Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Liver Int ; 43(9): 2026-2038, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37349903

RESUMEN

BACKGROUND & AIMS: PIEZO1 and TRPV4 are mechanically and osmotically regulated calcium-permeable channels. The aim of this study was to determine the relevance and relationship of these channels in the contractile tone of the hepatic portal vein, which experiences mechanical and osmotic variations as it delivers blood to the liver from the intestines, gallbladder, pancreas and spleen. METHODS: Wall tension was measured in freshly dissected portal veins from adult male mice, which were genetically unmodified or modified for either a non-disruptive tag in native PIEZO1 or endothelial-specific PIEZO1 deletion. Pharmacological agents were used to activate or inhibit PIEZO1, TRPV4 and associated pathways, including Yoda1 and Yoda2 for PIEZO1 and GSK1016790A for TRPV4 agonism, respectively. RESULTS: PIEZO1 activation leads to nitric oxide synthase- and endothelium-dependent relaxation of the portal vein. TRPV4 activation causes contraction, which is also endothelium-dependent but independent of nitric oxide synthase. The TRPV4-mediated contraction is suppressed by inhibitors of phospholipase A2 and cyclooxygenases and mimicked by prostaglandin E2 , suggesting mediation by arachidonic acid metabolism. TRPV4 antagonism inhibits the effect of agonising TRPV4 but not PIEZO1. Increased wall stretch and hypo-osmolality inhibit TRPV4 responses while lacking effects on or amplifying PIEZO1 responses. CONCLUSIONS: The portal vein contains independently functioning PIEZO1 channels and TRPV4 channels in the endothelium, the pharmacological activation of which leads to opposing effects of vessel relaxation (PIEZO1) and contraction (TRPV4). In mechanical and osmotic strain, the PIEZO1 mechanism dominates. Modulators of these channels could present important new opportunities for manipulating liver perfusion and regeneration in disease and surgical procedures.


Asunto(s)
Canales Iónicos , Óxido Nítrico , Vena Porta , Canales Catiónicos TRPV , Animales , Masculino , Ratones , Endotelio/metabolismo , Óxido Nítrico Sintasa/metabolismo , Presión Osmótica , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo , Vasodilatación , Canales Iónicos/genética , Canales Iónicos/metabolismo
3.
BMC Med ; 14(1): 125, 2016 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-27553421

RESUMEN

BACKGROUND: Epidemiological and observational studies have established that high-density lipoprotein cholesterol (HDL-C) is an independent negative cardiovascular risk factor. However, simple measurement of HDL-C levels is no longer sufficient for cardiovascular risk assessment. Therefore, there is a critical need for novel non-invasive biomarkers that would display prognostic superiority over HDL-C. Cell surface ecto-F1-ATPase contributes to several athero-protective properties of HDL, including reverse cholesterol transport and vascular endothelial protection. Serum inhibitory factor 1 (IF1), an endogenous inhibitor of ecto-F1-ATPase, is an independent determinant of HDL-C associated with low risk of coronary artery disease (CAD). This work aimed to examine the predictive value of serum IF1 for long-term mortality in CAD patients. Its informative value was compared to that of HDL-C. METHOD: Serum IF1 levels were measured in 577 male participants with stable CAD (age 45-74 years) from the GENES (Genetique et ENvironnement en Europe du Sud) study. Vital status was yearly assessed, with a median follow-up of 11 years and a 29.5 % mortality rate. Cardiovascular mortality accounted for the majority (62.4 %) of deaths. RESULTS: IF1 levels were positively correlated with HDL-C (r s = 0.40; P < 0.001) and negatively with triglycerides (r s = -0.21, P < 0.001) and CAD severity documented by the Gensini score (r s = -0.13; P < 0.01). Total and cardiovascular mortality were lower at the highest quartiles of IF1 (HR = 0.55; 95 % CI, 0.38-0.89 and 0.50 (0.28-0.89), respectively) but not according to HDL-C. Inverse associations of IF1 with mortality remained significant, after multivariate adjustments for classical cardiovascular risk factors (age, smoking, physical activity, waist circumference, HDL-C, dyslipidemia, hypertension, and diabetes) and for powerful biological and clinical variables of prognosis, including heart rate, ankle-brachial index and biomarkers of cardiac diseases. The 10-year mortality was 28.5 % in patients with low IF1 (<0.42 mg/L) and 21.4 % in those with high IF1 (≥0.42 mg/L, P < 0.02). CONCLUSIONS: We investigated for the first time the relation between IF1 levels and long-term prognosis in CAD patients, and found an independent negative association. IF1 measurement might be used as a novel HDL-related biomarker to better stratify risk in populations at high risk or in the setting of pharmacotherapy.


Asunto(s)
Enfermedad de la Arteria Coronaria/sangre , Enfermedad Coronaria/sangre , Proteínas/análisis , Anciano , Biomarcadores/sangre , HDL-Colesterol/metabolismo , Europa (Continente) , Humanos , Masculino , Persona de Mediana Edad , Mitocondrias/metabolismo , Pronóstico , Medición de Riesgo , Factores de Riesgo , Proteína Inhibidora ATPasa
4.
BMC Med ; 13: 259, 2015 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-26449324

RESUMEN

BACKGROUND: Data from next generation sequencing technologies uncovered the existence of many classes of small RNAs. Recent studies reported that small RNAs are released by cells and can be detected in the blood. In this report, we aimed to discover the occurrence of novel circulating small RNAs in coronary artery disease (CAD). METHODS: We used high-throughput sequencing of small RNAs from human and mouse apoptotic primary macrophages, and analyzed the data by empirical Bayes moderated t-statistics to assess differential expression and the Benjamini and Hochberg method to control the false discovery rate. Results were then confirmed by Northern blot and RT-qPCR in foam cells and in two animal models for atherosclerosis, namely ApoE(-/-) and Ldlr(-/-) mouse lines. Quantitative RT-PCR to detect identified small RNAs, the RNY-derived small RNAs, was performed using sera of 263 patients with CAD compared to 514 matched healthy controls; the Student t-test was applied to statistically assess differences. Associations of small RNAs with clinical characteristics and biological markers were tested using Spearman's rank correlations, while multivariate logistic regressions were performed to test the statistical association of small RNA levels with CAD. RESULTS: Here, we report that, in macrophages stimulated with pro-apoptotic or pro-atherogenic stimuli, the Ro-associated non-coding RNAs, called RNYs or Y-RNAs, are processed into small RNAs (~24-34 nt) referred to as small-RNYs (s-RNYs), including s-RNY1-5p processed from RNY1. A significant upregulation of s-RNY expression was found in aortic arches and blood plasma from ApoE(-/-) and Ldlr(-/-) mice and in serum from CAD patients (P <0.001). Biostatistical analysis revealed a positive association of s-RNY1-5p with hs-CRP and ApoB levels; however, no statistical interaction was found between either of these two markers and s-RNY1-5p in relation to the CAD status. Levels of s-RNY1-5p were also independent from statin and fibrate therapies. CONCLUSION: Our results position the s-RNY1-5p as a relevant novel independent diagnostic biomarker for atherosclerosis-related diseases. Measurement of circulating s-RNY expression would be a valuable companion diagnostic to monitor foam cell apoptosis during atherosclerosis pathogenesis and to evaluate patient's responsiveness to future therapeutic strategies aiming to attenuate apoptosis in foam cells in advanced atherosclerotic lesions.


Asunto(s)
Enfermedad de la Arteria Coronaria/sangre , ARN no Traducido/sangre , Anciano , Animales , Aorta Torácica/metabolismo , Aterosclerosis/sangre , Biomarcadores/sangre , Estudios de Casos y Controles , Línea Celular , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Análisis de Secuencia de ARN
5.
Biochim Biophys Acta ; 1831(4): 719-25, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23266391

RESUMEN

High level of high-density lipoprotein cholesterol (HDL-cholesterol) is inversely correlated to the risk of atherosclerotic cardiovascular disease. The protective effect of HDL is mostly attributed to their metabolic functions in reverse cholesterol transport (RCT), a process whereby excess cell cholesterol is taken up from peripheral cells and processed in HDL particles, and is later delivered to the liver for further metabolism and bile excretion. We have previously demonstrated that P2Y13 receptor is critical for RCT and that intravenous bolus injection of cangrelor (AR-C69931MX), a partial agonist of P2Y13 receptor, can stimulate hepatic HDL uptake and subsequent lipid biliary secretion without any change in plasma lipid levels. In the present study, we investigated the effect of longer-term treatment with cangrelor on lipoprotein metabolism in mice. We observed that continuous delivery of cangrelor at a rate of 35µg/day/kg body weight for 3days markedly decreased plasma HDL-cholesterol level, by increasing the clearance of HDL particles by the liver. These effects were correlated to an increase in the rate of biliary bile acid secretion. An increased expression of SREBP-regulated genes of cholesterol metabolism was also observed without any change of hepatic lipid levels as compared to non-treated mice. Thus, 3-day cangrelor treatment markedly increases the flux of HDL-cholesterol from the plasma to the liver for bile acid secretion. Taken together our results suggest that P2Y13 appears a promising target for therapeutic intervention aimed at preventing or reducing cardiovascular risk.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , HDL-Colesterol/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Receptores Purinérgicos P2/metabolismo , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , Animales , Transporte Biológico/efectos de los fármacos , Lipoproteínas HDL/metabolismo , Ratones , Agonistas del Receptor Purinérgico P2Y/farmacología
6.
Histochem Cell Biol ; 141(4): 383-91, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24141811

RESUMEN

Gut hormones produced by entero-endocrine cells (EEC) located throughout the gastrointestinal tract play a major role in the regulation of glucose and energy homeostasis. Angiopoietin-like 4 (ANGPTL4, also referred to as fasting induced adipose factor) is a secreted factor involved in regulation of lipid homeostasis and has been proposed as circulating mediator between the gut microbiota and fat storage in adipose tissue, although discordant data exist. Currently, little is known about the site and regulation of ANGPTL4 production in the intestine. Here, we show using immunohistochemistry and immunofluorescence that cells positive for ANGPTL4 are scattered along the epithelial layer in the human small and large intestine. ANGPTL4-positive cells exhibit typical features of EEC characterized by large ANGPTL4-positive secretory granules directed towards the basolateral side. In support, extensive overlap was observed between ANGPTL4-positive cells and cells positive for the entero-endocrine marker chromogranin A. Higher resolution images revealed that ANGPTL4 and chromogranin A are partially present in distinct intracellular vesicles. Using entero-endocrine HuTu-80 cells, ANGPTL4 secretion was shown to be induced by short chain fatty acids and reduced by bile acids. Finally, levels of ANGPTL4 in human plasma were significantly decreased following meal consumption. In conclusion, ANGPTL4 is produced by EEC in human intestine and expression may be regulated by short chain fatty acids and bile acids.


Asunto(s)
Angiopoyetinas/biosíntesis , Células Enteroendocrinas/metabolismo , Tracto Gastrointestinal/metabolismo , Adulto , Proteína 4 Similar a la Angiopoyetina , Angiopoyetinas/genética , Células Cultivadas , Células Enteroendocrinas/citología , Ensayo de Inmunoadsorción Enzimática , Tracto Gastrointestinal/citología , Humanos , Inmunohistoquímica , Masculino , Reacción en Cadena en Tiempo Real de la Polimerasa
7.
J Lipid Res ; 54(9): 2550-8, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23794714

RESUMEN

HDL is strongly inversely related to cardiovascular risk. Hepatic HDL uptake is controlled by ecto-F1-ATPase activity, and potentially inhibited by mitochondrial inhibitor factor 1 (IF1). We recently found that IF1 is present in serum and correlates with HDL-cholesterol (HDL-C). Here, we have evaluated the relationship between circulating IF1 and plasma lipoproteins, and we determined whether IF1 concentration is associated with the risk of coronary heart disease (CHD). Serum IF1 was measured in 648 coronary patients ages 45-74 and in 669 matched male controls, in the context of a cross-sectional study on CHD. Cardiovascular risk factors were documented for each participant, including life-style habits and biological and clinical markers. In controls, multivariate analysis demonstrated that IF1 was independently positively associated with HDL-C and apoA-I (r = 0.27 and 0.28, respectively, P < 0.001) and negatively with triglycerides (r = -0.23, P < 0.001). Mean IF1 concentration was lower in CHD patients than in controls (0.43 mg/l and 0.53 mg/l, respectively, P < 0.001). In multivariate analyses, following adjustments on cardiovascular risk factors or markers, IF1 was negatively related to CHD (P < 0.001). This relationship was maintained after adjustment for HDL-C or apoA-I. This study identifies IF1 as a new determinant of HDL-C that is inversely associated with CHD.


Asunto(s)
Enfermedad Coronaria/sangre , Lipoproteínas HDL/sangre , Proteínas/metabolismo , Anciano , Biomarcadores/sangre , Humanos , Masculino , Persona de Mediana Edad , Medición de Riesgo , Proteína Inhibidora ATPasa
8.
Br J Pharmacol ; 180(16): 2039-2063, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36457143

RESUMEN

BACKGROUND AND PURPOSE: The protein PIEZO1 forms mechanically activated, calcium-permeable, non-selective cation channels in numerous cell types from several species. Options for pharmacological modulation are limited and so we modified a small-molecule agonist at PIEZO1 channels (Yoda1) to increase the ability to modulate these channels. EXPERIMENTAL APPROACH: Medicinal chemistry generated Yoda1 analogues that were tested in intracellular calcium and patch-clamp assays on cultured cells exogenously expressing human or mouse PIEZO1 or mouse PIEZO2. Physicochemical assays and wire myography assays on veins from mice with genetic disruption of PIEZO1. KEY RESULTS: A Yoda1 analogue (KC159) containing 4-benzoic acid instead of the pyrazine of Yoda1 and its potassium salt (KC289) have equivalent or improved reliability, efficacy and potency, compared with Yoda1 in functional assays. Tested against overexpressed mouse PIEZO1 in calcium assays, the order of potency (as EC50 values, nM) was KC289, 150 > KC159 280 > Yoda1, 600). These compounds were selective for PIEZO1 over other membrane proteins, and the physicochemical properties were more suited to physiological conditions than those of Yoda1. The vasorelaxant effects were consistent with PIEZO1 agonism. In contrast, substitution with 2-benzoic acid failed to generate a modulator. CONCLUSION AND IMPLICATIONS: 4-Benzoic acid modification of Yoda1 improves PIEZO1 agonist activity at PIEZO1 channels. We suggest naming this new modulator Yoda2. It should be a useful tool compound in physiological assays and facilitate efforts to identify a binding site. Such compounds may have therapeutic potential, for example, in diseases linked genetically to PIEZO1 such as lymphatic dysplasia.


Asunto(s)
Calcio , Mecanotransducción Celular , Ratones , Humanos , Animales , Calcio/metabolismo , Reproducibilidad de los Resultados , Mecanotransducción Celular/fisiología , Sitios de Unión , Canales de Calcio/metabolismo , Canales Iónicos/metabolismo
9.
Commun Biol ; 6(1): 358, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-37005489

RESUMEN

Two prominent concepts for the sensing of shear stress by endothelium are the PIEZO1 channel as a mediator of mechanically activated calcium ion entry and the PECAM1 cell adhesion molecule as the apex of a triad with CDH5 and VGFR2. Here, we investigated if there is a relationship. By inserting a non-disruptive tag in native PIEZO1 of mice, we reveal in situ overlap of PIEZO1 with PECAM1. Through reconstitution and high resolution microscopy studies we show that PECAM1 interacts with PIEZO1 and directs it to cell-cell junctions. PECAM1 extracellular N-terminus is critical in this, but a C-terminal intracellular domain linked to shear stress also contributes. CDH5 similarly drives PIEZO1 to junctions but unlike PECAM1 its interaction with PIEZO1 is dynamic, increasing with shear stress. PIEZO1 does not interact with VGFR2. PIEZO1 is required in Ca2+-dependent formation of adherens junctions and associated cytoskeleton, consistent with it conferring force-dependent Ca2+ entry for junctional remodelling. The data suggest a pool of PIEZO1 at cell junctions, the coming together of PIEZO1 and PECAM1 mechanisms and intimate cooperation of PIEZO1 and adhesion molecules in tailoring junctional structure to mechanical requirement.


Asunto(s)
Células Endoteliales , Canales Iónicos , Ratones , Animales , Canales Iónicos/genética , Canales Iónicos/metabolismo , Células Endoteliales/metabolismo , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/genética , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Mecanotransducción Celular , Uniones Intercelulares/metabolismo , Endotelio/metabolismo
10.
Circ Res ; 106(11): 1712-21, 2010 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-20378851

RESUMEN

RATIONALE: Although dietary fatty acids are a major fuel for the heart, little is known about the direct effects of dietary fatty acids on gene regulation in the intact heart. OBJECTIVE: To study the effect of dietary fatty acids on cardiac gene expression and explore the functional consequences. METHODS AND RESULTS: Oral administration of synthetic triglycerides composed of one single fatty acid altered cardiac expression of numerous genes, many of which are involved in the oxidative stress response. The gene most significantly and consistently upregulated by dietary fatty acids encoded Angiopoietin-like protein (Angptl)4, a circulating inhibitor of lipoprotein lipase expressed by cardiomyocytes. Induction of Angptl4 by the fatty acid linolenic acid was specifically abolished in peroxisome proliferator-activated receptor (PPAR)beta/delta(-/-) and not PPARalpha(-/-) mice and was blunted on siRNA-mediated PPARbeta/delta knockdown in cultured cardiomyocytes. Consistent with these data, linolenic acid stimulated binding of PPARbeta/delta but not PPARalpha to the Angptl4 gene. Upregulation of Angptl4 resulted in decreased cardiac uptake of plasma triglyceride-derived fatty acids and decreased fatty acid-induced oxidative stress and lipid peroxidation. In contrast, Angptl4 deletion led to enhanced oxidative stress in the heart, both after an acute oral fat load and after prolonged high fat feeding. CONCLUSIONS: Stimulation of cardiac Angptl4 gene expression by dietary fatty acids and via PPARbeta/delta is part of a feedback mechanism aimed at protecting the heart against lipid overload and consequently fatty acid-induced oxidative stress.


Asunto(s)
Angiopoyetinas/metabolismo , Cardiomiopatías/prevención & control , Grasas de la Dieta/metabolismo , Ácidos Grasos Insaturados/metabolismo , Miocardio/metabolismo , Estrés Oxidativo , PPAR delta/metabolismo , PPAR-beta/metabolismo , Proteína 4 Similar a la Angiopoyetina , Angiopoyetinas/deficiencia , Angiopoyetinas/genética , Animales , Animales Recién Nacidos , Cardiomiopatías/inducido químicamente , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Células Cultivadas , Citoprotección , Grasas de la Dieta/administración & dosificación , Grasas de la Dieta/sangre , Grasas de la Dieta/toxicidad , Ácidos Grasos Insaturados/administración & dosificación , Ácidos Grasos Insaturados/sangre , Ácidos Grasos Insaturados/toxicidad , Retroalimentación Fisiológica , Ácido Linoleico/metabolismo , Peroxidación de Lípido , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ácido Oléico/metabolismo , Estrés Oxidativo/genética , PPAR delta/deficiencia , PPAR delta/genética , PPAR-beta/deficiencia , PPAR-beta/genética , Interferencia de ARN , Factores de Tiempo , Regulación hacia Arriba , Ácido alfa-Linolénico/metabolismo
11.
Cells ; 11(7)2022 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-35406763

RESUMEN

PIEZO1 is a subunit of mechanically-activated, nonselective cation channels. Gain-of-function PIEZO1 mutations are associated with dehydrated hereditary stomatocytosis (DHS), a type of anaemia, due to abnormal red blood cell function. Here, we hypothesised additional effects on the heart. Consistent with this hypothesis, mice engineered to contain the M2241R mutation in PIEZO1 to mimic a DHS mutation had increased cardiac mass and interventricular septum thickness at 8-12 weeks of age, without altered cardiac contractility. Myocyte size was greater and there was increased expression of genes associated with cardiac hypertrophy (Anp, Acta1 and ß-MHC). There was also cardiac fibrosis, increased expression of Col3a1 (a gene associated with fibrosis) and increased responses of isolated cardiac fibroblasts to PIEZO1 agonism. The data suggest detrimental effects of excess PIEZO1 activity on the heart, mediated in part by amplified PIEZO1 function in cardiac fibroblasts.


Asunto(s)
Cardiomegalia , Mutación con Ganancia de Función , Canales Iónicos , Animales , Cardiomegalia/genética , Fibrosis , Canales Iónicos/genética , Ratones
12.
Adipocyte ; 11(1): 366-378, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35734881

RESUMEN

High fat diet (HFD)-induced obesity leads to perturbation in the storage function of white adipose tissue (WAT) resulting in deposition of lipids in tissues ill-equipped to deal with this challenge. The role of insulin like growth factor-1 (IGF-1) in the systemic and organ-specific responses to HFD is unclear. Using cixutumumab, a monoclonal antibody that internalizes and degrades cell surface IGF-1 receptors (IGF-1 R), leaving insulin receptor expression unchanged we aimed to establish the role of IGF-1 R in the response to a HFD. Mice treated with cixutumumab fed standard chow developed mild hyperinsulinemia with no change in WAT. When challenged by HFD mice treated with cixutumumab had reduced weight gain, reduced WAT expansion, and reduced hepatic lipid vacuole formation. In HFD-fed mice, cixutumumab led to reduced levels of genes encoding proteins important in fatty acid metabolism in WAT and liver. Cixutumumab protected against blunting of insulin-stimulated phosphorylation of Akt in liver of HFD fed mice. These data reveal an important role for IGF-1 R in the WAT and hepatic response to short-term nutrient excess. IGF-1 R inhibition during HFD leads to a lipodystrophic phenotype with a failure of WAT lipid storage and protection from HFD-induced hepatic insulin resistance.


Asunto(s)
Resistencia a la Insulina , Receptor IGF Tipo 1 , Tejido Adiposo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Anticuerpos Monoclonales Humanizados , Dieta Alta en Grasa/efectos adversos , Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Lípidos , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Obesidad/etiología , Obesidad/metabolismo , Receptor IGF Tipo 1/antagonistas & inhibidores
13.
J Clin Invest ; 132(5)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35025768

RESUMEN

Piezo1 forms mechanically activated nonselective cation channels that contribute to endothelial response to fluid flow. Here we reveal an important role in the control of capillary density. Conditional endothelial cell-specific deletion of Piezo1 in adult mice depressed physical performance. Muscle microvascular endothelial cell apoptosis and capillary rarefaction were evident and sufficient to account for the effect on performance. There was selective upregulation of thrombospondin-2 (TSP2), an inducer of endothelial cell apoptosis, with no effect on TSP1, a related important player in muscle physiology. TSP2 was poorly expressed in muscle endothelial cells but robustly expressed in muscle pericytes, in which nitric oxide (NO) repressed the Tsp2 gene without an effect on Tsp1. In endothelial cells, Piezo1 was required for normal expression of endothelial NO synthase. The data suggest an endothelial cell-pericyte partnership of muscle in which endothelial Piezo1 senses blood flow to sustain capillary density and thereby maintain physical capability.


Asunto(s)
Células Endoteliales , Canales Iónicos , Condicionamiento Físico Animal , Animales , Capilares/metabolismo , Células Endoteliales/metabolismo , Canales Iónicos/genética , Canales Iónicos/metabolismo , Ratones , Músculos , Pericitos/metabolismo , Condicionamiento Físico Animal/fisiología
14.
Biochim Biophys Acta ; 1801(4): 415-20, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20056168

RESUMEN

There is evidence that elevated plasma triglycerides (TG) serve as an independent risk factor for coronary heart disease. Plasma TG levels are determined by the balance between the rate of production of chylomicrons and VLDL in intestine and liver, respectively, and their rate of clearance in peripheral tissues. Lipolytic processing of TG-rich lipoproteins is mediated by the enzyme lipoprotein lipase (LPL), which is tethered to the capillary endothelium via heparin sulphate proteoglycans. In recent years the Angiopoietin-like proteins ANGPTL3 and ANGPTL4 have emerged as novel modulators of LPL activity. Studies in transgenic animals supported by in vitro experiments have demonstrated that ANGPTL3 and ANGPTL4 impair plasma TG clearance by inhibiting LPL activity. In humans, genetic variation within the ANGPTL3 and ANGPTL4 genes contributes to variation in plasma TG and HDL levels, thereby validating the importance of ANGPTLs in the regulation of lipoprotein metabolism in humans. Combined with the discovery of GPIHBP1 as a likely LPL anchor, these findings have led to a readjustment of the mechanism of LPL function. This review provides an overview of our current understanding of the role and regulation of ANGPTL3, ANGPTL4 and GPIHBP1, and places the newly acquired knowledge in the context of the established function and mechanism of LPL-mediated lipolysis.


Asunto(s)
Angiopoyetinas/fisiología , Proteínas Portadoras/fisiología , Lipoproteína Lipasa/metabolismo , Triglicéridos/sangre , Proteína 3 Similar a la Angiopoyetina , Proteína 4 Similar a la Angiopoyetina , Proteínas Similares a la Angiopoyetina , Humanos , Lipólisis , Receptores de Lipoproteína
15.
Hepatology ; 52(4): 1477-83, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20830789

RESUMEN

UNLABELLED: A major atheroprotective functionality of high-density lipoproteins (HDLs) is to promote "reverse cholesterol transport" (RCT). In this process, HDLs mediate the efflux and transport of cholesterol from peripheral cells and its subsequent transport to the liver for further metabolism and biliary excretion. We have previously demonstrated in cultured hepatocytes that P2Y(13) (purinergic receptor P2Y, G protein-coupled, 13) activation is essential for HDL uptake but the potential of P2Y(13) as a target to promote RCT has not been documented. Here, we show that P2Y(13)-deficient mice exhibited a decrease in hepatic HDL cholesterol uptake, hepatic cholesterol content, and biliary cholesterol output, although their plasma HDL and other lipid levels were normal. These changes translated into a substantial decrease in the rate of macrophage-to-feces RCT. Therefore, hallmark features of RCT are impaired in P2Y(13)-deficient mice. Furthermore, cangrelor, a partial agonist of P2Y(13), stimulated hepatic HDL uptake and biliary lipid secretions in normal mice and in mice with a targeted deletion of scavenger receptor class B type I (SR-BI) in liver (hypomSR-BI-knockout(liver)) but had no effect in P2Y(13) knockout mice, which indicate that P2Y(13)-mediated HDL uptake pathway is independent of SR-BI-mediated HDL selective cholesteryl ester uptake. CONCLUSION: These results establish P2Y(13) as an attractive novel target for modulating RCT and support the emerging view that steady-state plasma HDL levels do not necessarily reflect the capacity of HDL to promote RCT.


Asunto(s)
Colesterol/metabolismo , Lipoproteínas HDL/metabolismo , Receptores Purinérgicos P2/fisiología , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , Animales , Transporte Biológico , HDL-Colesterol/metabolismo , Ratones , Ratones Noqueados , Agonistas del Receptor Purinérgico P2 , Receptores Purinérgicos P2/deficiencia , Receptores Depuradores de Clase B/deficiencia
16.
Arterioscler Thromb Vasc Biol ; 29(6): 969-74, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19342599

RESUMEN

OBJECTIVE: Plasma lipoprotein levels are determined by the balance between lipoprotein production and clearance. Recently, angiopoietin-like protein 4 (ANGPTL4) was uncovered as a novel endocrine factor that potently raises plasma triglyceride levels by inhibiting triglyceride clearance. However, very little is known about ANGPTL4 in human. Here we set out to identify physiological determinants of plasma ANGPTL4 levels in humans, focusing on the effect of energy restriction and plasma FFAs. METHODS AND RESULTS: We developed an ELISA for quantitative measurement of ANGPTL4 in human plasma. Using this assay we found major variations in baseline plasma ANGPTL4 levels between individuals. Within an individual, plasma ANGPTL4 levels remain stable throughout the day but increase significantly in response to long-term fasting, chronic caloric restriction, and endurance exercise. Intralipid injection as well as treatment with a beta-adrenergic agonist, both of which lead to elevated plasma FFA levels, increased plasma ANGPTL4 levels compared to control treatment. Fatty acids markedly induced ANGPTL4 gene expression in rat hepatoma FAO cells, human primary myocytes, and mouse intestinal MSIE cells. CONCLUSIONS: In conclusion, our results show that plasma ANGPTL4 levels are increased by fasting, caloric restriction, and exercise, which is likely mediated by elevated plasma FFAs.


Asunto(s)
Angiopoyetinas/sangre , Restricción Calórica , Ejercicio Físico , Ácidos Grasos no Esterificados/sangre , Agonistas Adrenérgicos beta/administración & dosificación , Adulto , Albuterol/administración & dosificación , Proteína 4 Similar a la Angiopoyetina , Angiopoyetinas/genética , Angiopoyetinas/metabolismo , Animales , Células Cultivadas , Ensayo de Inmunoadsorción Enzimática , Emulsiones Grasas Intravenosas/administración & dosificación , Humanos , Hipolipemiantes/administración & dosificación , Mucosa Intestinal/metabolismo , Neoplasias Hepáticas/metabolismo , Masculino , Ratones , Persona de Mediana Edad , Miocitos Cardíacos/metabolismo , ARN Mensajero/metabolismo , Ratas , Factores de Tiempo , Transfección , Regulación hacia Arriba , Adulto Joven
17.
Elife ; 92020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32484440

RESUMEN

Mechanical force is a determinant of Notch signalling but the mechanism of force detection and its coupling to Notch are unclear. We propose a role for Piezo1 channels, which are mechanically-activated non-selective cation channels. In cultured microvascular endothelial cells, Piezo1 channel activation by either shear stress or a chemical agonist Yoda1 activated a disintegrin and metalloproteinase domain-containing protein 10 (ADAM10), a Ca2+-regulated transmembrane sheddase that mediates S2 Notch1 cleavage. Consistent with this observation, we found Piezo1-dependent increase in the abundance of Notch1 intracellular domain (NICD) that depended on ADAM10 and the downstream S3 cleavage enzyme, γ-secretase. Conditional endothelial-specific disruption of Piezo1 in adult mice suppressed the expression of multiple Notch1 target genes in hepatic vasculature, suggesting constitutive functional importance in vivo. The data suggest that Piezo1 is a mechanism conferring force sensitivity on ADAM10 and Notch1 with downstream consequences for sustained activation of Notch1 target genes and potentially other processes.


Asunto(s)
Proteína ADAM10/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Células Endoteliales/metabolismo , Canales Iónicos/metabolismo , Proteínas de la Membrana/metabolismo , Receptor Notch1/metabolismo , Animales , Células Cultivadas , Activación Enzimática , Regulación de la Expresión Génica , Humanos , Canales Iónicos/antagonistas & inhibidores , Masculino , Ratones , Ratones Endogámicos C57BL , Dominios Proteicos , Estrés Mecánico , Factor de Transcripción HES-1/genética
18.
Cell Rep ; 33(1): 108225, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-33027663

RESUMEN

Endogenous PIEZO1 channels of native endothelium lack the hallmark inactivation often seen when these channels are overexpressed in cell lines. Because prior work showed that the force of shear stress activates sphingomyelinase in endothelium, we considered if sphingomyelinase is relevant to endogenous PIEZO1. Patch clamping was used to quantify PIEZO1-mediated signals in freshly isolated murine endothelium exposed to the mechanical forces caused by shear stress and membrane stretch. Neutral sphingomyelinase inhibitors and genetic disruption of sphingomyelin phosphodiesterase 3 (SMPD3) cause PIEZO1 to switch to profoundly inactivating behavior. Ceramide (a key product of SMPD3) rescues non-inactivating channel behavior. Its co-product, phosphoryl choline, has no effect. In contrast to ceramide, sphingomyelin (the SMPD3 substrate) does not affect inactivation but alters channel force sensitivity. The data suggest that sphingomyelinase activity, ceramide, and sphingomyelin are determinants of native PIEZO gating that enable sustained activity.


Asunto(s)
Canales Iónicos/metabolismo , Esfingomielina Fosfodiesterasa/metabolismo , Animales , Humanos , Ratones
19.
Arterioscler Thromb Vasc Biol ; 27(11): 2420-7, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17761937

RESUMEN

BACKGROUND: Dysregulation of plasma lipoprotein levels may increase the risk for atherosclerosis. Recently, angiopoietin-like protein 4, also known as fasting-induced adipose factor Fiaf, was uncovered as a novel modulator of plasma lipoprotein metabolism. Here we take advantage of the fasting-dependent phenotype of Angptl4-transgenic (Angptl4-Tg) mice to better characterize the metabolic function of Angptl4. METHODS AND RESULTS: In 24-hour fasted mice, Angptl4 overexpression increased plasma triglycerides (TG) by 24-fold, which was attributable to elevated VLDL-, IDL/LDL- and HDL-TG content. Angptl4 overexpression decreased post-heparin LPL activity by stimulating conversion of endothelial-bound LPL dimers to circulating LPL monomers. In fasted but not fed state, Angptl4 overexpression severely impaired LPL-dependent plasma TG and cholesteryl ester clearance and subsequent uptake of fatty acids and cholesterol into tissues. Consequently, hepatic cholesterol content was significantly decreased, leading to universal upregulation of cholesterol and fatty acid synthesis pathways and increased rate of cholesterol synthesis. CONCLUSIONS: The hypertriglyceridemic effect of Angptl4 is attributable to inhibition of LPL-dependent VLDL lipolysis by converting LPL dimers to monomers, and Angptl4 upregulates cholesterol synthesis in liver secondary to inhibition of LPL- and HL-dependent hepatic cholesterol uptake.


Asunto(s)
Proteínas Sanguíneas/fisiología , Colesterol/biosíntesis , Ácidos Grasos/biosíntesis , Lipoproteína Lipasa/metabolismo , Hígado/metabolismo , Triglicéridos/metabolismo , Proteína 4 Similar a la Angiopoyetina , Angiopoyetinas , Animales , Vías Biosintéticas , Glucemia/metabolismo , Colesterol/metabolismo , Ayuno/metabolismo , Resistencia a la Insulina/fisiología , Lipólisis/fisiología , Ratones , Ratones Transgénicos
20.
J Clin Lipidol ; 11(4): 920-928.e2, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28625343

RESUMEN

BACKGROUND: Cold exposure and ß3-adrenergic receptor agonism, which both activate brown adipose tissue, markedly influence lipoprotein metabolism by enhancing lipoprotein lipase-mediated catabolism of triglyceride-rich lipoproteins and increasing plasma high-density lipoprotein (HDL) levels and functionality in mice. However, the effect of short-term cooling on human lipid and lipoprotein metabolism remained largely elusive. OBJECTIVE: The objective was to assess the effect of short-term cooling on the serum lipoprotein profile and HDL functionality in men. METHODS: Body mass index-matched young, lean men were exposed to a personalized cooling protocol for 2 hours. Before and after cooling, serum samples were collected for analysis of lipids and lipoprotein composition by 1H-nuclear magnetic resonance. Adenosine triphosphate-binding cassette A1 (ABCA1)-mediated cholesterol efflux capacity of HDL was measured using [3H]cholesterol-loaded ABCA1-transfected Chinese hamster ovary cells. RESULTS: Short-term cooling increased serum levels of free fatty acids, triglycerides, and cholesterol. Cooling increased the concentration of large very low-density lipoprotein (VLDL) particles accompanied by increased mean size of VLDL particles. In addition, cooling enhanced the concentration of small LDL and small HDL particles as well as the cholesterol levels within these particles. The increase in small HDL was accompanied by increased ABCA1-dependent cholesterol efflux in vitro. CONCLUSIONS: Our data show that short-term cooling increases the concentration of large VLDL particles and increases the generation of small LDL and HDL particles. We interpret that cooling increases VLDL production and turnover, which results in formation of surface remnants that form small HDL particles that attract cellular cholesterol.


Asunto(s)
Frío , Lipoproteínas HDL/sangre , Lipoproteínas HDL/química , Triglicéridos/sangre , Transportador 1 de Casete de Unión a ATP/metabolismo , Adulto , Transporte Biológico , Colesterol/metabolismo , Voluntarios Sanos , Humanos , Masculino , Tamaño de la Partícula , Factores de Tiempo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA