Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Ther ; 32(1): 124-139, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37990494

RESUMEN

Quiescent human hematopoietic stem cells (HSC) are ideal targets for gene therapy applications due to their preserved stemness and repopulation capacities; however, they have not been exploited extensively because of their resistance to genetic manipulation. We report here the development of a lentiviral transduction protocol that overcomes this resistance in long-term repopulating quiescent HSC, allowing their efficient genetic manipulation. Mechanistically, lentiviral vector transduction of quiescent HSC was found to be restricted at the level of vector entry and by limited pyrimidine pools. These restrictions were overcome by the combined addition of cyclosporin H (CsH) and deoxynucleosides (dNs) during lentiviral vector transduction. Clinically relevant transduction levels were paired with higher polyclonal engraftment of long-term repopulating HSC as compared with standard ex vivo cultured controls. These findings identify the cell-intrinsic barriers that restrict the transduction of quiescent HSC and provide a means to overcome them, paving the way for the genetic engineering of unstimulated HSC.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas , Humanos , Transducción Genética , Lentivirus/genética , Terapia Genética/métodos , Inmunidad Innata , Vectores Genéticos/genética , Antígenos CD34
2.
Blood ; 139(23): 3387-3401, 2022 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-35073399

RESUMEN

Rare hematopoietic stem and progenitor cell (HSPC) pools outside the bone marrow (BM) contribute to blood production in stress and disease but remain ill-defined. Although nonmobilized peripheral blood (PB) is routinely sampled for clinical management, the diagnosis and monitoring potential of PB HSPCs remain untapped, as no healthy PB HSPC baseline has been reported. Here we comprehensively delineate human extramedullary HSPC compartments comparing spleen, PB, and mobilized PB to BM using single-cell RNA-sequencing and/or functional assays. We uncovered HSPC features shared by extramedullary tissues and others unique to PB. First, in contrast to actively dividing BM HSPCs, we found no evidence of substantial ongoing hematopoiesis in extramedullary tissues at steady state but report increased splenic HSPC proliferative output during stress erythropoiesis. Second, extramedullary hematopoietic stem cells/multipotent progenitors (HSCs/MPPs) from spleen, PB, and mobilized PB share a common transcriptional signature and increased abundance of lineage-primed subsets compared with BM. Third, healthy PB HSPCs display a unique bias toward erythroid-megakaryocytic differentiation. At the HSC/MPP level, this is functionally imparted by a subset of phenotypic CD71+ HSCs/MPPs, exclusively producing erythrocytes and megakaryocytes, highly abundant in PB but rare in other adult tissues. Finally, the unique erythroid-megakaryocytic-skewing of PB is perturbed with age in essential thrombocythemia and ß-thalassemia. Collectively, we identify extramedullary lineage-primed HSPC reservoirs that are nonproliferative in situ and report involvement of splenic HSPCs during demand-adapted hematopoiesis. Our data also establish aberrant composition and function of circulating HSPCs as potential clinical indicators of BM dysfunction.


Asunto(s)
Hematopoyesis , Células Madre Hematopoyéticas , Adulto , Médula Ósea , Células de la Médula Ósea/fisiología , Eritropoyesis , Humanos , Megacariocitos
3.
Kidney Int ; 104(1): 61-73, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36990212

RESUMEN

Anemia is a common complication of systemic inflammation. Proinflammatory cytokines both decrease erythroblast sensitivity to erythropoietin (EPO) and increase the levels of the hepatic hormone hepcidin, sequestering iron in stores and causing functional iron deficiency. Anemia of chronic kidney disease (CKD) is a peculiar form of anemia of inflammation, characterized by impaired EPO production paralleling progressive kidney damage. Traditional therapy based on increased EPO (often in combination with iron) may have off-target effects due to EPO interaction with its non-erythroid receptors. Transferrin Receptor 2 (Tfr2) is a mediator of the iron-erythropoiesis crosstalk. Its deletion in the liver hampers hepcidin production, increasing iron absorption, whereas its deletion in the hematopoietic compartment increases erythroid EPO sensitivity and red blood cell production. Here, we show that selective hematopoietic Tfr2 deletion ameliorates anemia in mice with sterile inflammation in the presence of normal kidney function, promoting EPO responsiveness and erythropoiesis without increasing serum EPO levels. In mice with CKD, characterized by absolute rather than functional iron deficiency, Tfr2 hematopoietic deletion had a similar effect on erythropoiesis but anemia improvement was transient because of limited iron availability. Also, increasing iron levels by downregulating only hepatic Tfr2 had a minor effect on anemia. However, simultaneous deletion of hematopoietic and hepatic Tfr2, stimulating erythropoiesis and increased iron supply, was sufficient to ameliorate anemia for the entire protocol. Thus, our results suggest that combined targeting of hematopoietic and hepatic Tfr2 may be a therapeutic option to balance erythropoiesis stimulation and iron increase, without affecting EPO levels.


Asunto(s)
Anemia , Eritropoyetina , Deficiencias de Hierro , Insuficiencia Renal Crónica , Ratones , Animales , Hierro/metabolismo , Eritropoyesis/genética , Hepcidinas/genética , Hepcidinas/metabolismo , Modelos Animales de Enfermedad , Anemia/etiología , Anemia/genética , Eritropoyetina/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/complicaciones , Receptores de Transferrina/genética , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/tratamiento farmacológico , Insuficiencia Renal Crónica/genética
4.
Blood ; 136(5): 610-622, 2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32344432

RESUMEN

Hematopoietic stem cells (HSCs) are regulated by signals from the bone marrow (BM) niche that tune hematopoiesis at steady state and in hematologic disorders. To understand HSC-niche interactions in altered nonmalignant homeostasis, we selected ß-thalassemia, a hemoglobin disorder, as a paradigm. In this severe congenital anemia, alterations secondary to the primary hemoglobin defect have a potential impact on HSC-niche cross talk. We report that HSCs in thalassemic mice (th3) have an impaired function, caused by the interaction with an altered BM niche. The HSC self-renewal defect is rescued after cell transplantation into a normal microenvironment, thus proving the active role of the BM stroma. Consistent with the common finding of osteoporosis in patients, we found reduced bone deposition with decreased levels of parathyroid hormone (PTH), which is a key regulator of bone metabolism but also of HSC activity. In vivo activation of PTH signaling through the reestablished Jagged1 and osteopontin levels correlated with the rescue of the functional pool of th3 HSCs by correcting HSC-niche cross talk. Reduced HSC quiescence was confirmed in thalassemic patients, along with altered features of the BM stromal niche. Our findings reveal a defect in HSCs in ß-thalassemia induced by an altered BM microenvironment and provide novel and relevant insight for improving transplantation and gene therapy approaches.


Asunto(s)
Médula Ósea/patología , Células Madre Hematopoyéticas/patología , Nicho de Células Madre , Talasemia beta/patología , Animales , Femenino , Hematopoyesis/fisiología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL
5.
Blood ; 136(17): 1968-1979, 2020 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-32556142

RESUMEN

ß-Thalassemia intermedia is a disorder characterized by ineffective erythropoiesis (IE), anemia, splenomegaly, and systemic iron overload. Novel approaches are being explored based on the modulation of pathways that reduce iron absorption (ie, using hepcidin activators like Tmprss6-antisense oligonucleotides [ASOs]) or increase erythropoiesis (by erythropoietin [EPO] administration or modulating the ability of transferrin receptor 2 [Tfr2] to control red blood cell [RBC] synthesis). Targeting Tmprss6 messenger RNA by Tmprss6-ASO was proven to be effective in improving IE and splenomegaly by inducing iron restriction. However, we postulated that combinatorial strategies might be superior to single therapies. Here, we combined Tmprss6-ASO with EPO administration or removal of a single Tfr2 allele in the bone marrow of animals affected by ß-thalassemia intermedia (Hbbth3/+). EPO administration alone or removal of a single Tfr2 allele increased hemoglobin levels and RBCs. However, EPO or Tfr2 single-allele deletion alone, respectively, exacerbated or did not improve splenomegaly in ß-thalassemic mice. To overcome this issue, we postulated that some level of iron restriction (by targeting Tmprss6) would improve splenomegaly while preserving the beneficial effects on RBC production mediated by EPO or Tfr2 deletion. While administration of Tmprss6-ASO alone improved the anemia, the combination of Tmprss6-ASO + EPO or Tmprss6-ASO + Tfr2 single-allele deletion produced significantly higher hemoglobin levels and reduced splenomegaly. In conclusion, our results clearly indicate that these combinatorial approaches are superior to single treatments in ameliorating IE and anemia in ß-thalassemia and could provide guidance to translate some of these approaches into viable therapies.


Asunto(s)
Eritropoyetina/administración & dosificación , Eritropoyetina/genética , Terapia Genética/métodos , Proteínas de la Membrana/antagonistas & inhibidores , Oligonucleótidos Antisentido/administración & dosificación , Talasemia beta/terapia , Animales , Células Cultivadas , Eritropoyesis/efectos de los fármacos , Eritropoyesis/genética , Regulación de la Expresión Génica/efectos de los fármacos , Hierro/metabolismo , Sobrecarga de Hierro/genética , Sobrecarga de Hierro/prevención & control , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Oligonucleótidos Antisentido/farmacología , Receptores de Transferrina/genética , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Talasemia beta/metabolismo
6.
Am J Hematol ; 97(10): 1324-1336, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36071579

RESUMEN

ß-thalassemia is a genetic disorder caused by mutations in the ß-globin gene, and characterized by anemia, ineffective erythropoiesis and iron overload. Patients affected by the most severe transfusion-dependent form of the disease (TDT) require lifelong blood transfusions and iron chelation therapy, a symptomatic treatment associated with several complications. Other therapeutic opportunities are available, but none is fully effective and/or applicable to all patients, calling for the identification of novel strategies. Transferrin receptor 2 (TFR2) balances red blood cells production according to iron availability, being an activator of the iron-regulatory hormone hepcidin in the liver and a modulator of erythropoietin signaling in erythroid cells. Selective Tfr2 deletion in the BM improves anemia and iron-overload in non-TDT mice, both as a monotherapy and, even more strikingly, in combination with iron-restricting approaches. However, whether Tfr2 targeting might represent a therapeutic option for TDT has never been investigated so far. Here, we prove that BM Tfr2 deletion improves anemia, erythrocytes morphology and ineffective erythropoiesis in the Hbbth1/th2 murine model of TDT. This effect is associated with a decrease in the expression of α-globin, which partially corrects the unbalance with ß-globin chains and limits the precipitation of misfolded hemoglobin, and with a decrease in the activation of unfolded protein response. Remarkably, BM Tfr2 deletion is also sufficient to avoid long-term blood transfusions required for survival of Hbbth1/th2 animals, preventing mortality due to chronic anemia and reducing transfusion-associated complications, such as progressive iron-loading. Altogether, TFR2 targeting might represent a promising therapeutic option also for TDT.


Asunto(s)
Sobrecarga de Hierro , Receptores de Transferrina , Talasemia beta , Animales , Transfusión Sanguínea , Modelos Animales de Enfermedad , Hierro/metabolismo , Sobrecarga de Hierro/genética , Sobrecarga de Hierro/metabolismo , Ratones , Receptores de Transferrina/genética , Globinas beta , Talasemia beta/genética , Talasemia beta/terapia
7.
Haematologica ; 106(3): 795-805, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-32107334

RESUMEN

Nuclear receptor coactivator 4 (NCOA4) promotes ferritin degradation and Ncoa4-ko mice in a C57BL/6 background show microcytosis and mild anemia, aggravated by iron deficiency. To understand tissue-specific contributions of NCOA4-mediated ferritinophagy we explored the effect of Ncoa4 genetic ablation in the iron-rich Sv129/J strain. Increased body iron content protects these mice from anemia and, in basal conditions, Sv129/J Ncoa4-ko mice show only microcytosis; nevertheless, when fed a low-iron diet they develop a more severe anemia compared to that of wild-type animals. Reciprocal bone marrow (BM) transplantation from wild-type donors into Ncoa4-ko and from Ncoa4-ko into wild-type mice revealed that microcytosis and susceptibility to iron deficiency anemia depend on BM-derived cells. Reconstitution of erythropoiesis with normalization of red blood count and hemoglobin concentration occurred at the same rate in transplanted animals independently of the genotype. Importantly, NCOA4 loss did not affect terminal erythropoiesis in iron deficiency, both in total and specific BM Ncoa4-ko animals compared to controls. On the contrary, upon a low iron diet, spleen from wild-type animals with Ncoa4-ko BM displayed marked iron retention compared to (wild-type BM) controls, indicating defective macrophage iron release in the former. Thus, erythropoietin administration failed to mobilize iron from stores in Ncoa4-ko animals. Furthermore, Ncoa4 inactivation in thalassemic mice did not worsen the hematologic phenotype. Overall our data reveal a major role for NCOA4-mediated ferritinophagy in macrophages to favor iron release for erythropoiesis, especially in iron deficiency.


Asunto(s)
Eritropoyesis , Coactivadores de Receptor Nuclear , Animales , Ferritinas , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Coactivadores de Receptor Nuclear/genética , Coactivadores de Receptor Nuclear/metabolismo
8.
Blood ; 132(21): 2286-2297, 2018 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-30209118

RESUMEN

ß-thalassemias are genetic disorders characterized by anemia, ineffective erythropoiesis, and iron overload. Current treatment of severe cases is based on blood transfusion and iron chelation or allogeneic bone marrow (BM) transplantation. Novel approaches are explored for nontransfusion-dependent patients (thalassemia intermedia) who develop anemia and iron overload. Here, we investigated the erythropoietin (EPO) receptor partner, transferrin receptor 2 (TFR2), as a novel potential therapeutic target. We generated a murine model of thalassemia intermedia specifically lacking BM Tfr2: because their erythroid cells are more susceptible to EPO stimulation, mice show improved erythropoiesis and red blood cell morphology as well as partial correction of anemia and iron overload. The beneficial effects become attenuated over time, possibly due to insufficient iron availability to sustain the enhanced erythropoiesis. Germ line deletion of Tfr2, including haploinsufficiency, had a similar effect in the thalassemic model. Because targeting TFR2 enhances EPO-mediated effects exclusively in cells expressing both receptors, this approach may have advantages over erythropoiesis-stimulating agents in the treatment of other anemias.


Asunto(s)
Anemia/genética , Eliminación de Gen , Sobrecarga de Hierro/genética , Receptores de Transferrina/genética , Talasemia beta/genética , Anemia/metabolismo , Anemia/patología , Anemia/terapia , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Células Eritroides/metabolismo , Células Eritroides/patología , Eritropoyesis , Eritropoyetina/metabolismo , Femenino , Terapia Genética , Sobrecarga de Hierro/metabolismo , Sobrecarga de Hierro/patología , Sobrecarga de Hierro/terapia , Masculino , Ratones Endogámicos C57BL , Receptores de Transferrina/metabolismo , Talasemia beta/metabolismo , Talasemia beta/patología , Talasemia beta/terapia
9.
Blood Cells Mol Dis ; 70: 87-101, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29336892

RESUMEN

Gene therapy for hemoglobinopathies is currently based on transplantation of autologous hematopoietic stem cells genetically modified with an integrating lentiviral vector expressing a globin gene under the control of globin transcriptional regulatory elements. Studies and safety works demonstrated the potential therapeutic efficacy and safety of this approach, providing the rationale for clinical translation. The outcomes of early clinical trials, although showing promising results, have highlighted the current limitations to a more general application. These include the nature, source and age of repopulating hematopoietic stem cells, the suboptimal transduction efficiency and gene expression levels, the toxicity and efficacy of bone marrow conditioning, the stress status of bone marrow microenvironment in chronic diseases such as ß-thalassemia and sickle cell disease. Recently, gene editing strategies based on the use of nucleases offered a novel approach to increase globin expression in a quasi-physiological way, independently from the addition of transgenes and viral sequences to the human genome. This review will discuss the current status of gene therapy for ß-thalassemia and sickle cell disease with a perspective towards the improvements necessary in the context of clinical translation.


Asunto(s)
Edición Génica , Terapia Genética , Hemoglobinopatías/genética , Hemoglobinopatías/terapia , Hemoglobinas/genética , Anemia de Células Falciformes/diagnóstico , Anemia de Células Falciformes/genética , Animales , Ensayos Clínicos como Asunto , Terapia Combinada , Predisposición Genética a la Enfermedad , Terapia Genética/métodos , Humanos , Resultado del Tratamiento , Talasemia beta/diagnóstico , Talasemia beta/genética
10.
Blood ; 125(7): 1170-9, 2015 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-25499454

RESUMEN

Transferrin receptor 2 (TFR2) contributes to hepcidin regulation in the liver and associates with erythropoietin receptor in erythroid cells. Nevertheless, TFR2 mutations cause iron overload (hemochromatosis type 3) without overt erythroid abnormalities. To clarify TFR2 erythroid function, we generated a mouse lacking Tfr2 exclusively in the bone marrow (Tfr2(BMKO)). Tfr2(BMKO) mice have normal iron parameters, reduced hepcidin levels, higher hemoglobin and red blood cell counts, and lower mean corpuscular volume than normal control mice, a phenotype that becomes more evident in iron deficiency. In Tfr2(BMKO) mice, the proportion of nucleated erythroid cells in the bone marrow is higher and the apoptosis lower than in controls, irrespective of comparable erythropoietin levels. Induction of moderate iron deficiency increases erythroblasts number, reduces apoptosis, and enhances erythropoietin (Epo) levels in controls, but not in Tfr2(BMKO) mice. Epo-target genes such as Bcl-xL and Epor are highly expressed in the spleen and in isolated erythroblasts from Tfr2(BMKO) mice. Low hepcidin expression in Tfr2(BMKO) is accounted for by erythroid expansion and production of the erythroid regulator erythroferrone. We suggest that Tfr2 is a component of a novel iron-sensing mechanism that adjusts erythrocyte production according to iron availability, likely by modulating the erythroblast Epo sensitivity.


Asunto(s)
Eritrocitos/fisiología , Eritropoyesis/genética , Receptores de Transferrina/fisiología , Animales , Apoptosis/genética , Recuento de Eritrocitos , Eritropoyetina/metabolismo , Femenino , Hemoglobinas/metabolismo , Hepcidinas/genética , Hepcidinas/metabolismo , Hierro/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
11.
Blood ; 119(21): 5021-9, 2012 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-22490684

RESUMEN

Inappropriately low expression of the key iron regulator hepcidin (HAMP) causes iron overload in untransfused patients affected by ß-thalassemia intermedia and Hamp modulation provides improvement of the thalassemic phenotype of the Hbb(th3/+) mouse. HAMP expression is activated by iron through the bone morphogenetic protein (BMP)-son of mothers against decapentaplegic signaling pathway and inhibited by ineffective erythropoiesis through an unknown "erythroid regulator." The BMP pathway is inactivated by the serine protease TMPRSS6 that cleaves the BMP coreceptor hemojuvelin. Here, we show that homozygous loss of Tmprss6 in Hbb(th3/+) mice improves anemia and reduces ineffective erythropoiesis, splenomegaly, and iron loading. All these effects are mediated by Hamp up-regulation, which inhibits iron absorption and recycling. Because Hbb(th3/+) mice lacking Tmprss6 show residual ineffective erythropoiesis, our results indicate that Tmprss6 is essential for Hamp inhibition by the erythroid regulator. We also obtained partial correction of the phenotype in Tmprss6 haploinsufficient Hbb(th3/+) male but not female mice and showed that the observed sex difference reflects an unequal balance between iron and erythropoiesis-mediated Hamp regulation. Our study indicates that preventing iron overload improves ß-thalassemia and strengthens the essential role of Tmprss6 for Hamp suppression, providing a proof of concept that Tmprss6 manipulation can offer a novel therapeutic option in this condition.


Asunto(s)
Eliminación de Gen , Sobrecarga de Hierro/genética , Proteínas de la Membrana/genética , Serina Endopeptidasas/genética , Talasemia beta/genética , Animales , Péptidos Catiónicos Antimicrobianos/antagonistas & inhibidores , Péptidos Catiónicos Antimicrobianos/genética , Péptidos Catiónicos Antimicrobianos/metabolismo , Modelos Animales de Enfermedad , Eritropoyesis/genética , Eritropoyesis/fisiología , Femenino , Hepcidinas , Sobrecarga de Hierro/etiología , Sobrecarga de Hierro/metabolismo , Sobrecarga de Hierro/prevención & control , Masculino , Proteínas de la Membrana/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Serina Endopeptidasas/fisiología , Regulación hacia Arriba/genética , Talasemia beta/complicaciones , Talasemia beta/metabolismo , Talasemia beta/patología
13.
Hum Gene Ther ; 34(17-18): 793-807, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37675899

RESUMEN

ß-Thalassemia and sickle cell disease are autosomal recessive disorders of red blood cells due to mutations in the adult ß-globin gene, with a worldwide diffusion. The severe forms of hemoglobinopathies are fatal if untreated, and allogeneic bone marrow transplantation can be offered to a limited proportion of patients. The unmet clinical need and the disease incidence have promoted the development of new genetic therapies based on the engineering of autologous hematopoietic stem cells. Here, the steps of ex vivo gene therapy development are reviewed along with results from clinical trials and recent new approaches employing cutting edge gene editing tools.


Asunto(s)
Anemia de Células Falciformes , Hemoglobinopatías , Talasemia beta , Adulto , Humanos , Hemoglobinopatías/genética , Hemoglobinopatías/terapia , Anemia de Células Falciformes/genética , Anemia de Células Falciformes/terapia , Talasemia beta/genética , Talasemia beta/terapia , Terapia Genética , Edición Génica
14.
Haematologica ; 102(4): e120-e124, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28034992
15.
Blood ; 111(9): 4771-9, 2008 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-18227349

RESUMEN

The c-Myb gene encodes a transcription factor required for proliferation and survival of normal myeloid progenitors and leukemic blast cells. Targeting of c-Myb by antisense oligodeoxynucleotides has suggested that myeloid leukemia blasts (including chronic myelogenous leukemia [CML]-blast crisis cells) rely on c-Myb expression more than normal progenitors, but a genetic approach to assess the requirement of c-Myb by p210(BCR/ABL)-transformed hematopoietic progenitors has not been taken. We show here that loss of a c-Myb allele had modest effects (20%-28% decrease) on colony formation of nontransduced progenitors, while the effect on p210(BCR/ABL)-expressing Lin(-) Sca-1(+) and Lin(-) Sca-1(+)Kit(+) cells was more pronounced (50%-80% decrease). Using a model of CML-blast crisis, mice (n = 14) injected with p210(BCR/ABL)-transduced p53(-/-)c-Myb(w/w) marrow cells developed leukemia rapidly and had a median survival of 26 days, while only 67% of mice (n = 12) injected with p210(BCR/ABL)-transduced p53(-/-)c-Myb(w/d) marrow cells died of leukemia with a median survival of 96 days. p210(BCR/ABL)-transduced c-Myb(w/w) and c-Myb(w/d) marrow progenitors expressed similar levels of the c-Myb-regulated genes c-Myc and cyclin B1, while those of Bcl-2 were reduced. However, ectopic Bcl-2 expression did not enhance colony formation of p210(BCR/ABL)-transduced c-Myb(w/d) Lin(-)Sca-1(+)Kit(+) cells. Together, these studies support the requirement of c-Myb for p210(BCR/ABL)-dependent leukemogenesis.


Asunto(s)
Transformación Celular Neoplásica , Proteínas de Fusión bcr-abl/fisiología , Células Madre Hematopoyéticas/patología , Leucemia/etiología , Proteínas Proto-Oncogénicas c-myb/fisiología , Animales , Proteínas de Fusión bcr-abl/administración & dosificación , Proteínas de Fusión bcr-abl/genética , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/metabolismo , Leucemia/patología , Ratones , Ratones Endogámicos C57BL , Neoplasias Experimentales , Transducción Genética
16.
Blood ; 112(5): 1942-50, 2008 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-18550858

RESUMEN

Ectopic C/EBPalpha expression in p210(BCR/ABL)-expressing hematopoietic cells induces granulocytic differentiation, inhibits proliferation, and suppresses leukemogenesis. To assess the underlying mechanisms, C/EBPalpha targets were identified by microarray analyses. Upon C/EBPalpha activation, expression of c-Myb and GATA-2 was repressed in 32D-BCR/ABL, K562, and chronic myelogenous leukemia (CML) blast crisis (BC) primary cells but only c-Myb levels decreased slightly in CD34(+) normal progenitors. The role of these 2 genes for the effects of C/EBPalpha was assessed by perturbing their expression in K562 cells. Ectopic c-Myb expression blocked the proliferation inhibition- and differentiation-inducing effects of C/EBPalpha, whereas c-Myb siRNA treatment enhanced C/EBPalpha-mediated proliferation inhibition and induced changes in gene expression indicative of monocytic differentiation. Ectopic GATA-2 expression suppressed the proliferation inhibitory effect of C/EBPalpha but blocked in part the effect on differentiation; GATA-2 siRNA treatment had no effects on C/EBPalpha induction of differentiation but inhibited proliferation of K562 cells, alone or upon C/EBPalpha activation. In summary, the effects of C/EBPalpha in p210(BCR/ABL)-expressing cells depend, in part, on transcriptional repression of c-Myb and GATA-2. Since perturbation of c-Myb and GATA-2 expression has nonidentical consequences for proliferation and differentiation of K562 cells, the effects of C/EBPalpha appear to involve dif-ferent transcription-regulated targets.


Asunto(s)
Proteína alfa Potenciadora de Unión a CCAAT/farmacología , Proteínas de Fusión bcr-abl/biosíntesis , Factor de Transcripción GATA2/genética , Genes myb/efectos de los fármacos , Secuencia de Bases , Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Ciclo Celular , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Cartilla de ADN/genética , Proteínas de Fusión bcr-abl/genética , Genes abl , Humanos , Células K562 , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , ARN Interferente Pequeño/genética , Transcripción Genética/efectos de los fármacos , Transfección
17.
Nat Med ; 25(2): 234-241, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30664781

RESUMEN

ß-thalassemia is caused by ß-globin gene mutations resulting in reduced (ß+) or absent (ß0) hemoglobin production. Patient life expectancy has recently increased, but the need for chronic transfusions in transfusion-dependent thalassemia (TDT) and iron chelation impairs quality of life1. Allogeneic hematopoietic stem cell (HSC) transplantation represents the curative treatment, with thalassemia-free survival exceeding 80%. However, it is available to a minority of patients and is associated with morbidity, rejection and graft-versus-host disease2. Gene therapy with autologous HSCs modified to express ß-globin represents a potential therapeutic option. We treated three adults and six children with ß0 or severe ß+ mutations in a phase 1/2 trial ( NCT02453477 ) with an intrabone administration of HSCs transduced with the lentiviral vector GLOBE. Rapid hematopoietic recovery with polyclonal multilineage engraftment of vector-marked cells was achieved, with a median of 37.5% (range 12.6-76.4%) in hematopoietic progenitors and a vector copy number per cell (VCN) of 0.58 (range 0.10-1.97) in erythroid precursors at 1 year, in absence of clonal dominance. Transfusion requirement was reduced in the adults. Three out of four evaluable pediatric participants discontinued transfusions after gene therapy and were transfusion independent at the last follow-up. Younger age and persistence of higher VCN in the repopulating hematopoietic cells are associated with better outcome.


Asunto(s)
Transfusión Sanguínea , Huesos/patología , Terapia Genética , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/citología , Talasemia beta/genética , Talasemia beta/terapia , Adolescente , Adulto , Niño , Preescolar , Femenino , Humanos , Masculino , Resultado del Tratamiento
18.
Cancer Res ; 66(3): 1675-83, 2006 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-16452227

RESUMEN

In mammalian cells, DNA replication takes place in functional subnuclear compartments, called replication factories, where replicative factors accumulate. The distribution pattern of replication factories is diagnostic of the different moments (early, mid, and late) of the S phase. This dynamic organization is affected by different agents that induce cell cycle checkpoint activation via DNA damage or stalling of replication forks. Here, we explore the cell response to etoposide, an anticancer drug belonging to the topoisomerase II poisons. Etoposide does not induce an immediate block of DNA synthesis and progressively affects the distribution of replication proteins in S phase. First, it triggers the formation of large nuclear foci that contain the single-strand DNA binding protein replication protein A (RPA), suggesting that lesions produced by the drug are processed into extended single-stranded regions. These RPA foci colocalize with DNA replicated at the beginning of the treatment. Etoposide also triggers the dispersal of replicative proteins, proliferating cell nuclear antigen and DNA ligase I, from replication factories. This event requires the activity of the ataxia telangiectasia Rad3-related (ATR) checkpoint kinase. By comparing the effect of the drug in cell lines defective in different DNA repair and checkpoint pathways, we show that, along with the downstream kinase Chk1, the Nbs1 protein, mutated in the Nijmegen breakage syndrome, is also relevant for this response and for ATR-dependent phosphorylation. Finally, our analysis evidences a critical role of Nbs1 in the etoposide-induced inhibition of DNA replication in early S phase.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Proteínas de Ciclo Celular/metabolismo , ADN Ligasas/metabolismo , Replicación del ADN/efectos de los fármacos , Etopósido/farmacología , Proteínas Nucleares/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteínas Quinasas/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Cromatina/efectos de los fármacos , Cromatina/metabolismo , ADN Ligasa (ATP) , Replicación del ADN/fisiología , Células HeLa , Humanos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína de Replicación A/metabolismo , Fase S/efectos de los fármacos
19.
Mol Ther Methods Clin Dev ; 11: 9-28, 2018 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-30320151

RESUMEN

Gene therapy clinical trials require rigorous non-clinical studies in the most relevant models to assess the benefit-to-risk ratio. To support the clinical development of gene therapy for ß-thalassemia, we performed in vitro and in vivo studies for prediction of safety. First we developed newly GLOBE-derived vectors that were tested for their transcriptional activity and potential interference with the expression of surrounding genes. Because these vectors did not show significant advantages, GLOBE lentiviral vector (LV) was elected for further safety characterization. To support the use of hematopoietic stem cells (HSCs) transduced by GLOBE LV for the treatment of ß-thalassemia, we conducted toxicology, tumorigenicity, and biodistribution studies in compliance with the OECD Principles of Good Laboratory Practice. We demonstrated a lack of toxicity and tumorigenic potential associated with GLOBE LV-transduced cells. Vector integration site (IS) studies demonstrated that both murine and human transduced HSCs retain self-renewal capacity and generate new blood cell progeny in the absence of clonal dominance. Moreover, IS analysis showed an absence of enrichment in cancer-related genes, and the genes targeted by GLOBE LV in human HSCs are well known sites of integration, as seen in other lentiviral gene therapy trials, and have not been associated with clonal expansion. Taken together, these integrated studies provide safety data supporting the clinical application of GLOBE-mediated gene therapy for ß-thalassemia.

20.
Stem Cell Reports ; 8(4): 977-990, 2017 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-28330619

RESUMEN

Ex vivo gene therapy based on CD34+ hematopoietic stem cells (HSCs) has shown promising results in clinical trials, but genetic engineering to high levels and in large scale remains challenging. We devised a sorting strategy that captures more than 90% of HSC activity in less than 10% of mobilized peripheral blood (mPB) CD34+ cells, and modeled a transplantation protocol based on highly purified, genetically engineered HSCs co-infused with uncultured progenitor cells. Prostaglandin E2 stimulation allowed near-complete transduction of HSCs with lentiviral vectors during a culture time of less than 38 hr, mitigating the negative impact of standard culture on progenitor cell function. Exploiting the pyrimidoindole derivative UM171, we show that transduced mPB CD34+CD38- cells with repopulating potential could be expanded ex vivo. Implementing these findings in clinical gene therapy protocols will improve the efficacy, safety, and sustainability of gene therapy and generate new opportunities in the field of gene editing.


Asunto(s)
Ingeniería Celular/métodos , Terapia Genética , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/citología , Transducción Genética/métodos , ADP-Ribosil Ciclasa 1/análisis , Animales , Antígenos CD34/análisis , Técnicas de Cultivo de Célula , Proliferación Celular , Terapia Genética/métodos , Vectores Genéticos/genética , Trasplante de Células Madre Hematopoyéticas/métodos , Células Madre Hematopoyéticas/metabolismo , Humanos , Lentivirus/genética , Ratones Endogámicos NOD
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA