Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cytometry A ; 97(6): 610-619, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32459071

RESUMEN

Flow cytometry allows multiparameter analysis on a single-cell basis and is currently the method of choice to rapidly assess heterogeneity of cell populations in suspension. With the research field of extracellular vesicles (EV) rapidly expanding, there is an increased demand to address heterogeneity of EV populations in biological samples. Although flow cytometry would be the ideal technique to do so, the available instruments are in general not equipped to optimally detect the dim light scatter signals generated by submicron-sized particles like EV. Although sideward scatter light and fluorescence are currently used as a threshold signal to identify EV within samples, the forward scatter light (FSC) parameter is often neglected due to the lack of resolution to distinguish EV-related signals from noise. However, after optimization of FSC detection by adjusting the size of the obscuration bar, we recently showed that certain EV-subsets could only be identified based on FSC. This observation made us to further study the possibilities to enhance FSC-detection of submicron-sized particles. By testing differently sized obscuration bars and differently sized pinholes in the focal plane behind the FSC detection lens, we generated a matrix that allowed us to determine which combination resulted in the lowest optical background in terms of numbers of events regarding FSC detection of submicron-sized particles. We found that a combination of an 8-mm obscuration bar and a 200-µm pinhole reduced optical background in a reproducible manner to such extent that it allowed a robust separation of 100-nm polystyrene beads from background signals within the FSC channel, and even allowed thresholding on FSC without the interference of massive background signals when both beads and EV were measured. These technical adaptations thus significantly improved FSC detection of submicron-sized particles and provide an important lead for the further development and design of flow cytometers that aid in detection of submicron-sized particles. © 2020 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.


Asunto(s)
Vesículas Extracelulares , Citometría de Flujo , Poliestirenos
2.
Exp Cell Res ; 329(2): 239-47, 2014 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-25246130

RESUMEN

Quiescence, self-renewal, lineage commitment and differentiation of hematopoietic stem cells (HSCs) towards fully mature blood cells are a complex process that involves both intrinsic and extrinsic signals. During steady-state conditions, most hematopoietic signals are provided by various resident cells inside the bone marrow (BM), which establish the HSC micro-environment. However, upon infection, the hematopoietic process is also affected by pathogens and activated immune cells, which illustrates an effective feedback mechanism to hematopoietic stem and progenitor cells (HSPCs) via immune-mediated signals. Here, we review the impact of pathogen-associated molecular patterns (PAMPs), damage-associated molecular patterns (DAMPs), costimulatory molecules and pro-inflammatory cytokines on the quiescence, proliferation and differentiation of HSCs and more committed progenitors. As modulation of HSPC function via these immune-mediated signals holds an interesting parallel with the "three-signal-model" described for the activation and differentiation of naïve T-cells, we propose a novel "three-signal" concept for immune-driven hematopoiesis. In this model, the recognition of PAMPs and DAMPs will activate HSCs and induce proliferation, while costimulatory molecules and pro-inflammatory cytokines confer a second and third signal, respectively, which further regulate expansion, lineage commitment and differentiation of HSPCs. We review the impact of inflammatory stress on hematopoiesis along these three signals and we discuss whether they act independently from each other or that concurrence of these signals is important for an adequate response of HSPCs upon infection.


Asunto(s)
Médula Ósea/inmunología , Hematopoyesis/fisiología , Células Madre Hematopoyéticas/citología , Inflamación/inmunología , Activación de Linfocitos/inmunología , Estrés Fisiológico , Linfocitos T/inmunología , Animales , Médula Ósea/metabolismo , Diferenciación Celular/inmunología , Células Madre Hematopoyéticas/inmunología , Células Madre Hematopoyéticas/metabolismo , Humanos , Inflamación/metabolismo , Inflamación/patología , Linfocitos T/metabolismo
3.
Apoptosis ; 18(11): 1306-1318, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23975731

RESUMEN

Apoptosis plays an essential role in the control of erythropoiesis under normal and pathological conditions. However, the contribution of individual proteins within cell death signalling pathways remains poorly defined. Here, we investigated the role of the pro-apoptotic Bcl-2 family member Noxa in the regulation of erythropoiesis. We found that expression of Noxa is induced during erythroid differentiation of human and murine precursor cells. Using in vitro model systems for erythroid progenitors, we observed rapid induction of Noxa upon cytokine deprivation. Knockdown or deletion of Noxa conferred significant protection against apoptosis upon cytokine withdrawal. In vivo, Noxa deficiency did not affect hematological blood parameters or erythroid progenitor composition of bone marrow and spleen under steady-state conditions. In contrast, in a model of acute haemolytic anemia, Noxa-deficiency enhanced hematocrit recovery. Moreover, in a model of chronic inflammation-induced anemia, Noxa-ablation resulted in a dramatic increase of erythroblast expansion. Our data indicate that induction of Noxa in erythroid progenitors sets a survival threshold that limits expansion beyond the number of cells that can be sustained by the available cytokines, which becomes apparent under conditions of induced anemia.


Asunto(s)
Anemia/genética , Apoptosis/genética , Eritropoyesis/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética , Anemia/inducido químicamente , Anemia/metabolismo , Anemia/patología , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteína 11 Similar a Bcl2 , Médula Ósea/metabolismo , Médula Ósea/patología , Diferenciación Celular , Citocinas/genética , Citocinas/metabolismo , Regulación de la Expresión Génica , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Estrés Oxidativo , Fenilhidrazinas , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Bazo/metabolismo , Bazo/patología
4.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1868(10): 159367, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37473834

RESUMEN

Inflammation is the hallmark of most joint disorders. However, the precise regulation of induction, perpetuation, and resolution of joint inflammation is not entirely understood. Since extracellular vesicles (EVs) are critical for intercellular communication, we aim to unveil their role in these processes. Here, we investigated the EVs' dynamics and phospholipidome profile from synovial fluid (SF) of healthy equine joints and from horses with lipopolysaccharide (LPS)-induced synovitis. LPS injection triggered a sharp increase of SF-EVs at 5-8 h post-injection, which started to decline at 24 h post-injection. Importantly, we identified significant changes in the lipid profile of SF-EVs after synovitis induction. Compared to healthy joint-derived SF-EVs (0 h), SF-EVs collected at 5, 24, and 48 h post-LPS injection were strongly increased in hexosylceramides. At the same time, phosphatidylserine, phosphatidylcholine, and sphingomyelin were decreased in SF-EVs at 5 h and 24 h post-LPS injection. Based on the lipid changes during acute inflammation, we composed specific lipid profiles associated with healthy and inflammatory state-derived SF-EVs. The sharp increase in SF-EVs during acute synovitis and the correlation of specific lipids with either healthy or inflamed states-derived SF-EVs are findings of potential interest for unveiling the role of SF-EVs in joint inflammation, as well as for the identification of EV-biomarkers of joint inflammation.


Asunto(s)
Líquido Sinovial , Sinovitis , Animales , Caballos , Fosfolípidos , Lipopolisacáridos/efectos adversos , Sinovitis/inducido químicamente , Sinovitis/veterinaria , Inflamación/inducido químicamente
5.
J Extracell Vesicles ; 12(11): e12376, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37942918

RESUMEN

Extracellular vesicles (EVs) in blood plasma are recognized as potential biomarkers for disease. Although blood plasma is easily obtainable, analysis of EVs at the single particle level is still challenging due to the biological complexity of this body fluid. Besides EVs, plasma contains different types of lipoproteins particles (LPPs), that outnumber EVs by orders of magnitude and which partially overlap in biophysical properties such as size, density and molecular makeup. Consequently, during EV isolation LPPs are often co-isolated. Furthermore, physical EV-LPP complexes have been observed in purified EV preparations. Since co-isolation or association of LPPs can impact EV-based analysis and biomarker profiling, we investigated the presence and formation of EV-LPP complexes in biological samples by using label-free atomic force microscopy, cryo-electron tomography and synchronous Rayleigh and Raman scattering analysis of optically trapped particles and fluorescence-based high sensitivity single particle flow cytometry. Furthermore, we evaluated the impact on flow cytometric analysis in the presence of LPPs using in vitro spike-in experiments of purified tumour cell line-derived EVs in different classes of purified human LPPs. Based on orthogonal single-particle analysis techniques we demonstrate that EV-LPP complexes can form under physiological conditions. Furthermore, we show that in fluorescence-based flow cytometric EV analysis staining of LPPs, as well as EV-LPP associations, can influence quantitative and qualitative EV analysis. Lastly, we demonstrate that the colloidal matrix of the biofluid in which EVs reside impacts their buoyant density, size and/or refractive index (RI), which may have consequences for down-stream EV analysis and EV biomarker profiling.


Asunto(s)
Vesículas Extracelulares , Humanos , Vesículas Extracelulares/fisiología , Imagen Individual de Molécula , Biomarcadores , Línea Celular Tumoral , Lipoproteínas LDL
6.
J Extracell Vesicles ; 9(1): 1713526, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32128070

RESUMEN

Extracellular vesicles (EVs) are small, heterogeneous and difficult to measure. Flow cytometry (FC) is a key technology for the measurement of individual particles, but its application to the analysis of EVs and other submicron particles has presented many challenges and has produced a number of controversial results, in part due to limitations of instrument detection, lack of robust methods and ambiguities in how data should be interpreted. These complications are exacerbated by the field's lack of a robust reporting framework, and many EV-FC manuscripts include incomplete descriptions of methods and results, contain artefacts stemming from an insufficient instrument sensitivity and inappropriate experimental design and lack appropriate calibration and standardization. To address these issues, a working group (WG) of EV-FC researchers from ISEV, ISAC and ISTH, worked together as an EV-FC WG and developed a consensus framework for the minimum information that should be provided regarding EV-FC. This framework incorporates the existing Minimum Information for Studies of EVs (MISEV) guidelines and Minimum Information about a FC experiment (MIFlowCyt) standard in an EV-FC-specific reporting framework (MIFlowCyt-EV) that supports reporting of critical information related to sample staining, EV detection and measurement and experimental design in manuscripts that report EV-FC data. MIFlowCyt-EV provides a structure for sharing EV-FC results, but it does not prescribe specific protocols, as there will continue to be rapid evolution of instruments and methods for the foreseeable future. MIFlowCyt-EV accommodates this evolution, while providing information needed to evaluate and compare different approaches. Because MIFlowCyt-EV will ensure consistency in the manner of reporting of EV-FC studies, over time we expect that adoption of MIFlowCyt-EV as a standard for reporting EV- FC studies will improve the ability to quantitatively compare results from different laboratories and to support the development of new instruments and assays for improved measurement of EVs.

7.
J Extracell Vesicles ; 5: 31751, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27511891

RESUMEN

Extracellular vesicles (EVs) in synovial fluid (SF) are gaining increased recognition as important factors in joint homeostasis, joint regeneration, and as biomarkers of joint disease. A limited number of studies have investigated EVs in SF samples of patients with joint disease, but knowledge on the role of EVs in healthy joints is lacking. In addition, no standardized protocol is available for isolation of EVs from SF. Based on the high viscosity of SF caused by high concentrations of hyaluronic acid (HA) - a prominent extracellular matrix component - it was hypothesized that EV recovery could be optimized by pretreatment with hyaluronidase (HYase). Therefore, the efficiency of EV isolation from healthy equine SF samples was tested by performing sequential ultracentrifugation steps (10,000g, 100,000g and 200,000g) in the presence or absence of HYase. Quantitative EV analysis using high-resolution flow cytometry showed an efficient recovery of EVs after 100,000g ultracentrifugation, with an increased yield of CD44+ EVs when SF samples were pretreated with HYase. Morphological analysis of SF-derived EVs with cryo-transmission-electron microscopy did not indicate damage by high-speed ultracentrifugation and revealed that most EVs are spherical with a diameter of 20-200 nm. Further protein characterization by Western blotting revealed that healthy SF-derived EVs contain CD9, Annexin-1, and CD90/Thy1.1. Taken together, these data suggest that EV isolation protocols for body fluids that contain relatively high amounts of HA, such as SF, could benefit from treatment of the fluid with HYase prior to ultracentrifugation. This method facilitates recovery and detection of CD44+ EVs within the HA-rich extracellular matrix. Furthermore, based on the findings presented here, it is recommended to sediment SF-derived EVs with at least 100,000g for optimal EV recovery.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA