Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; : e2312104, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38441363

RESUMEN

Owing to the improved charge separation and maximized redox capability of the system, Step-scheme (S-scheme) heterojunctions have garnered significant research attention for efficient photocatalysis of H2 evolution. In this work, an innovative linear donor-acceptor (D-A) conjugated polymer fluorene-alt-(benzo-thiophene-dione) (PFBTD) is coupled with the CdS nanosheets, forming the organic-inorganic S-scheme heterojunction. The CdS/PFBTD (CP) composite exhibits an impressed hydrogen production rate of 7.62 mmol g-1  h-1 without any co-catalysts, which is ≈14 times higher than pristine CdS. It is revealed that the outstanding photocatalytic performance is attributed to the formation of rapid electron transfer channels through the interfacial Cd─O bonding as evidenced by the density functional theory (DFT) calculations and in situ X-ray photoelectron spectroscopy (XPS) analysis. The charge transfer mechanism involved in S-scheme heterojunctions is further investigated through the photo-irradiated Kelvin probe force microscopy (KPFM) analysis. This work provides a new point of view on the mechanism of interfacial charge transfer and points out the direction of designing superior organic-inorganic S-scheme heterojunction photocatalysts.

2.
MAbs ; 13(1): 1930636, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34097570

RESUMEN

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which causes coronavirus disease-2019 (COVID-19), interacts with the host cell receptor angiotensin-converting enzyme 2 (hACE2) via its spike 1 protein during infection. After the virus sequence was published, we identified two potent antibodies against the SARS-CoV-2 receptor binding domain (RBD) from antibody libraries using a phage-to-yeast (PtY) display platform in only 10 days. Our lead antibody JMB2002, now in a Phase 1 clinical trial (ChiCTR2100042150), showed broad-spectrum in vitro blocking activity against hACE2 binding to the RBD of multiple SARS-CoV-2 variants, including B.1.351 that was reportedly much more resistant to neutralization by convalescent plasma, vaccine sera and some clinical-stage neutralizing antibodies. Furthermore, JMB2002 has demonstrated complete prophylactic and potent therapeutic efficacy in a rhesus macaque disease model. Prophylactic and therapeutic countermeasure intervention of SARS-CoV-2 using JMB2002 would likely slow down the transmission of currently emerged SARS-CoV-2 variants and result in more efficient control of the COVID-19 pandemic.


Asunto(s)
Enzima Convertidora de Angiotensina 2/antagonistas & inhibidores , Anticuerpos Neutralizantes/farmacología , Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , COVID-19/prevención & control , SARS-CoV-2/efectos de los fármacos , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/inmunología , Animales , Especificidad de Anticuerpos , Sitios de Unión de Anticuerpos , Células CHO , COVID-19/inmunología , COVID-19/metabolismo , COVID-19/virología , Chlorocebus aethiops , Cricetulus , Modelos Animales de Enfermedad , Epítopos , Macaca mulatta , SARS-CoV-2/inmunología , SARS-CoV-2/patogenicidad , Células Vero
3.
Oncol Lett ; 18(3): 3407-3414, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31452821

RESUMEN

Accumulating evidence suggests that celecoxib and artemisinin could mediate ovarian cancer development and metastasis. The present study investigated the effects of celecoxib and artemisinin on the epithelial-mesenchymal transition (EMT) characteristics of the human ovarian epithelial adenocarcinoma cell line, SKOV3. SKOV3 cells were incubated with celecoxib (10 µM) for different periods of time to establish an EMT cell model. Subsequently, artemisinin (20, 40 and 80 µM) was used to establish a cell model of the reverse process, mesenchymal-epithelial transition (MET). Cell proliferation, metastasis, invasiveness and the expression of vimentin and E-cadherin were measured using Cell Counting Kit-8, wound healing assay, western blotting, flow cytometry and immunofluorescence. The EMT cell model exhibited enhanced proliferative capacity, increased migration, increased vimentin expression and decreased E-cadherin expression. By contrast, artemisinin decreased proliferative capacity, decreased migration, decreased vimentin expression and increased E-cadherin expression of EMT model cells, indicating that MET was induced. These results demonstrated that artemisinin may reverse celecoxib-induced epithelial-mesenchymal transition in SKOV3 cells.

4.
Oncol Lett ; 18(2): 1548-1556, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31423222

RESUMEN

Accumulating evidence suggests that acetyl-CoA acetryltransferase 1 (ACAT-1) may mediate tumor development and metastasis. However, the specific function served by ACAT-1 in lung cancer is not well understood. Therefore, the present study initially verified that ACAT-1 was overexpressed in Lewis lung carcinoma (LLC) tissues compared with non-LLC mice and that this overexpression promoted the proliferation, invasion and metastasis of these LLC samples. Western blotting, immunofluorescence microscopy and flow cytometry allowed the present study to determine that the ACAT-1 inhibitor avasimibe significantly reduced the expression of ACAT-1 in LLC compared with LLC cells that are not treated with avasimibe (P<0.05). A combination of Cell Counting Kit-8 and wound healing assays demonstrated that downregulating ACAT-1 expression sufficiently inhibited the proliferation of LLC cells. Avasimibe promoted LLC cell apoptosis as assessed by a Annexin V/propidium iodide double staining assay. Furthermore, avasimibe inhibited tumor growth in vivo and improved immune responses, with tissue biopsies from LLC model mice exhibiting higher levels of ACAT-1 compared with in healthy controls. Altogether, the results of the present study reveal that avasimibe may inhibit the progression of LLC by downregulating the expression of ACAT-1, which may thus be a potential novel therapeutic target for lung cancer treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA