Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 217
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 594(7862): 277-282, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34040258

RESUMEN

Neurons have recently emerged as essential cellular constituents of the tumour microenvironment, and their activity has been shown to increase the growth of a diverse number of solid tumours1. Although the role of neurons in tumour progression has previously been demonstrated2, the importance of neuronal activity to tumour initiation is less clear-particularly in the setting of cancer predisposition syndromes. Fifteen per cent of individuals with the neurofibromatosis 1 (NF1) cancer predisposition syndrome (in which tumours arise in close association with nerves) develop low-grade neoplasms of the optic pathway (known as optic pathway gliomas (OPGs)) during early childhood3,4, raising  the possibility that postnatal light-induced activity of the optic nerve drives tumour initiation. Here we use an authenticated mouse model of OPG driven by mutations in the neurofibromatosis 1 tumour suppressor gene (Nf1)5 to demonstrate that stimulation of optic nerve activity increases optic glioma growth, and that decreasing visual experience via light deprivation prevents tumour formation and maintenance. We show that the initiation of Nf1-driven OPGs (Nf1-OPGs) depends on visual experience during a developmental period in which Nf1-mutant mice are susceptible to tumorigenesis. Germline Nf1 mutation in retinal neurons results in aberrantly increased shedding of neuroligin 3 (NLGN3) within the optic nerve in response to retinal neuronal activity. Moreover, genetic Nlgn3 loss or pharmacological inhibition of NLGN3 shedding blocks the formation and progression of Nf1-OPGs. Collectively, our studies establish an obligate role for neuronal activity in the development of some types of brain tumours, elucidate a therapeutic strategy to reduce OPG incidence or mitigate tumour progression, and underscore the role of Nf1mutation-mediated dysregulation of neuronal signalling pathways in mouse models of the NF1 cancer predisposition syndrome.


Asunto(s)
Transformación Celular Neoplásica/genética , Genes de Neurofibromatosis 1 , Mutación , Neurofibromina 1/genética , Neuronas/metabolismo , Glioma del Nervio Óptico/genética , Glioma del Nervio Óptico/patología , Animales , Astrocitoma/genética , Astrocitoma/patología , Moléculas de Adhesión Celular Neuronal/deficiencia , Moléculas de Adhesión Celular Neuronal/genética , Moléculas de Adhesión Celular Neuronal/metabolismo , Transformación Celular Neoplásica/efectos de la radiación , Femenino , Mutación de Línea Germinal , Humanos , Masculino , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/efectos de la radiación , Nervio Óptico/citología , Nervio Óptico/efectos de la radiación , Estimulación Luminosa , Retina/citología , Retina/efectos de la radiación
2.
J Neurooncol ; 166(1): 129-142, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38224404

RESUMEN

BACKGROUND: Malignant glioma carries a poor prognosis despite current therapeutic modalities. Standard of care therapy consists of surgical resection, fractionated radiotherapy concurrently administered with temozolomide (TMZ), a DNA-alkylating chemotherapeutic agent, followed by adjuvant TMZ. O-6-methylguanine-DNA methyltransferase (MGMT), a DNA repair enzyme, removes alkylated lesions from tumor DNA, thereby promoting chemoresistance. MGMT promoter methylation status predicts responsiveness to TMZ; patients harboring unmethylated MGMT (~60% of glioblastoma) have a poorer prognosis with limited treatment benefits from TMZ. METHODS: Via lentiviral-mediated delivery into LN18 glioma cells, we employed deactivated Cas9-CRISPR technology to target the MGMT promoter and enhancer regions for methylation, as mediated by the catalytic domain of the methylation enzyme DNMT3A. Methylation patterns were examined at a clonal level in regions containing Differentially Methylation Regions (DMR1, DMR2) and the Methylation Specific PCR (MSP) region used for clinical assessment of MGMT methylation status. Correlative studies of genomic and transcriptomic effects of dCas9/CRISPR-based methylation were performed via Illumina 850K methylation array platform and bulk RNA-Seq analysis. RESULTS: We used the dCas9/DNMT3A catalytic domain to achieve targeted MGMT methylation at specific CpG clusters in the vicinity of promoter, enhancer, DMRs and MSP regions. Consequently, we observed MGMT downregulation and enhanced glioma chemosensitivity in survival assays in vitro, with minimal off-target effects. CONCLUSION: dCas9/CRISPR is a viable method of epigenetic editing, using the DNMT3A catalytic domain. This study provides initial proof-of-principle for CRISPR technology applications in malignant glioma, laying groundwork for subsequent translational studies, with implications for future epigenetic editing-based clinical applications.


Asunto(s)
Neoplasias Encefálicas , Glioma , Guanina , Humanos , Antineoplásicos Alquilantes/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/cirugía , Dacarbazina/farmacología , ADN/genética , ADN/metabolismo , Metilación de ADN , Metilasas de Modificación del ADN/genética , Enzimas Reparadoras del ADN/genética , Glioma/tratamiento farmacológico , Glioma/genética , Glioma/patología , Guanina/análogos & derivados , O(6)-Metilguanina-ADN Metiltransferasa/genética , Temozolomida/farmacología
3.
J Neurosci ; 42(8): 1587-1603, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-34987109

RESUMEN

Astrocytes are critical for the development and function of synapses. There are notable species differences between human astrocytes and commonly used animal models. Yet, it is unclear whether astrocytic genes involved in synaptic function are stable or exhibit dynamic changes associated with disease states and age in humans, which is a barrier in understanding human astrocyte biology and its potential involvement in neurologic diseases. To better understand the properties of human astrocytes, we acutely purified astrocytes from the cerebral cortices of over 40 humans across various ages, sexes, and disease states. We performed RNA sequencing to generate transcriptomic profiles of these astrocytes and identified genes associated with these biological variables. We found that human astrocytes in tumor-surrounding regions downregulate genes involved in synaptic function and sensing of signals in the microenvironment, suggesting involvement of peritumor astrocytes in tumor-associated neural circuit dysfunction. In aging, we also found downregulation of synaptic regulators and upregulation of markers of cytokine signaling, while in maturation we identified changes in ionic transport with implications for calcium signaling. In addition, we identified subtle sexual dimorphism in human cortical astrocytes, which has implications for observed sex differences across many neurologic disorders. Overall, genes involved in synaptic function exhibit dynamic changes in the peritumor microenvironment and aging. These data provide powerful new insights into human astrocyte biology in several biologically relevant states that will aid in generating novel testable hypotheses about homeostatic and reactive astrocytes in humans.SIGNIFICANCE STATEMENT Astrocytes are an abundant class of cells playing integral roles at synapses. Astrocyte dysfunction is implicated in a variety of human neurologic diseases. Yet our knowledge of astrocytes is largely based on mouse studies. Direct knowledge of human astrocyte biology remains limited. Here, we present transcriptomic profiles of human cortical astrocytes, and we identified molecular differences associated with age, sex, and disease state. We found that peritumor and aging astrocytes downregulate genes involved in astrocyte-synapse interactions. These data provide necessary insight into human astrocyte biology that will improve our understanding of human disease.


Asunto(s)
Astrocitos , Transcriptoma , Envejecimiento/patología , Animales , Astrocitos/fisiología , Femenino , Humanos , Masculino , Ratones , Sinapsis/fisiología , Microambiente Tumoral
4.
NMR Biomed ; 36(6): e4785, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-35704275

RESUMEN

Amine-weighted chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) is particularly valuable as an amine- and pH-sensitive imaging technique in brain tumors, targeting the intrinsically high concentration of amino acids with exchangeable amine protons and reduced extracellular pH in brain tumors. Amine-weighted CEST MRI contrast is dependent on the glioma genotype, likely related to differences in degree of malignancy and metabolic behavior. Amine-weighted CEST MRI may provide complementary value to anatomic imaging in conventional and exploratory therapies in brain tumors, including chemoradiation, antiangiogenic therapies, and immunotherapies. Continual improvement and clinical testing of amine-weighted CEST MRI has the potential to greatly impact patients with brain tumors by understanding vulnerabilities in the tumor microenvironment that may be therapeutically exploited.


Asunto(s)
Aminas , Neoplasias Encefálicas , Humanos , Aminas/química , Concentración de Iones de Hidrógeno , Imagen por Resonancia Magnética/métodos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/química , Protones , Microambiente Tumoral
5.
J Neurooncol ; 163(1): 173-183, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37129737

RESUMEN

PURPOSE: Autologous tumor lysate-loaded dendritic cell vaccine (DCVax-L) is a promising treatment modality for glioblastomas. The purpose of this study was to investigate the potential utility of multiparametric MRI-based prediction model in evaluating treatment response in glioblastoma patients treated with DCVax-L. METHODS: Seventeen glioblastoma patients treated with standard-of-care therapy + DCVax-L were included. When tumor progression (TP) was suspected and repeat surgery was being contemplated, we sought to ascertain the number of cases correctly classified as TP + mixed response or pseudoprogression (PsP) from multiparametric MRI-based prediction model using histopathology/mRANO criteria as ground truth. Multiparametric MRI model consisted of predictive probabilities (PP) of tumor progression computed from diffusion and perfusion MRI-derived parameters. A comparison of overall survival (OS) was performed between patients treated with standard-of-care therapy + DCVax-L and standard-of-care therapy alone (external controls). Additionally, Kaplan-Meier analyses were performed to compare OS between two groups of patients using PsP, Ki-67, and MGMT promoter methylation status as stratification variables. RESULTS: Multiparametric MRI model correctly predicted TP + mixed response in 72.7% of cases (8/11) and PsP in 83.3% (5/6) with an overall concordance rate of 76.5% with final diagnosis as determined by histopathology/mRANO criteria. There was a significant concordant correlation coefficient between PP values and histopathology/mRANO criteria (r = 0.54; p = 0.026). DCVax-L-treated patients had significantly prolonged OS than those treated with standard-of-care therapy (22.38 ± 12.8 vs. 13.8 ± 9.5 months, p = 0.040). Additionally, glioblastomas with PsP, MGMT promoter methylation status, and Ki-67 values below median had longer OS than their counterparts. CONCLUSION: Multiparametric MRI-based prediction model can assess treatment response to DCVax-L in patients with glioblastoma.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Imágenes de Resonancia Magnética Multiparamétrica , Vacunas , Humanos , Glioblastoma/diagnóstico por imagen , Glioblastoma/terapia , Antígeno Ki-67 , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/terapia , Células Dendríticas
6.
J Neurooncol ; 163(2): 417-427, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37294422

RESUMEN

PURPOSE: There is limited knowledge about the associations between sodium and proton MRI measurements in brain tumors. The purpose of this study was to quantify intra- and intertumoral correlations between sodium, diffusion, and perfusion MRI in human gliomas. METHODS: Twenty glioma patients were prospectively studied on a 3T MRI system with multinuclear capabilities. Three mutually exclusive tumor volumes of interest (VOIs) were segmented: contrast-enhancing tumor (CET), T2/FLAIR hyperintense non-enhancing tumor (NET), and necrosis. Median and voxel-wise associations between apparent diffusion coefficient (ADC), normalized relative cerebral blood volume (nrCBV), and normalized sodium measurements were quantified for each VOI. RESULTS: Both relative sodium concentration and ADC were significantly higher in areas of necrosis compared to NET (P = 0.003 and P = 0.008, respectively) and CET (P = 0.02 and P = 0.02). Sodium concentration was higher in CET compared to NET (P = 0.04). Sodium and ADC were higher in treated compared to treatment-naïve gliomas within NET (P = 0.006 and P = 0.01, respectively), and ADC was elevated in CET (P = 0.03). Median ADC and sodium concentration were positively correlated across patients in NET (r = 0.77, P < 0.0001) and CET (r = 0.84, P < 0.0001), but not in areas of necrosis (r = 0.45, P = 0.12). Median nrCBV and sodium concentration were negatively correlated across patients in areas of NET (r=-0.63, P = 0.003). Similar associations were observed when examining voxel-wise correlations within VOIs. CONCLUSION: Sodium MRI is positively correlated with proton diffusion MRI measurements in gliomas, likely reflecting extracellular water. Unique areas of multinuclear MRI contrast may be useful in future studies to understand the chemistry of the tumor microenvironment.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Protones , Imagen por Resonancia Magnética , Glioma/diagnóstico por imagen , Glioma/patología , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Imagen de Difusión por Resonancia Magnética , Perfusión , Necrosis , Microambiente Tumoral
7.
Eur Radiol ; 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37882836

RESUMEN

OBJECTIVE: To determine the feasibility and biologic correlations of dynamic susceptibility contrast (DSC), dynamic contrast enhanced (DCE), and quantitative maps derived from contrast leakage effects obtained simultaneously in gliomas using dynamic spin-and-gradient-echo echoplanar imaging (dynamic SAGE-EPI) during a single contrast injection. MATERIALS AND METHODS: Thirty-eight patients with enhancing brain gliomas were prospectively imaged with dynamic SAGE-EPI, which was processed to compute traditional DSC metrics (normalized relative cerebral blood flow [nrCBV], percentage of signal recovery [PSR]), DCE metrics (volume transfer constant [Ktrans], extravascular compartment [ve]), and leakage effect metrics: ΔR2,ss* (reflecting T2*-leakage effects), ΔR1,ss (reflecting T1-leakage effects), and the transverse relaxivity at tracer equilibrium (TRATE, reflecting the balance between ΔR2,ss* and ΔR1,ss). These metrics were compared between patient subgroups (treatment-naïve [TN] vs recurrent [R]) and biological features (IDH status, Ki67 expression). RESULTS: In IDH wild-type gliomas (IDHwt-i.e., glioblastomas), previous exposure to treatment determined lower TRATE (p = 0.002), as well as higher PSR (p = 0.006), Ktrans (p = 0.17), ΔR1,ss (p = 0.035), ve (p = 0.006), and ADC (p = 0.016). In IDH-mutant gliomas (IDHm), previous treatment determined higher Ktrans and ΔR1,ss (p = 0.026). In TN-gliomas, dynamic SAGE-EPI metrics tended to be influenced by IDH status (p ranging 0.09-0.14). TRATE values above 142 mM-1s-1 were exclusively seen in TN-IDHwt, and, in TN-gliomas, this cutoff had 89% sensitivity and 80% specificity as a predictor of Ki67 > 10%. CONCLUSIONS: Dynamic SAGE-EPI enables simultaneous quantification of brain tumor perfusion and permeability, as well as mapping of novel metrics related to cytoarchitecture (TRATE) and blood-brain barrier disruption (ΔR1,ss), with a single contrast injection. CLINICAL RELEVANCE STATEMENT: Simultaneous DSC and DCE analysis with dynamic SAGE-EPI reduces scanning time and contrast dose, respectively alleviating concerns about imaging protocol length and gadolinium adverse effects and accumulation, while providing novel leakage effect metrics reflecting blood-brain barrier disruption and tumor tissue cytoarchitecture. KEY POINTS: • Traditionally, perfusion and permeability imaging for brain tumors requires two separate contrast injections and acquisitions. • Dynamic spin-and-gradient-echo echoplanar imaging enables simultaneous perfusion and permeability imaging. • Dynamic spin-and-gradient-echo echoplanar imaging provides new image contrasts reflecting blood-brain barrier disruption and cytoarchitecture characteristics.

8.
Proc Natl Acad Sci U S A ; 117(20): 11085-11096, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32358191

RESUMEN

Glioblastoma (GBM) is the deadliest adult brain cancer, and all patients ultimately succumb to the disease. Radiation therapy (RT) provides survival benefit of 6 mo over surgery alone, but these results have not improved in decades. We report that radiation induces a glioma-initiating cell phenotype, and we have identified trifluoperazine (TFP) as a compound that interferes with this phenotype conversion. TFP causes loss of radiation-induced Nanog mRNA expression, and activation of GSK3 with consecutive posttranslational reduction in p-Akt, Sox2, and ß-catenin protein levels. TFP did not alter the intrinsic radiation sensitivity of glioma-initiating cells (GICs). Continuous treatment with TFP and a single dose of radiation reduced the number of GICs in vivo and prolonged survival in syngeneic and patient-derived orthotopic xenograft (PDOX) mouse models of GBM. Our findings suggest that the combination of a dopamine receptor antagonist with radiation enhances the efficacy of RT in GBM by preventing radiation-induced phenotype conversion of radiosensitive non-GICs into treatment-resistant, induced GICs (iGICs).


Asunto(s)
Antagonistas de Dopamina/farmacología , Glioblastoma/metabolismo , Fenotipo , Receptores Dopaminérgicos/efectos de los fármacos , Trifluoperazina/farmacología , Animales , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/radioterapia , Modelos Animales de Enfermedad , Antagonistas de Dopamina/uso terapéutico , Regulación Neoplásica de la Expresión Génica , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Glioblastoma/radioterapia , Glioma/tratamiento farmacológico , Glioma/metabolismo , Glioma/patología , Glioma/radioterapia , Glucógeno Sintasa Quinasa 3/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones SCID , ARN Mensajero/metabolismo , Tolerancia a Radiación , Factores de Transcripción SOXB1 , Trifluoperazina/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto , beta Catenina
9.
J Neurooncol ; 160(1): 115-125, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36053452

RESUMEN

PURPOSE: To quantify the radiation dose distribution and lesion morphometry (shape) at baseline, prior to chemoradiation, and at the time of radiographic recurrence in patients with glioblastoma (GBM). METHODS: The IMRT dose distribution, location of the center of mass, sphericity, and solidity of the contrast enhancing tumor at baseline and the time of tumor recurrence was quantified in 48 IDH wild-type GBM who underwent postoperative IMRT (2 Gy daily for total of 60 Gy) with concomitant and adjuvant temozolomide. RESULTS: Average radiation dose within enhancing tumor at baseline and recurrence was ≥ 60 Gy. Centroid location of the enhancing tumor shifted an average of 11.3 mm at the time of recurrence with respect to pre-IMRT location. A positive correlation was observed between change in centroid location and PFS in MGMT methylated patients (P = 0.0007) and Cox multivariate regression confirmed centroid distance from baseline was associated with PFS when accounting for clinical factors (P = 0.0189). Lesion solidity was higher at recurrence compared to baseline (P = 0.0118). Tumors that progressed > 12 weeks after IMRT were significantly more spherical (P = 0.0094). CONCLUSION: Most GBMs recur local within therapeutic IMRT doses; however, tumors with longer PFS occurred further from the original tumor location and were more solid and/or nodular.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/diagnóstico por imagen , Glioblastoma/terapia , Glioblastoma/patología , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patología , Recurrencia Local de Neoplasia/patología , Temozolomida/uso terapéutico , Dosis de Radiación , Antineoplásicos Alquilantes/uso terapéutico
10.
Acta Neuropathol ; 142(5): 859-871, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34409497

RESUMEN

Medulloblastoma, a common pediatric malignant central nervous system tumour, represent a small proportion of brain tumours in adults. Previously it has been shown that in adults, Sonic Hedgehog (SHH)-activated tumours predominate, with Wingless-type (WNT) and Group 4 being less common, but molecular risk stratification remains a challenge. We performed an integrated analysis consisting of genome-wide methylation profiling, copy number profiling, somatic nucleotide variants and correlation of clinical variables across a cohort of 191 adult medulloblastoma cases identified through the Medulloblastoma Advanced Genomics International Consortium. We identified 30 WNT, 112 SHH, 6 Group 3, and 41 Group 4 tumours. Patients with SHH tumours were significantly older at diagnosis compared to other subgroups (p < 0.0001). Five-year progression-free survival (PFS) for WNT, SHH, Group 3, and Group 4 tumours was 64.4 (48.0-86.5), 61.9% (51.6-74.2), 80.0% (95% CI 51.6-100.0), and 44.9% (95% CI 28.6-70.7), respectively (p = 0.06). None of the clinical variables (age, sex, metastatic status, extent of resection, chemotherapy, radiotherapy) were associated with subgroup-specific PFS. Survival among patients with SHH tumours was significantly worse for cases with chromosome 3p loss (HR 2.9, 95% CI 1.1-7.6; p = 0.02), chromosome 10q loss (HR 4.6, 95% CI 2.3-9.4; p < 0.0001), chromosome 17p loss (HR 2.3, 95% CI 1.1-4.8; p = 0.02), and PTCH1 mutations (HR 2.6, 95% CI 1.1-6.2; p = 0.04). The prognostic significance of 3p loss and 10q loss persisted in multivariable regression models. For Group 4 tumours, chromosome 8 loss was strongly associated with improved survival, which was validated in a non-overlapping cohort (combined cohort HR 0.2, 95% CI 0.1-0.7; p = 0.007). Unlike in pediatric medulloblastoma, whole chromosome 11 loss in Group 4 and chromosome 14q loss in SHH was not associated with improved survival, where MYCN, GLI2 and MYC amplification were rare. In sum, we report unique subgroup-specific cytogenetic features of adult medulloblastoma, which are distinct from those in younger patients, and correlate with survival disparities. Our findings suggest that clinical trials that incorporate new strategies tailored to high-risk adult medulloblastoma patients are urgently needed.


Asunto(s)
Neoplasias Cerebelosas/genética , Meduloblastoma/genética , Adolescente , Adulto , Biomarcadores de Tumor/genética , Neoplasias Cerebelosas/mortalidad , Neoplasias Cerebelosas/patología , Estudios de Cohortes , Femenino , Humanos , Masculino , Meduloblastoma/mortalidad , Meduloblastoma/patología , Supervivencia sin Progresión , Factores de Riesgo , Adulto Joven
11.
J Neurooncol ; 152(3): 573-582, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33704629

RESUMEN

PURPOSE: Although tumor localization and 3,4-dihydroxy-6-18F-fluoro-L-phenylalanine (FDOPA) uptake may have an association, preferential tumor localization in relation to FDOPA uptake is yet to be investigated in lower-grade gliomas (LGGs). This study aimed to identify differences in the frequency of tumor localization between FDOPA hypometabolic and hypermetabolic LGGs using a probabilistic radiographic atlas. METHODS: Fifty-one patients with newly diagnosed LGG (WHO grade II, 29; III, 22; isocitrate dehydrogenase wild-type, 21; mutant 1p19q non-codeleted,16; mutant codeleted, 14) who underwent FDOPA positron emission tomography (PET) were retrospectively selected. Semiautomated tumor segmentation on FLAIR was performed. Patients with LGGs were separated into two groups (FDOPA hypometabolic and hypermetabolic LGGs) according to the normalized maximum standardized uptake value of FDOPA PET (a threshold of the uptake in the striatum) within the segmented regions. Spatial normalization procedures to build a 3D MRI-based atlas using each segmented region were validated by an analysis of differential involvement statistical mapping. RESULTS: Superimposition of regions of interest showed a high number of hypometabolic LGGs localized in the frontal lobe, while a high number of hypermetabolic LGGs was localized in the insula, putamen, and temporal lobe. The statistical mapping revealed that hypometabolic LGGs occurred more frequently in the superior frontal gyrus (close to the supplementary motor area), while hypermetabolic LGGs occurred more frequently in the insula. CONCLUSION: Radiographic atlases revealed preferential frontal lobe localization for FDOPA hypometabolic LGGs, which may be associated with relatively early detection.


Asunto(s)
Neoplasias Encefálicas , Glioma , Neoplasias Encefálicas/diagnóstico por imagen , Dihidroxifenilalanina , Glioma/diagnóstico por imagen , Humanos , Isocitrato Deshidrogenasa , Clasificación del Tumor , Tomografía de Emisión de Positrones , Estudios Retrospectivos
12.
Neuroradiology ; 63(6): 857-868, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33106922

RESUMEN

PURPOSE: Epidermal growth factor receptor (EGFR) amplification promotes gliomagenesis and is linked to lack of oxygen within the tumor microenvironment. Using hypoxia-sensitive spin-and-gradient echo echo-planar imaging and perfusion MRI, we investigated the influence of EGFR amplification on tissue oxygen availability and utilization in human gliomas. METHODS: This study included 72 histologically confirmed EGFR-amplified and non-amplified glioma patients. Reversible transverse relaxation rate (R2'), relative cerebral blood volume (rCBV), and relative oxygen extraction fraction (rOEF) were calculated for the contrast-enhancing and non-enhancing tumor regions. Using Student t test or Wilcoxon rank-sum test, median R2', rCBV, and rOEF were compared between EGFR-amplified and non-amplified gliomas. ROC analysis was performed to assess the ability of imaging characteristics to discriminate EGFR amplification status. Overall survival (OS) was determined using univariate and multivariate cox models. Kaplan-Meier survival curves were plotted and compared using the log-rank test. RESULTS: EGFR amplified gliomas exhibited significantly higher median R2' and rOEF than non-amplified gliomas. ROC analysis suggested that R2' (AUC = 0.7190; P = 0.0048) and rOEF (AUC = 0.6959; P = 0.0156) could separate EGFR status. Patients with EGFR-amplified gliomas had a significantly shorter OS than non-amplified patients. Univariate cox regression analysis determined both R2' and rOEF significantly influence OS. No significant difference was observed in rCBV between patient cohorts nor was rCBV found to be an effective differentiator of EGFR status. CONCLUSION: Imaging of tumor oxygen characteristics revealed EGFR-amplified gliomas to be more hypoxic and contribute to shorter patient survival than EGFR non-amplified gliomas.


Asunto(s)
Neoplasias Encefálicas , Glioma , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Receptores ErbB/genética , Glioma/diagnóstico por imagen , Glioma/genética , Humanos , Hipoxia , Imagen por Resonancia Magnética , Oxígeno , Microambiente Tumoral
13.
Neurosurg Focus ; 50(3): E11, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33789233

RESUMEN

OBJECTIVE: In 2008, a Women in Neurosurgery Committee white paper called for increased women applicants and decreased women's attrition in neurosurgery. However, contributing factors (work-life balance, lack of female leadership, workplace gender inequality) have not been well characterized; therefore, specific actions cannot be implemented to improve these professional hurdles. This study provides an update on the experiences of neurosurgeons in 2020 with these historical challenges. METHODS: An anonymous online survey was sent to all Accreditation Council for Graduate Medical Education (ACGME)-accredited US neurosurgical programs, examining demographics and experiences with mentorship, family life, fertility, and workplace conduct. RESULTS: A total of 115 respondents (64 men, 51 women; age range 25-67 years) had trained at 49 different US residencies. Mentorship rates were very high among men and women in medical school and residency. However, women were significantly more likely than men to have a female mentor in residency. During residency, 33% of women versus 44% of men had children, and significantly fewer women interested in having a child were able to do so in residency, compared to men. Significantly more women than men had a child only during a nonclinical year (56.3% vs 19.0%, respectively). Thirty-nine percent of women and 25% of men reported difficulty conceiving. The major difficulty for men was stress, whereas women reported the physical challenges of pregnancy itself (workplace teratogens, morning sickness, etc.). Failed birth rates peaked during residency (0.33) versus those before (0.00) and after residency (0.25).Women (80%) experience microaggressions in the workplace significantly more than men (36%; p < 0.001). Ninety-five percent of macro-/microaggressions toward female neurosurgeons were about their gender, compared to 9% of those toward men (p < 0.001). The most common overall perpetrators were senior male residents and attendings, followed by male patients (against women) and female nurses or midlevel providers (against men). CONCLUSIONS: Accurate depictions of neurosurgery experiences and open discussions of the potential impacts of gender may allow for 1) decreased attrition due to more accurate expectations and 2) improved characterization of gender differences in neurosurgery so the profession can work to address gender inequality.


Asunto(s)
Internado y Residencia , Neurocirugia , Adulto , Anciano , Niño , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neurocirujanos , Neurocirugia/educación , Embarazo , Educación Sexual , Lugar de Trabajo
14.
J Neurooncol ; 149(2): 337-346, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32929644

RESUMEN

PURPOSE: To assess whether hypermetabolically-defined regions of interest (ROIs) on 3,4-dihydroxy-6-[18F]-fluoro-L-phenylalanine (FDOPA) positron emission tomography (PET) could be used to evaluate physiological features and whether there are measurable differences between molecular subtypes and tumor grades. METHODS: Sixty-eight treatment-naïve glioma patients who underwent FDOPA PET and magnetic resonance imaging (MRI) were retrospectively included. Fluid-attenuated inversion recovery hyperintense regions (FLAIRROI) were segmented. FDOPA hypermetabolic regions (FDOPAROI, tumor-to-striatum ratios > 1) within FLAIRROI were extracted. Normalized maximum standardized uptake value (nSUVmax), volume of each ROI, and median relative cerebral blood volume (rCBV) and apparent diffusion coefficient (ADC) within FLAIRROI or FDOPAROI were calculated. Imaging metrics were compared using Students t or Mann-Whitney U tests. Area under the curve (AUC) of receiver-operating characteristic curves were used to determine whether imaging metrics within FLAIRROI or FDOPAROI can discriminate different molecular statuses or grades. RESULTS: Using either FLAIRROI or FDOPAROI, the nSUVmax and rCBV were significantly higher and the ADC was lower in isocitrate dehydrogenase (IDH) wild-type than mutant gliomas, and in higher-grade gliomas (HGGs) than lower-grade gliomas (LGGs). The FDOPAROI volume was significantly higher in 1p19q codeleted than non-codeleted gliomas, and in HGGs than LGGs. Although not significant, imaging metrics extracted by FDOPAROI discriminated molecular status and tumor grade more accurately than those extracted by FLAIRROI (AUC of IDH status, 0.87 vs. 0.82; 1p19q status, 0.78 vs. 0.73; grade, 0.87 vs. 0.76). CONCLUSION: FDOPA hypermetabolic ROI may extract useful imaging features of gliomas, which can illuminate biological differences between different molecular status or tumor grades.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias Encefálicas/patología , Glioma/patología , Imagen por Resonancia Magnética/métodos , Mutación , Tomografía de Emisión de Positrones/métodos , Anciano , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Femenino , Estudios de Seguimiento , Glioma/genética , Glioma/metabolismo , Humanos , Isocitrato Deshidrogenasa/genética , Masculino , Persona de Mediana Edad , Pronóstico , Curva ROC , Estudios Retrospectivos
15.
Proc Natl Acad Sci U S A ; 114(38): 10220-10225, 2017 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-28874539

RESUMEN

Contrast-enhanced MRI is typically used to follow treatment response and progression in patients with glioblastoma (GBM). However, differentiating tumor progression from pseudoprogression remains a clinical dilemma largely unmitigated by current advances in imaging techniques. Noninvasive imaging techniques capable of distinguishing these two conditions could play an important role in the clinical management of patients with GBM and other brain malignancies. We hypothesized that PET probes for deoxycytidine kinase (dCK) could be used to differentiate immune inflammatory responses from other sources of contrast-enhancement on MRI. Orthotopic malignant gliomas were established in syngeneic immunocompetent mice and then treated with dendritic cell (DC) vaccination and/or PD-1 mAb blockade. Mice were then imaged with [18F]-FAC PET/CT and MRI with i.v. contrast. The ratio of contrast enhancement on MRI to normalized PET probe uptake, which we term the immunotherapeutic response index, delineated specific regions of immune inflammatory activity. On postmortem examination, FACS-based enumeration of intracranial tumor-infiltrating lymphocytes directly correlated with quantitative [18F]-FAC PET probe uptake. Three patients with GBM undergoing treatment with tumor lysate-pulsed DC vaccination and PD-1 mAb blockade were also imaged before and after therapy using MRI and a clinical PET probe for dCK. Unlike in mice, [18F]-FAC is rapidly catabolized in humans; thus, we used another dCK PET probe, [18F]-clofarabine ([18F]-CFA), that may be more clinically relevant. Enhanced [18F]-CFA PET probe accumulation was identified in tumor and secondary lymphoid organs after immunotherapy. Our findings identify a noninvasive modality capable of imaging the host antitumor immune response against intracranial tumors.


Asunto(s)
Glioblastoma/diagnóstico por imagen , Animales , Línea Celular , Femenino , Glioblastoma/terapia , Humanos , Inmunoterapia , Imagen por Resonancia Magnética , Ratones , Ratones Endogámicos C57BL , Tomografía de Emisión de Positrones
16.
J Neurooncol ; 142(3): 423-434, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30838489

RESUMEN

PURPOSE: Both IDH1-mutated and wild-type gliomas abundantly display aberrant CpG island hypermethylation. However, the potential role of hypermethylation in promoting gliomas, especially the most aggressive form, glioblastoma (GBM), remains poorly understood. METHODS: We analyzed RRBS-generated methylation profiles for 11 IDH1WT gliomas (including 7 GBMs), 24 IDH1MUT gliomas (including 6 GBMs), and 5 normal brain samples and employed TCGA GBM methylation profiles as a validation set. Upon classification of differentially methylated CpG islands by IDH1 status, we used integrated analysis of methylation and gene expression to identify SPINT2 as a top cancer related gene. To explore functional consequences of SPINT2 methylation in GBM, we validated SPINT2 methylation status using targeted bisulfite sequencing in a large cohort of GBM samples. We assessed DNA methylation-mediated SPINT2 gene regulation using 5-aza-2'-deoxycytidine treatment, DNMT1 knockdown and luciferase reporter assays. We conducted functional analyses of SPINT2 in GBM cell lines in vitro and in vivo. RESULTS: We identified SPINT2 as a candidate tumor-suppressor gene within a group of CpG islands (designated GT-CMG) that are hypermethylated in both IDH1MUT and IDH1WT gliomas but not in normal brain. We established that SPINT2 downregulation results from promoter hypermethylation, and that restoration of SPINT2 expression reduces c-Met activation and tumorigenic properties of GBM cells. CONCLUSIONS: We defined a previously under-recognized group of coordinately methylated CpG islands common to both IDH1WT and IDH1MUT gliomas (GT-CMG). Within GT-CMG, we identified SPINT2 as a top cancer-related candidate and demonstrated that SPINT2 suppressed GBM via down-regulation of c-Met activation.


Asunto(s)
Metilación de ADN , Regulación Neoplásica de la Expresión Génica , Glioblastoma/prevención & control , Isocitrato Deshidrogenasa/genética , Glicoproteínas de Membrana/genética , Mutación , Proteínas Proto-Oncogénicas c-met/metabolismo , Animales , Apoptosis , Proliferación Celular , Islas de CpG , Glioblastoma/genética , Glioblastoma/patología , Humanos , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Endogámicos NOD , Ratones SCID , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-met/genética , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
17.
J Neurooncol ; 142(3): 587-595, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30806888

RESUMEN

PURPOSE: The objective of the current study was to explore the efficacy of using pH-weighted amine CEST-EPI as a potential non-invasive imaging biomarker for treatment response and/or failure in recurrent GBM patients treated with bevacizumab. METHOD: A total of 11 patients with recurrent GBM treated with bevacizumab were included in this prospective study. CEST-EPI, perfusion MRI, and standardized anatomic MRI were obtained in patients before and after bevacizumab administration. CEST-EPI measures of magnetization transfer ratio asymmetry (MTRasym) at 3 ppm were used for pH-weighted imaging contrast. Multiple measures were examined for their association with progression-free survival (PFS). RESULT: Tumor acidity, measured with MTRasym at 3 ppm, was significantly reduced in both contrast enhancing and non-enhancing tumor after bevacizumab (p = 0.0002 and p < 0.00001, respectively). The reduction in tumor acidity in both contrast enhancing and non-enhancing tumor was linearly correlated with PFS (p = 0.044 and p = 0.00026, respectively). In 9 of the 11 patients, areas of residual acidity were localized to areas of tumor recurrence, typically around 2 months prior to radiographic progression. Univariate (p = 0.006) and multivariate Cox regression controlling for age (p = 0.009) both indicated that change in tumor acidity (ΔMTRasym at 3 ppm) was a significant predictor of PFS. CONCLUSIONS: This pilot study suggests pH-weighted amine CEST MRI may have value as a non-invasive, early imaging biomarker for bevacizumab treatment response and failure. Early decreases MTRasym at 3.0 ppm in recurrent GBM after bevacizumab may be associated with better PFS. Residual or emerging regions of acidity may colocalize to the site of tumor recurrence.


Asunto(s)
Aminas/química , Bevacizumab/efectos adversos , Biomarcadores/análisis , Imagen Eco-Planar/métodos , Glioblastoma/patología , Recurrencia Local de Neoplasia/patología , Neuroimagen/métodos , Adulto , Anciano , Antineoplásicos Inmunológicos/efectos adversos , Imagen Eco-Planar/instrumentación , Femenino , Estudios de Seguimiento , Glioblastoma/diagnóstico por imagen , Glioblastoma/tratamiento farmacológico , Humanos , Concentración de Iones de Hidrógeno , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Recurrencia Local de Neoplasia/diagnóstico por imagen , Recurrencia Local de Neoplasia/tratamiento farmacológico , Estudios Prospectivos , Insuficiencia del Tratamiento
18.
J Transl Med ; 16(1): 142, 2018 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-29843811

RESUMEN

BACKGROUND: Standard therapy for glioblastoma includes surgery, radiotherapy, and temozolomide. This Phase 3 trial evaluates the addition of an autologous tumor lysate-pulsed dendritic cell vaccine (DCVax®-L) to standard therapy for newly diagnosed glioblastoma. METHODS: After surgery and chemoradiotherapy, patients were randomized (2:1) to receive temozolomide plus DCVax-L (n = 232) or temozolomide and placebo (n = 99). Following recurrence, all patients were allowed to receive DCVax-L, without unblinding. The primary endpoint was progression free survival (PFS); the secondary endpoint was overall survival (OS). RESULTS: For the intent-to-treat (ITT) population (n = 331), median OS (mOS) was 23.1 months from surgery. Because of the cross-over trial design, nearly 90% of the ITT population received DCVax-L. For patients with methylated MGMT (n = 131), mOS was 34.7 months from surgery, with a 3-year survival of 46.4%. As of this analysis, 223 patients are ≥ 30 months past their surgery date; 67 of these (30.0%) have lived ≥ 30 months and have a Kaplan-Meier (KM)-derived mOS of 46.5 months. 182 patients are ≥ 36 months past surgery; 44 of these (24.2%) have lived ≥ 36 months and have a KM-derived mOS of 88.2 months. A population of extended survivors (n = 100) with mOS of 40.5 months, not explained by known prognostic factors, will be analyzed further. Only 2.1% of ITT patients (n = 7) had a grade 3 or 4 adverse event that was deemed at least possibly related to the vaccine. Overall adverse events with DCVax were comparable to standard therapy alone. CONCLUSIONS: Addition of DCVax-L to standard therapy is feasible and safe in glioblastoma patients, and may extend survival. Trial registration Funded by Northwest Biotherapeutics; Clinicaltrials.gov number: NCT00045968; https://clinicaltrials.gov/ct2/show/NCT00045968?term=NCT00045968&rank=1 ; initially registered 19 September 2002.


Asunto(s)
Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/terapia , Vacunas contra el Cáncer/inmunología , Células Dendríticas/inmunología , Glioblastoma/inmunología , Glioblastoma/terapia , Adulto , Anciano , Neoplasias Encefálicas/diagnóstico , Vacunas contra el Cáncer/efectos adversos , Determinación de Punto Final , Femenino , Glioblastoma/diagnóstico , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Análisis de Supervivencia , Resultado del Tratamiento , Adulto Joven
19.
J Transl Med ; 16(1): 179, 2018 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-29958537

RESUMEN

Following publication of the original article [1], the authors reported an error in the spelling of one of the author names. In this Correction the incorrect and correct author names are indicated and the author name has been updated in the original publication. The authors also reported an error in the Methods section of the original article. In this Correction the incorrect and correct versions of the affected sentence are indicated. The original article has not been updated with regards to the error in the Methods section.

20.
Magn Reson Med ; 80(5): 1962-1978, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29626359

RESUMEN

PURPOSE: To introduce a new pH-sensitive and oxygen-sensitive MRI technique using amine proton CEST echo spin-and-gradient echo (SAGE) EPI (CEST-SAGE-EPI). METHODS: pH-weighting was obtained using CEST estimations of magnetization transfer ratio asymmetry (MTRasym ) at 3 ppm, and oxygen-weighting was obtained using R2' measurements. Glutamine concentration, pH, and relaxation rates were varied in phantoms to validate simulations and estimate relaxation rates. The values of MTRasym and R2' in normal-appearing white matter, T2 hyperintensity, contrast enhancement, and macroscopic necrosis were measured in 47 gliomas. RESULTS: Simulation and phantom results confirmed an increase in MTRasym with decreasing pH. The CEST-SAGE-EPI estimates of R2 , R2*, and R2' varied linearly with gadolinium diethylenetriamine penta-acetic acid concentration (R2 = 6.2 mM-1 ·sec-1 and R2* = 6.9 mM-1 ·sec-1 ). The CEST-SAGE-EPI and Carr-Purcell-Meiboom-Gill estimates of R2 (R2 = 0.9943) and multi-echo gradient-echo estimates of R2* (R2 = 0.9727) were highly correlated. T2 lesions had lower R2' and higher MTRasym compared with normal-appearing white matter, suggesting lower hypoxia and high acidity, whereas contrast-enhancement tumor regions had elevated R2' and MTRasym , indicating high hypoxia and acidity. CONCLUSION: The CEST-SAGE-EPI technique provides simultaneous pH-sensitive and oxygen-sensitive image contrasts for evaluation of the brain tumor microenvironment. Advantages include fast whole-brain acquisition, in-line B0 correction, and simultaneous estimation of CEST effects, R2 , R2*, and R2' at 3 T.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Glioma/diagnóstico por imagen , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Oxígeno/química , Adulto , Anciano , Anciano de 80 o más Años , Encéfalo/diagnóstico por imagen , Imagen Eco-Planar , Femenino , Humanos , Concentración de Iones de Hidrógeno , Masculino , Persona de Mediana Edad , Fantasmas de Imagen , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA