40-kDa branched or linear PEG polymers. Despite reduced binding to MerTK on cells, site-specifically PEGylated anti-MerTK retained similar potency in inhibiting MerTK-mediated macrophage efferocytosis of apoptotic cells. Importantly, we found that PEGylation of anti-MerTK significantly reduced MerTK receptor occupancy in RPE cells in both naïve mice and MC-38 tumor-bearing mice, with the branched PEG exhibiting a greater effect than linear PEG. Furthermore, similar to unconjugated anti-MerTK, PEGylated anti-MerTK antibody triggered type I IFN response and exhibited antitumor effect in syngeneic mouse tumor studies. Our results demonstrate the potential of PEGylation to control ocular biodistribution of antibodies.


Asunto(s)
Cisteína , Neoplasias , Ratones , Animales , Tirosina Quinasa c-Mer/metabolismo , Distribución Tisular , Cisteína/metabolismo , Fagocitosis/fisiología , Anticuerpos/metabolismo , Neoplasias/metabolismo , Polietilenglicoles/química , Polímeros/metabolismo , Pigmentos Retinianos/metabolismo
5.
Biochem J ; 472(2): 169-81, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26385991

RESUMEN

High temperature requirement A1 (HtrA1) is a trypsin-fold serine protease implicated in the progression of age-related macular degeneration (AMD). Our interest in an antibody therapy to neutralize HtrA1 faces the complication that the target adopts a trimeric arrangement, with three active sites in close proximity. In the present study, we describe antibody 94, obtained from a human antibody phage display library, which forms a distinct macromolecular complex with HtrA1 and inhibits the enzymatic activity of recombinant and native HtrA1 forms. Using biochemical methods and negative-staining EM we were able to elucidate the molecular composition of the IgG94 and Fab94 complexes and the associated inhibition mechanism. The 246-kDa complex between the HtrA1 catalytic domain trimer (HtrA1_Cat) and Fab94 had a propeller-like organization with one Fab bound peripherally to each protomer. Low-resolution EM structures and epitope mapping indicated that the antibody binds to the surface-exposed loops B and C of the catalytic domain, suggesting an allosteric inhibition mechanism. The HtrA1_Cat-IgG94 complex (636 kDa) is a cage-like structure with three centrally located IgG94 molecules co-ordinating two HtrA1_Cat trimers and the six active sites pointing into the cavity of the cage. In both complexes, all antigen-recognition regions (paratopes) are found to bind one HtrA1 protomer and all protomers are bound by a paratope, consistent with the complete inhibition of enzyme activity. Therefore, in addition to its potential therapeutic usefulness, antibody 94 establishes a new paradigm of multimeric serine protease inhibition.


Asunto(s)
Anticuerpos Neutralizantes/farmacología , Complejo Antígeno-Anticuerpo/química , Antineoplásicos/farmacología , Melanoma/tratamiento farmacológico , Proteínas de Neoplasias/antagonistas & inhibidores , Inhibidores de Proteasas/farmacología , Serina Endopeptidasas/metabolismo , Regulación Alostérica , Sustitución de Aminoácidos , Animales , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/genética , Anticuerpos Neutralizantes/metabolismo , Especificidad de Anticuerpos , Antineoplásicos/química , Antineoplásicos/metabolismo , Sitios de Unión de Anticuerpos , Dominio Catalítico , Línea Celular Tumoral , Mapeo Epitopo , Serina Peptidasa A1 que Requiere Temperaturas Altas , Humanos , Fragmentos Fab de Inmunoglobulinas/química , Fragmentos Fab de Inmunoglobulinas/genética , Fragmentos Fab de Inmunoglobulinas/metabolismo , Fragmentos Fab de Inmunoglobulinas/farmacología , Inmunoglobulina G/química , Inmunoglobulina G/genética , Inmunoglobulina G/metabolismo , Inmunoglobulina G/farmacología , Melanoma/enzimología , Melanoma/metabolismo , Ratones , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Proteínas Mutantes/farmacología , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/farmacología , Inhibidores de Proteasas/química , Inhibidores de Proteasas/metabolismo , Subunidades de Proteína/antagonistas & inhibidores , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Serina Endopeptidasas/química , Serina Endopeptidasas/genética
6.
Mol Pharm ; 12(6): 1717-29, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25853436

RESUMEN

B7-H4 has been implicated in cancers of the female reproductive system and investigated for its possible use as a biomarker for cancer, but there are no preclinical studies to demonstrate that B7-H4 is a molecular target for therapeutic intervention of cancer. We provide evidence that the prevalence and expression levels of B7-H4 are high in different subtypes of breast cancer and that only a few normal tissues express B7-H4 on the cell membrane. These profiles of low normal expression and upregulation in cancer provide an opportunity for the use of antibody-drug conjugates (ADCs), cytotoxic drugs chemically linked to antibodies, for the treatment of B7-H4 positive cancers. We have developed an ADC specific to B7-H4 that uses a linker drug consisting of a potent antimitotic, monomethyl auristatin E (MMAE), linked to engineered cysteines (THIOMAB) via a protease labile linker. We will refer to ADCs that use the THIOMAB format as TDCs to help distinguish the format from standard MC-vc-MMAE ADCs that are conjugated to the interchain disulfide bonds. Anti-B7-H4 (h1D11)-MC-vc-PAB-MMAE (h1D11 TDC) produced durable tumor regression in cell line and patient-derived xenograft models of triple-negative breast cancer. It also binds rat B7-H4 with similar affinity to human and allowed us to test for target dependent toxicity in rats. We found that our anti-B7-H4 TDC has toxicity findings similar to untargeted TDC. Our results validate B7-H4 as an ADC target for breast cancer and support the possible use of this TDC in the treatment of B7-H4(+) breast cancer.


Asunto(s)
Antineoplásicos/uso terapéutico , Inmunoconjugados/uso terapéutico , Oligopéptidos/uso terapéutico , Animales , Antineoplásicos/química , Western Blotting , Línea Celular Tumoral , Femenino , Citometría de Flujo , Humanos , Inmunoconjugados/química , Inmunohistoquímica , Ratones , Ratones SCID , Oligopéptidos/química , Ratas , Ratas Sprague-Dawley , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Cancer Cell ; 11(1): 53-67, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17222790

RESUMEN

Neuropilin-1 (NRP1) guides the development of the nervous and vascular systems. Binding to either semaphorins or VEGF, NRP1 acts with plexins to regulate neuronal guidance, or with VEGFR2 to mediate vascular development. We have generated two monoclonal antibodies that bind to the Sema- and VEGF-binding domains of NRP1, respectively. Both antibodies reduce angiogenesis and vascular remodeling, while having little effect on other VEGFR2-mediated events. Importantly, anti-NRP1 antibodies have an additive effect with anti-VEGF therapy in reducing tumor growth. Vessels from tumors treated with anti-VEGF show a close association with pericytes, while tumors treated with both anti-NRP1 and anti-VEGF lack this organization. We propose that blocking NRP1 function inhibits vascular remodeling, rendering vessels more susceptible to anti-VEGF therapy.


Asunto(s)
Neoplasias Experimentales/irrigación sanguínea , Neovascularización Patológica/metabolismo , Neuropilina-1/inmunología , Factor A de Crecimiento Endotelial Vascular/inmunología , Animales , Anticuerpos Monoclonales , Movimiento Celular , Células Cultivadas , Células Endoteliales/metabolismo , Femenino , Humanos , Inmunohistoquímica , Ratones , Neuronas/metabolismo , Ratas , Semaforina-3A/inmunología
8.
MAbs ; 16(1): 2309685, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38356181

RESUMEN

Rabbits produce robust antibody responses and have unique features in their antibody repertoire that make them an attractive alternative to rodents for in vivo discovery. However, the frequent occurrence of a non-canonical disulfide bond between complementarity-determining region (CDR) H1 (C35a) and CDRH2 (C50) is often seen as a liability for therapeutic antibody development, despite limited reports of its effect on antibody binding, function, and stability. Here, we describe the discovery and humanization of a human-mouse cross-reactive anti-programmed cell death 1 (PD-1) monoclonal rabbit antibody, termed h1340.CC, which possesses this non-canonical disulfide bond. Initial removal of the non-canonical disulfide resulted in a loss of PD-1 affinity and cross-reactivity, which led us to explore protein engineering approaches to recover these. First, guided by the sequence of a related clone and the crystal structure of h1340.CC in complex with PD-1, we generated variant h1340.SA.LV with a potency and cross-reactivity similar to h1340.CC, but only partially recovered affinity. Side-by-side developability assessment of both h1340.CC and h1340.SA.LV indicate that they possess similar, favorable properties. Next, and prompted by recent developments in machine learning (ML)-guided protein engineering, we used an unbiased ML- and structure-guided approach to rapidly and efficiently generate a different variant with recovered affinity. Our case study thus indicates that, while the non-canonical inter-CDR disulfide bond found in rabbit antibodies does not necessarily constitute an obstacle to therapeutic antibody development, combining structure- and ML-guided approaches can provide a fast and efficient way to improve antibody properties and remove potential liabilities.


Asunto(s)
Anticuerpos , Receptor de Muerte Celular Programada 1 , Conejos , Animales , Ratones , Humanos , Regiones Determinantes de Complementariedad/química , Ingeniería de Proteínas/métodos
9.
AAPS J ; 26(1): 11, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167740

RESUMEN

Inhibiting MerTK on macrophages is a promising therapeutic strategy for augmenting anti-tumor immunity. However, blocking MerTK on retinal pigment epithelial cells (RPEs) results in retinal toxicity. Bispecific antibodies (bsAbs) containing an anti-MerTK therapeutic and anti-PD-L1 targeting arm were developed to reduce drug binding to MerTK on RPEs, since PD-L1 is overexpressed on macrophages but not RPEs. In this study, we present a modeling framework using in vitro receptor occupancy (RO) and pharmacokinetics (PK) data to predict efficacy, toxicity, and therapeutic index (TI) of anti-MerTK bsAbs. We first used simulations and in vitro RO data of anti-MerTK monospecific antibody (msAb) to estimate the required MerTK RO for in vivo efficacy and toxicity. Using these estimated RO thresholds, we employed our model to predict the efficacious and toxic doses for anti-MerTK bsAbs with varying affinities for MerTK. Our model predicted the highest TI for the anti-MerTK/PD-L1 bsAb with an attenuated MerTK binding arm, which was consistent with in vivo efficacy and toxicity observations. Subsequently, we used the model, in combination with sensitivity analysis and parameter scans, to suggest an optimal molecular design of anti-MerTK bsAb with the highest predicted TI in humans. Our prediction revealed that this optimized anti-MerTK bsAb should contain a MerTK therapeutic arm with relatively low affinity, along with a high affinity targeting arm that can bind to a low abundance target with slow turnover rate. Overall, these results demonstrated that our modeling framework can guide the rational design of bsAbs.


Asunto(s)
Anticuerpos Biespecíficos , Humanos , Antígeno B7-H1 , Tirosina Quinasa c-Mer
10.
Med ; 5(2): 132-147.e7, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38272035

RESUMEN

BACKGROUND: Transforming growth factor ß (TGF-ß) is implicated as a key mediator of pathological fibrosis, but its pleiotropic activity in a range of homeostatic functions presents challenges to its safe and effective therapeutic targeting. There are three isoforms of TGF-ß, TGF-ß1, TGF-ß2, and TGF-ß3, which bind to a common receptor complex composed of TGF-ßR1 and TGF-ßR2 to induce similar intracellular signals in vitro. We have recently shown that the cellular expression patterns and activation thresholds of TGF-ß2 and TGF-ß3 are distinct from those of TGF-ß1 and that selective short-term TGF-ß2 and TGF-ß3 inhibition can attenuate fibrosis in vivo without promoting excessive inflammation. Isoform-selective inhibition of TGF-ß may therefore provide a therapeutic opportunity for patients with chronic fibrotic disorders. METHODS: Transcriptomic profiling of skin biopsies from patients with systemic sclerosis (SSc) from multiple clinical trials was performed to evaluate the role of TGF-ß3 in this disease. Antibody humanization, biochemical characterization, crystallization, and pre-clinical experiments were performed to further characterize an anti-TGF-ß3 antibody. FINDINGS: In the skin of patients with SSc, TGF-ß3 expression is uniquely correlated with biomarkers of TGF-ß signaling and disease severity. Crystallographic studies establish a structural basis for selective TGF-ß3 inhibition with a potent and selective monoclonal antibody that attenuates fibrosis effectively in vivo at clinically translatable exposures. Toxicology studies suggest that, as opposed to pan-TGF-ß inhibitors, this anti-TGF-ß3 antibody has a favorable safety profile for chronic administration. CONCLUSION: We establish a rationale for targeting TGF-ß3 in SSc with a favorable therapeutic index. FUNDING: This study was funded by Genentech, Inc.


Asunto(s)
Esclerodermia Sistémica , Factor de Crecimiento Transformador beta3 , Humanos , Factor de Crecimiento Transformador beta3/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta2/metabolismo , Fibrosis , Esclerodermia Sistémica/tratamiento farmacológico , Isoformas de Proteínas/metabolismo
11.
AAPS J ; 25(1): 21, 2023 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-36703086

RESUMEN

MTBT 1466A is a monoclonal antibody designed to bind to mature human TGFß3 in human tissue and systemic circulation. To evaluate binding of this therapeutic, a mature TGFß3 assay was needed to be able to monitor pharmacodynamic responses in non-human primate (NHP) studies. However, mature TGFß3 levels in systemic circulation are very low and require development of a highly sensitive assay for detection. This study describes the development of a highly sensitive, drug-tolerant pharmacodynamic biomarker assay for demonstrating target engagement in a pre-clinical study using MTBT1466A. Since mature TGFß3 is a dimer, a single MAb was used as both the capture and detection antibodies. This assay was developed on the SMCxPRO platform and qualified based on current accepted criteria for biomarker assays. The assay demonstrated specificity to mature TGFß3, with a lower limit of quantification of 31.3pg/mL. Although baseline levels of mature TGFß3 were below the assay detection limit in 40% of animals within our study, 2- to 16-fold increases were observed in many of the animals following multiple-dosing regimen.


Asunto(s)
Anticuerpos Monoclonales , Factor de Crecimiento Transformador beta3 , Animales , Anticuerpos Monoclonales/farmacología , Primates
12.
Br J Pharmacol ; 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37783572

RESUMEN

BACKGROUND AND PURPOSE: Monoclonal antibodies (Ab) represent the fastest growing drug class. Knowledge of the biophysical parameters (kon , koff and KD ) that dictate Ab:receptor interaction is critical during the drug discovery process. However, with the increasing complexity of Ab formats and their targets, it became apparent that existing technologies present limitations and are not always suitable to determine these parameters. Therefore, novel affinity determination methods represent an unmet assay need. EXPERIMENTAL APPROACH: We developed a pre-equilibrium kinetic exclusion assay using recent mathematical advances to determine the kon , koff and KD of monoclonal Ab:receptor interactions on living cells. The assay is amenable to all human IgG1 and rabbit Abs. KEY RESULTS: Using our novel assay, we demonstrated for several monoclonal Ab:receptor pairs that the calculated kinetic rate constants were comparable with orthogonal methods that were lower throughput or more resource consuming. We ran simulations to predict the critical conditions to improve the performance of the assays. We further showed that this method could successfully be applied to both suspension and adherent cells. Finally, we demonstrated that kon and koff , but not KD , correlate with in vitro potency for a panel of monoclonal Abs. CONCLUSIONS AND IMPLICATIONS: Our novel assay has the potential to systematically probe binding kinetics of monoclonal Abs to cells and can be incorporated in a screening cascade to identify new therapeutic candidates. Wide-spread adoption of pre-equilibrium assays using physiologically relevant systems will lead to a more holistic understanding of how Ab binding kinetics influence their potency.

13.
Pharm Res ; 29(9): 2512-21, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22707361

RESUMEN

PURPOSE: To compare the pharmacokinetics (PK) of MNRP1685A, a human monoclonal antibody (mAb) against neuropilin-1 (NRP1), in mice, rats, monkeys, and cancer patients from a Phase I study to model with parallel linear and nonlinear clearances. METHODS: Binding characteristics of MNRP1685A in different species were evaluated using surface plasmon resonance technology. PK profiles of MNRP1685A after single and/or multiple doses in different species were analyzed using population analysis. PK parameters were compared across species. RESULTS: MNRP1685A binds to NRP1 in all four species tested. Consistent with the wide expression of NRP1, MNRP1685A demonstrated pronounced non-linear PK over a wide dose range. PK profiles are best described by a two-compartment model with parallel linear and nonlinear clearances. Model-derived PK parameters suggest similar in-vivo target expression levels and binding affinity to target across all species tested. However, compared to typical human/humanized mAbs, non-specific clearance of MNRP1685A was faster in mice, rats, and humans (60.3, 19.4, and 8.5 ml/day/kg), but not in monkeys (3.22 ml/day/kg). CONCLUSIONS: Monkey PK properly predicted the target-mediated clearance of MNRP1685A but underestimated its non-specific clearance in humans. This unique PK property warrants further investigation of underlying mechanisms.


Asunto(s)
Anticuerpos Monoclonales/farmacocinética , Neuropilina-1/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Humanos , Modelos Biológicos , Especificidad de la Especie
14.
Nature ; 444(7122): 1083-7, 2006 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-17183323

RESUMEN

Haploinsufficiency of Dll4, a vascular-specific Notch ligand, has shown that it is essential for embryonic vascular development and arteriogenesis. Mechanistically, it is unclear how the Dll4-mediated Notch pathway contributes to complex vascular processes that demand meticulous coordination of multiple signalling pathways. Here we show that Dll4-mediated Notch signalling has a unique role in regulating endothelial cell proliferation and differentiation. Neutralizing Dll4 with a Dll4-selective antibody rendered endothelial cells hyperproliferative, and caused defective cell fate specification or differentiation both in vitro and in vivo. In addition, blocking Dll4 inhibited tumour growth in several tumour models. Remarkably, antibodies against Dll4 and antibodies against vascular endothelial growth factor (VEGF) had paradoxically distinct effects on tumour vasculature. Our data also indicate that Dll4-mediated Notch signalling is crucial during active vascularization, but less important for normal vessel maintenance. Furthermore, unlike blocking Notch signalling globally, neutralizing Dll4 had no discernable impact on intestinal goblet cell differentiation, supporting the idea that Dll4-mediated Notch signalling is largely restricted to the vascular compartment. Therefore, targeting Dll4 might represent a broadly efficacious and well-tolerated approach for the treatment of solid tumours.


Asunto(s)
Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/metabolismo , Neoplasias/irrigación sanguínea , Neoplasias/patología , Neovascularización Patológica , Transducción de Señal , Animales , Diferenciación Celular , Línea Celular , Proliferación Celular , Endotelio Vascular/citología , Homeostasis , Humanos , Intestino Delgado/citología , Intestino Delgado/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Ratones , Receptores Notch/metabolismo , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Factor A de Crecimiento Endotelial Vascular/metabolismo
15.
MAbs ; 14(1): 2040083, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35293277

RESUMEN

While antibody-dependent cellular phagocytosis mediated by activating Fcγ receptor is a key mechanism underlying many antibody drugs, their full therapeutic activities can be restricted by the inhibitory Fcγ receptor IIB (FcγRIIB). Here, we describe a bispecific antibody approach that harnesses phagocytic receptor CLEC5A (C-type Lectin Domain Containing 5A) to drive Fcγ receptor-independent phagocytosis, potentially circumventing the negative impact of FcγRIIB. First, we established the effectiveness of such an approach by constructing bispecific antibodies that simultaneously target CLEC5A and live B cells. Furthermore, we demonstrated its in vivo application for regulatory T cell depletion and subsequent tumor regression.


Asunto(s)
Anticuerpos Biespecíficos , Anticuerpos Biespecíficos/farmacología , Linfocitos B , Fagocitosis , Receptores de IgG , Linfocitos T Reguladores
16.
EMBO J ; 26(23): 4902-12, 2007 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-17989695

RESUMEN

Neuropilins (Nrps) are co-receptors for class 3 semaphorins and vascular endothelial growth factors and important for the development of the nervous system and the vasculature. The extracellular portion of Nrp is composed of two domains that are essential for semaphorin binding (a1a2), two domains necessary for VEGF binding (b1b2), and one domain critical for receptor dimerization (c). We report several crystal structures of Nrp1 and Nrp2 fragments alone and in complex with antibodies that selectively block either semaphorin or vascular endothelial growth factor (VEGF) binding. In these structures, Nrps adopt an unexpected domain arrangement in which the a2, b1, and b2 domains form a tightly packed core that is only loosely connected to the a1 domain. The locations of the antibody epitopes together with in vitro experiments indicate that VEGF and semaphorin do not directly compete for Nrp binding. Based upon our structural and functional data, we propose possible models for ligand binding to neuropilins.


Asunto(s)
Neuropilinas/química , Semaforina-3A/química , Factor A de Crecimiento Endotelial Vascular/química , Secuencia de Aminoácidos , Anticuerpos/química , Sitios de Unión , Cristalografía por Rayos X/métodos , Dimerización , Conformación Molecular , Datos de Secuencia Molecular , Neuropilinas/fisiología , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Semaforina-3A/metabolismo , Semaforinas/metabolismo , Homología de Secuencia de Aminoácido , Factor A de Crecimiento Endotelial Vascular/metabolismo
17.
Sci Rep ; 11(1): 22365, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34785671

RESUMEN

Antibody function is typically entirely dictated by the Complementarity Determining Regions (CDRs) that directly bind to the antigen, while the framework region acts as a scaffold for the CDRs and maintains overall structure of the variable domain. We recently reported that the rabbit monoclonal antibody 4A11 (rbt4A11) disrupts signaling through both TGFß2 and TGFß3 (Sun et al. in Sci Transl Med, 2021. https://doi.org/10.1126/scitranslmed.abe0407 ). Here, we report a dramatic, unexpected discovery during the humanization of rbt4A11 where, two variants of humanized 4A11 (h4A11), v2 and v7 had identical CDRs, maintained high affinity binding to TGFß2/3, yet exhibited distinct differences in activity. While h4A11.v7 completely inhibited TGFß2/3 signaling like rbt4A11, h4A11.v2 did not. We solved crystal structures of TGFß2 complexed with Fab fragments of h4A11.v2 or h4A11.v7 and identified a novel interaction between the two heavy chain molecules in the 2:2 TGFb2:h4A11.v2-Fab complex. Further characterization revealed that framework residue variations at either position 19, 79 or 81 (Kabat numbering) of the heavy chain strikingly converts h4A11.v2 into an inhibitory antibody. Our work suggests that in addition to CDRs, framework residues and interactions between Fabs in an antibody could be engineered to further modulate activity of antibodies.


Asunto(s)
Sustitución de Aminoácidos , Anticuerpos Monoclonales Humanizados/química , Fragmentos Fab de Inmunoglobulinas/química , Región Variable de Inmunoglobulina/química , Factor de Crecimiento Transformador beta2/química , Factor de Crecimiento Transformador beta3/química , Animales , Anticuerpos Monoclonales Humanizados/genética , Cristalografía por Rayos X , Humanos , Fragmentos Fab de Inmunoglobulinas/genética , Región Variable de Inmunoglobulina/genética , Estructura Cuaternaria de Proteína , Conejos , Factor de Crecimiento Transformador beta2/genética , Factor de Crecimiento Transformador beta3/genética
18.
Mol Cancer Ther ; 20(4): 716-725, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33536191

RESUMEN

Ovarian cancer is a diverse class of tumors with very few effective treatment options and suboptimal response rates in early clinical studies using immunotherapies. Here we describe LY6/PLAUR domain containing 1 (LYPD1) as a novel target for therapeutic antibodies for the treatment of ovarian cancer. LYPD1 is broadly expressed in both primary and metastatic ovarian cancer with ∼70% prevalence in the serous cancer subset. Bispecific antibodies targeting CD3 on T cells and a tumor antigen on cancer cells have demonstrated significant clinical activity in hematologic cancers. We have developed an anti-LYPD1/CD3 T-cell-dependent bispecific antibody (TDB) to redirect T-cell responses to LYPD1 expressing ovarian cancer. Here we characterize the nonclinical pharmacology of anti-LYPD1/CD3 TDB and show induction of a robust polyclonal T-cell activation and target dependent killing of LYPD1 expressing ovarian cancer cells resulting in efficient in vivo antitumor responses in PBMC reconstituted immune-deficient mice and human CD3 transgenic mouse models. Anti-LYPD1/CD3 TDB is generally well tolerated at high-dose levels in mice, a pharmacologically relevant species, and showed no evidence of toxicity or damage to LYPD1 expressing tissues.


Asunto(s)
Anticuerpos Biespecíficos/uso terapéutico , Complejo CD3/inmunología , Neoplasias Ováricas/tratamiento farmacológico , Secuencia de Aminoácidos , Animales , Anticuerpos Biespecíficos/farmacología , Línea Celular Tumoral , Femenino , Humanos , Ratones , Ratones Transgénicos , Neoplasias Ováricas/patología
19.
Sci Transl Med ; 13(605)2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-34349032

RESUMEN

Transforming growth factor-ß (TGFß) is a key driver of fibrogenesis. Three TGFß isoforms (TGFß1, TGFß2, and TGFß3) in mammals have distinct functions in embryonic development; however, the postnatal pathological roles and activation mechanisms of TGFß2 and TGFß3 have not been well characterized. Here, we show that the latent forms of TGFß2 and TGFß3 can be activated by integrin-independent mechanisms and have lower activation thresholds compared to TGFß1. Unlike TGFB1, TGFB2 and TGFB3 expression is increased in human lung and liver fibrotic tissues compared to healthy control tissues. Thus, TGFß2 and TGFß3 may play a pathological role in fibrosis. Inducible conditional knockout mice and anti-TGFß isoform-selective antibodies demonstrated that TGFß2 and TGFß3 are independently involved in mouse fibrosis models in vivo, and selective TGFß2 and TGFß3 inhibition does not lead to the increased inflammation observed with pan-TGFß isoform inhibition. A cocrystal structure of a TGFß2-anti-TGFß2/3 antibody complex reveals an allosteric isoform-selective inhibitory mechanism. Therefore, inhibiting TGFß2 and/or TGFß3 while sparing TGFß1 may alleviate fibrosis without toxicity concerns associated with pan-TGFß blockade.


Asunto(s)
Factor de Crecimiento Transformador beta2 , Factor de Crecimiento Transformador beta3 , Animales , Modelos Animales de Enfermedad , Femenino , Fibrosis , Humanos , Ratones , Isoformas de Proteínas/metabolismo , Factor de Crecimiento Transformador beta2/metabolismo , Factor de Crecimiento Transformador beta3/metabolismo
20.
Proc Natl Acad Sci U S A ; 104(50): 19784-9, 2007 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-18077410

RESUMEN

To better understand how the relatively flat antigen-combining sites of antibodies interact with the concave shaped substrate-binding clefts of proteases, we determined the structures of two antibodies in complex with the trypsin-like hepatocyte growth-factor activator (HGFA). The two inhibitory antibodies, Ab58 and Ab75, were generated from a human Fab phage display library with synthetic diversity in the three complementarity determining regions (H1, H2, and H3) of the heavy chain, mimicking the natural diversity of the human Ig repertoire. Biochemical studies and the structures of the Fab58:HGFA (3.5-A resolution) and the Fab75:HGFA (2.2-A resolution) complexes revealed that Ab58 obstructed substrate access to the active site, whereas Ab75 allosterically inhibited substrate hydrolysis. In both cases, the antibodies interacted with the same protruding element (99-loop), which forms part of the substrate-binding cleft. Ab58 inserted its H1 and H2 loops in the cleft to occupy important substrate interaction sites (S3 and S2). In contrast, Ab75 bound at the backside of the cleft to a region corresponding to thrombin exosite II, which is known to interact with allosteric effector molecules. In agreement with the structural analysis, binding assays with active site inhibitors and enzymatic assays showed that Ab58 is a competitive inhibitor, and Ab75 is a partial competitive inhibitor. These results provide structural insight into antibody-mediated protease inhibition. They suggest that unlike canonical inhibitors, antibodies may preferentially target protruding loops at the rim of the substrate-binding cleft to interfere with the catalytic machinery of proteases without requiring long insertion loops.


Asunto(s)
Anticuerpos/química , Anticuerpos/metabolismo , Inhibidores de Proteasas/química , Inhibidores de Proteasas/metabolismo , Serina Endopeptidasas/inmunología , Animales , Anticuerpos/farmacología , Sitios de Unión de Anticuerpos , Unión Competitiva/inmunología , Catálisis , Humanos , Ratones , Inhibidores de Proteasas/farmacología , Conejos , Serina Endopeptidasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA