Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Nanobiotechnology ; 22(1): 393, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965602

RESUMEN

BACKGROUND: The therapeutic strategies for acute ischemic stroke were faced with substantial constraints, emphasizing the necessity to safeguard neuronal cells during cerebral ischemia to reduce neurological impairments and enhance recovery outcomes. Despite its potential as a neuroprotective agent in stroke treatment, Chikusetsu saponin IVa encounters numerous challenges in clinical application. RESULT: Brain-targeted liposomes modified with THRre peptides showed substantial uptake by bEnd. 3 and PC-12 cells and demonstrated the ability to cross an in vitro blood-brain barrier model, subsequently accumulating in PC-12 cells. In vivo, they could significantly accumulate in rat brain. Treatment with C-IVa-LPs-THRre notably reduced the expression of proteins in the P2RX7/NLRP3/Caspase-1 pathway and inflammatory factors. This was evidenced by decreased cerebral infarct size and improved neurological function in MCAO rats. CONCLUSION: The findings indicate that C-IVa-LPs-THRre could serve as a promising strategy for targeting cerebral ischemia. This approach enhances drug concentration in the brain, mitigates pyroptosis, and improves the neuroinflammatory response associated with stroke.


Asunto(s)
Barrera Hematoencefálica , Accidente Cerebrovascular Isquémico , Liposomas , Fármacos Neuroprotectores , Piroptosis , Ratas Sprague-Dawley , Saponinas , Animales , Saponinas/farmacología , Saponinas/química , Piroptosis/efectos de los fármacos , Ratas , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Liposomas/química , Masculino , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Accidente Cerebrovascular Isquémico/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/química , Células PC12 , Ácido Oleanólico/farmacología , Ácido Oleanólico/química , Ácido Oleanólico/análogos & derivados , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Péptidos/química , Péptidos/farmacología , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo
2.
Cerebrovasc Dis ; 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37722359

RESUMEN

INTRODUCTION: The correlation between diabetes and stroke has been studied extensively in epidemiological research. Here we used bibliometric software to visualize and analyze the literature related to diabetic stroke to provide an overview of the current state of research, hot spots, and future trends in the field. METHODS: Based on the Web of Science Core Collection(WoSCC) database, we collected studies related to diabetic stroke from 2007 to May 2022. We used CiteSpace (version 6.1.R5), VOSviewer, and Sci-mago Graphica to create knowledge maps and conduct visual analyses on authors, countries, in-stitutions, cited references, and keywords, and Origin for statistical analysis. RESULTS: We included a total of 5171 papers on diabetic stroke from the WoSCC database. Overall, there was a steady increase in the number of publications, with a high number of emerging scientists. The United States was the most productive and influential country, which dominated national col-laborations. The most common subject category was "neurology". In total, 12 major clusters were generated from the cited references. Keywords analysis showed that keywords related to post-stroke injury and treatment are those with the highest burst intensity and latest burst time. CONCLUSIONS: Individual disease treatment remains a hot topic and how to balance acute stroke treatment and glycemic control is currently a difficult clinical problem. At the same time, the mechanism of their interaction and the prevention and treatment of related causative factors remain a hot topic of current and future research.

3.
Bioresour Technol ; 384: 129274, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37290714

RESUMEN

This study investigated the effects of NO2- on synergetic interactions between Anammox bacteria (AnAOB) and sulfur-oxidizing bacteria (SOB) in an autotrophic denitrification-Anammox system. The presence of NO2- (0-75 mg-N/L) was shown to significantly enhance NH4+ and NO3- conversion rates, achieving intensified synergy between AnAOB and SOB. However, once NO2- exceed a threshold concentration (100 mg-N/L), both NH4+ and NO3- conversion rates decreased with increased NO2- consumption via autotrophic denitrification. The cooperation between AnAOB and SOB was decoupled due to the NO2- inhibition. Improved system reliability and nitrogen removal performance was achieved in a long-term reactor operation with NO2- in the influent; reverse transcription-quantitative polymerase chain reaction analysis showed elevated hydrazine synthase gene transcription levels (5.00-fold), comparing to these in the reactor without NO2-. This study elucidated the mechanism of NO2- induced synergetic interactions between AnAOB and SOB, providing theoretical guidance for engineering applications of Anammox-based coupled systems.


Asunto(s)
Desnitrificación , Nitritos , Nitrógeno/análisis , Oxidación Anaeróbica del Amoníaco , Dióxido de Nitrógeno/análisis , Reproducibilidad de los Resultados , Reactores Biológicos/microbiología , Bacterias , Oxidación-Reducción , Azufre , Aguas del Alcantarillado/microbiología
4.
Sci Total Environ ; 880: 163300, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37031928

RESUMEN

Sustainable nitrogen removal from wastewater at reduced energy and/or chemical consumptions is challenging. This paper investigated, for the first time, the feasibility of coupled partial nitrification, Anammox and nitrate-dependent Fe(II) oxidation (NDFO) for sustainable autotrophic nitrogen removal. With NH4+-N as the only nitrogen-containing compound in the influent, near-complete nitrogen removal (a total of 97.5 % with a maximal total nitrogen removal rate of 6.64 ± 2.68 mgN/L/d) was achieved in a sequencing batch reactor for a 203-d operation without organic carbon source addition and forced aeration. Anammox (predominated by Candidatus Brocadia) and NDFO bacteria (such as Denitratisoma) were successfully enriched, with total relative abundances up to 11.54 % and 10.19 %, respectively. Dissolved oxygen (DO) concentration was a key factor affecting the coupling of multi (ammonia oxidization, Anammox, NDFO, iron-reduction, etc.) bacterial communities, resulting in different total nitrogen removal efficiencies and rates. In batch tests, the optimal DO concentration was 0.50-0.68 mg/L with a maximal total nitrogen removal efficiency of 98.7 %. Fe(II) in the sludge not only competed with nitrite oxidizing bacteria for DO to prevent complete nitrification, but promoted the transcription of NarG and NirK genes (10.5 and 3.5 times higher than the group without Fe(II) addition) as indicated by the reverse transcription quantitative polymerase chain reaction (RT-qPCR), resulting in increased NDFO rate (by 2.7 times) and promoted NO2--N generated from NO3--N, which back fed the Anammox process, achieving near-complete nitrogen removal. The reduction of Fe(III) by iron-reducing bacteria (IRB) and hydrolytic and fermentative anaerobes enabled a sustainable Fe(II)/Fe(III) recycling, avoiding the need in continuous Fe(II) or Fe (III) dosage. The coupled system is expected to benefit the development of novel autotrophic nitrogen removal processes with neglectable energy and material consumptions for the treatment of wastewater with low organic carbon and NH4+-N contents in underdeveloped regions, such as decentralized rural wastewaters.


Asunto(s)
Nitratos , Nitrificación , Aguas Residuales , Nitrógeno , Desnitrificación , Oxígeno , Oxidación Anaeróbica del Amoníaco , Compuestos Férricos , Aguas del Alcantarillado , Compuestos de Nitrógeno , Oxidación-Reducción , Bacterias , Hierro , Compuestos Ferrosos , Reactores Biológicos/microbiología
5.
J Hazard Mater ; 447: 130802, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36669414

RESUMEN

In this study, physicochemical pre- and post-treatment of highly polluting coking wastewater (CWW) for the removal of refractory compounds and recovery of high-energy substances/components was investigated. An economic optimization model targeting the development of a cost-effective and sustainable treatment technology was proposed. At the post-treatment stage, powdered activated carbon (PAC) was used to separate the refractory and toxic pollutants from the bio-treated CWW, with the adsorption capacity ranging from 50 to 120 mg chemical oxygen demand (COD) g-1 PAC. Then, the spent PAC, together with a coagulant, was reused in the pre-treatment of highly concentrated raw CWW, which lifted the adsorption capacity to 800-1200 mg COD g-1 PAC. Results showed that the adsorbent's high selectivity towards macromolecular and complicated pollutants could remove 25-65 % of COD in both CWW flows. Analysis of pollutants' molecular weight distribution and GC-MS indicated a good affinity between PAC and high-energy pollutants (phenolic compounds and alkanes), which could transfer 144,555 kJ m-3 of energy from CWW to the adsorption-coagulation sludge. The economic optimization model suggested that the cost of the adsorbent was compensated by the net benefits of energy recovery and that profit was achieved when the PAC price was less than 5562 CNY t-1. The proposed two-stage PAC/coagulant approach offers a way to sustainable water quality and sludge management, plus energy recycling, in CWW treatment. It may also be applied to the treatment of other industrial wastewaters.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA