Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Plant Physiol ; 180(2): 859-873, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30971450

RESUMEN

The Golgi apparatus consists of stacked cisternae filled with enzymes that facilitate the sequential and highly controlled modification of glycans from proteins that transit through the organelle. Although the glycan processing pathways have been extensively studied, the underlying mechanisms that concentrate Golgi-resident glycosyltransferases and glycosidases in distinct Golgi compartments are poorly understood. The single-pass transmembrane domain (TMD) of n-acetylglucosaminyltransferaseI (GnTI) accounts for its steady-state distribution in the cis/medial-Golgi. Here, we investigated the contribution of individual amino acid residues within the TMD of Arabidopsis (Arabidopsis thaliana) and Nicotiana tabacum GnTI toward Golgi localization and n-glycan processing. Conserved sequence motifs within the TMD were replaced with those from the established trans-Golgi enzyme α2,6-sialyltransferase and site-directed mutagenesis was used to exchange individual amino acid residues. Subsequent subcellular localization of fluorescent fusion proteins and n-glycan profiling revealed that a conserved Gln residue in the GnTI TMD is essential for its cis/medial-Golgi localization. Substitution of the crucial Gln residue with other amino acids resulted in mislocalization to the vacuole and impaired n-glycan processing in vivo. Our results suggest that sequence-specific features of the GnTI TMD are required for its interaction with a Golgi-resident adaptor protein or a specific lipid environment that likely promotes coat protein complexI-mediated retrograde transport, thus maintaining the steady-state distribution of GnTI in the cis/medial-Golgi of plants.


Asunto(s)
Aminoácidos/metabolismo , Arabidopsis/enzimología , Aparato de Golgi/metabolismo , Nicotiana/enzimología , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Proteína Coat de Complejo I/metabolismo , Técnicas de Silenciamiento del Gen , Proteínas Fluorescentes Verdes/metabolismo , Modelos Biológicos , Mutación/genética , Proteínas de Plantas/genética , Polisacáridos/metabolismo , Dominios Proteicos , Subunidades de Proteína/metabolismo , Transporte de Proteínas , Vacuolas/metabolismo
2.
Plant Cell ; 26(4): 1712-1728, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24737672

RESUMEN

To ensure that aberrantly folded proteins are cleared from the endoplasmic reticulum (ER), all eukaryotic cells possess a mechanism known as endoplasmic reticulum-associated degradation (ERAD). Many secretory proteins are N-glycosylated, and despite some recent progress, little is known about the mechanism that selects misfolded glycoproteins for degradation in plants. Here, we investigated the role of Arabidopsis thaliana class I α-mannosidases (MNS1 to MNS5) in glycan-dependent ERAD. Our genetic and biochemical data show that the two ER-resident proteins MNS4 and MNS5 are involved in the degradation of misfolded variants of the heavily glycosylated brassinosteroid receptor, BRASSINOSTEROID INSENSITIVE1, while MNS1 to MNS3 appear dispensable for this ERAD process. By contrast, N-glycan analysis of different mns mutant combinations revealed that MNS4 and MNS5 are not involved in regular N-glycan processing of properly folded secretory glycoproteins. Overexpression of MNS4 or MNS5 together with ER-retained glycoproteins indicates further that both enzymes can convert Glc0-1Man8-9GlcNAc2 into N-glycans with a terminal α1,6-linked Man residue in the C-branch. Thus, MNS4 and MNS5 function in the formation of unique N-glycan structures that are specifically recognized by other components of the ERAD machinery, which ultimately results in the disposal of misfolded glycoproteins.

3.
Plant J ; 80(5): 809-22, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25230686

RESUMEN

Golgi-resident type-II membrane proteins are asymmetrically distributed across the Golgi stack. The intrinsic features of the protein that determine its subcompartment-specific concentration are still largely unknown. Here, we used a series of chimeric proteins to investigate the contribution of the cytoplasmic, transmembrane and stem region of Nicotiana benthamiana N-acetylglucosaminyltransferase I (GnTI) for its cis/medial-Golgi localization and for protein-protein interaction in the Golgi. The individual GnTI protein domains were replaced with those from the well-known trans-Golgi enzyme α2,6-sialyltransferase (ST) and transiently expressed in Nicotiana benthamiana. Using co-localization analysis and N-glycan profiling, we show that the transmembrane domain of GnTI is the major determinant for its cis/medial-Golgi localization. By contrast, the stem region of GnTI contributes predominately to homomeric and heteromeric protein complex formation. Importantly, in transgenic Arabidopsis thaliana, a chimeric GnTI variant with altered sub-Golgi localization was not able to complement the GnTI-dependent glycosylation defect. Our results suggest that sequence-specific features in the transmembrane domain of GnTI account for its steady-state distribution in the cis/medial-Golgi in plants, which is a prerequisite for efficient N-glycan processing in vivo.


Asunto(s)
Aparato de Golgi/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Animales , Arabidopsis/genética , Arabidopsis/metabolismo , Citoplasma/metabolismo , Prueba de Complementación Genética , Glicosilación , N-Acetilglucosaminiltransferasas/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Polisacáridos/química , Polisacáridos/metabolismo , Mapas de Interacción de Proteínas , Estructura Terciaria de Proteína , Ratas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sialiltransferasas/genética , Sialiltransferasas/metabolismo , Nicotiana/citología , beta-D-Galactósido alfa 2-6-Sialiltransferasa
4.
J Biol Chem ; 288(31): 22270-80, 2013 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-23782689

RESUMEN

Defects in N-glycosylation and N-glycan processing frequently cause alterations in plant cell wall architecture, including changes in the structure of cellulose, which is the most abundant plant polysaccharide. KORRIGAN1 (KOR1) is a glycoprotein enzyme with an essential function during cellulose biosynthesis in Arabidopsis thaliana. KOR1 is a membrane-anchored endo-ß1,4-glucanase and contains eight potential N-glycosylation sites in its extracellular domain. Here, we expressed A. thaliana KOR1 as a soluble, enzymatically active protein in insect cells and analyzed its N-glycosylation state. Structural analysis revealed that all eight potential N-glycosylation sites are utilized. Individual elimination of evolutionarily conserved N-glycosylation sites did not abolish proper KOR1 folding, but mutations of Asn-216, Asn-324, Asn-345, and Asn-567 resulted in considerably lower enzymatic activity. In contrast, production of wild-type KOR1 in the presence of the class I α-mannosidase inhibitor kifunensine, which abolished the conversion of KOR1 N-glycans into complex structures, did not affect the activity of the enzyme. To address N-glycosylation site occupancy and N-glycan composition of KOR1 under more natural conditions, we expressed a chimeric KOR1-Fc-GFP fusion protein in leaves of Nicotiana benthamiana. Although Asn-108 and Asn-133 carried oligomannosidic N-linked oligosaccharides, the six other glycosylation sites were modified with complex N-glycans. Interestingly, the partially functional KOR1 G429R mutant encoded by the A. thaliana rsw2-1 allele displayed only oligomannosidic structures when expressed in N. benthamiana, indicating its retention in the endoplasmic reticulum. In summary, our data indicate that utilization of several N-glycosylation sites is important for KOR1 activity, whereas the structure of the attached N-glycans is not critical.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Celulasa/metabolismo , Proteínas de la Membrana/metabolismo , Secuencia de Aminoácidos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Secuencia de Bases , Celulasa/química , Celulasa/genética , Cartilla de ADN , Glicosilación , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Nicotiana/genética
5.
Plant Physiol ; 161(4): 1737-54, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23400704

RESUMEN

N-Glycan processing is one of the most important cellular protein modifications in plants and as such is essential for plant development and defense mechanisms. The accuracy of Golgi-located processing steps is governed by the strict intra-Golgi localization of sequentially acting glycosidases and glycosyltransferases. Their differential distribution goes hand in hand with the compartmentalization of the Golgi stack into cis-, medial-, and trans-cisternae, which separate early from late processing steps. The mechanisms that direct differential enzyme concentration are still unknown, but the formation of multienzyme complexes is considered a feasible Golgi protein localization strategy. In this study, we used two-photon excitation-Förster resonance energy transfer-fluorescence lifetime imaging microscopy to determine the interaction of N-glycan processing enzymes with differential intra-Golgi locations. Following the coexpression of fluorescent protein-tagged amino-terminal Golgi-targeting sequences (cytoplasmic-transmembrane-stem [CTS] region) of enzyme pairs in leaves of tobacco (Nicotiana spp.), we observed that all tested cis- and medial-Golgi enzymes, namely Arabidopsis (Arabidopsis thaliana) Golgi α-mannosidase I, Nicotiana tabacum ß1,2-N-acetylglucosaminyltransferase I, Arabidopsis Golgi α-mannosidase II (GMII), and Arabidopsis ß1,2-xylosyltransferase, form homodimers and heterodimers, whereas among the late-acting enzymes Arabidopsis ß1,3-galactosyltransferase1 (GALT1), Arabidopsis α1,4-fucosyltransferase, and Rattus norvegicus α2,6-sialyltransferase (a nonplant Golgi marker), only GALT1 and medial-Golgi GMII were found to form a heterodimer. Furthermore, the efficiency of energy transfer indicating the formation of interactions decreased considerably in a cis-to-trans fashion. The comparative fluorescence lifetime imaging of several full-length cis- and medial-Golgi enzymes and their respective catalytic domain-deleted CTS clones further suggested that the formation of protein-protein interactions can occur through their amino-terminal CTS region.


Asunto(s)
Arabidopsis/enzimología , Glicosiltransferasas/metabolismo , Aparato de Golgi/enzimología , Manosidasas/metabolismo , Microscopía Fluorescente/métodos , Nicotiana/enzimología , Polisacáridos/metabolismo , Animales , Biomarcadores/metabolismo , Dominio Catalítico , Transferencia Resonante de Energía de Fluorescencia , Inmunoprecipitación , Datos de Secuencia Molecular , Fotones , Células Vegetales/enzimología , Hojas de la Planta/enzimología , Unión Proteica , Multimerización de Proteína , Estructura Terciaria de Proteína , Ratas , Proteínas Recombinantes de Fusión/metabolismo , Fracciones Subcelulares/enzimología , Factores de Tiempo
6.
J Biol Chem ; 286(12): 10793-802, 2011 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-21252225

RESUMEN

Most plant glycoproteins contain substantial amounts of paucimannosidic N-glycans instead of their direct biosynthetic precursors, complex N-glycans with terminal N-acetylglucosamine residues. We now demonstrate that two ß-N-acetylhexosaminidases (HEXO1 and HEXO3) residing in different subcellular compartments jointly account for the formation of paucimannosidic N-glycans in Arabidopsis thaliana. Total N-glycan analysis of hexo knock-out plants revealed that HEXO1 and HEXO3 contribute equally to the production of paucimannosidic N-glycans in roots, whereas N-glycan processing in leaves depends more heavily on HEXO3 than on HEXO1. Because hexo1 hexo3 double mutants do not display any obvious phenotype even upon exposure to different forms of abiotic or biotic stress, it should be feasible to improve the quality of glycoprotein therapeutics produced in plants by down-regulation of endogenous ß-N-acetylhexosaminidase activities.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Raíces de Plantas/enzimología , beta-N-Acetilhexosaminidasas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Técnicas de Silenciamiento del Gen , Raíces de Plantas/genética , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Polisacáridos/genética , Polisacáridos/metabolismo , Estrés Fisiológico/fisiología , beta-N-Acetilhexosaminidasas/genética
7.
Glycobiology ; 22(3): 389-99, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22038479

RESUMEN

Oligomannosidic (OM) N-glycans occur as a mixture of isomers, which at early stages of glycosidase trimming also comprise structures with one to three glucose residues. A complementary set of isomers is generated during the biosynthesis of the lipid-linked precursor. Here, we demonstrate the remarkable capacity of liquid chromatography (LC) with porous graphitic carbon and mass spectrometric detection for the determination of OM isomers. Protein-linked N-glycans were released enzymatically from samples with known isomer composition such as kidney bean proteins and ribonuclease B. Lipid-linked oligosaccharides were obtained by a direct mild acid hydrolysis of microsomes thus avoiding biphasic partitioning. A parallel analysis of pyridylaminated glycans by amide-silica and reversed-phase high-performance LC, the application of branch-specific α-mannosidases and work with ALG mutant plants led to the assignment of the relative retention times of the isomers occurring during the degradation of the Glc(3)Man(9)GlcNAc(2) precursor oligosaccharide to Man(5)GlcNAc(2) and beyond. A tightly woven net of evidence supports these assignments. Noteworthy, this isomer assignment happens in the course of a comprehensive analysis of all types of a sample's N-glycans.


Asunto(s)
Dolicoles/análogos & derivados , Glicoproteínas de Membrana/química , Oligosacáridos/química , Arabidopsis , Proteínas de Arabidopsis/química , Conformación de Carbohidratos , Secuencia de Carbohidratos , Células Cultivadas , Cromatografía Liquida/métodos , Dolicoles/química , Proteínas Fúngicas/química , Grafito/química , Humanos , Manosidasas/química , Glicoproteínas de Membrana/metabolismo , Datos de Secuencia Molecular , Oligosacáridos/aislamiento & purificación , Oligosacáridos/metabolismo , Phaseolus , Pichia , Hojas de la Planta/química , Porosidad , Cultivo Primario de Células , Espectrometría de Masa por Ionización de Electrospray , Terminología como Asunto
8.
Plant Cell ; 21(12): 3850-67, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20023195

RESUMEN

In eukaryotes, class I alpha-mannosidases are involved in early N-glycan processing reactions and in N-glycan-dependent quality control in the endoplasmic reticulum (ER). To investigate the role of these enzymes in plants, we identified the ER-type alpha-mannosidase I (MNS3) and the two Golgi-alpha-mannosidase I proteins (MNS1 and MNS2) from Arabidopsis thaliana. All three MNS proteins were found to localize in punctate mobile structures reminiscent of Golgi bodies. Recombinant forms of the MNS proteins were able to process oligomannosidic N-glycans. While MNS3 efficiently cleaved off one selected alpha1,2-mannose residue from Man(9)GlcNAc(2), MNS1/2 readily removed three alpha1,2-mannose residues from Man(8)GlcNAc(2). Mutation in the MNS genes resulted in the formation of aberrant N-glycans in the mns3 single mutant and Man(8)GlcNAc(2) accumulation in the mns1 mns2 double mutant. N-glycan analysis in the mns triple mutant revealed the almost exclusive presence of Man(9)GlcNAc(2), demonstrating that these three MNS proteins play a key role in N-glycan processing. The mns triple mutants displayed short, radially swollen roots and altered cell walls. Pharmacological inhibition of class I alpha-mannosidases in wild-type seedlings resulted in a similar root phenotype. These findings show that class I alpha-mannosidases are essential for early N-glycan processing and play a role in root development and cell wall biosynthesis in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Raíces de Plantas/crecimiento & desarrollo , Polisacáridos/metabolismo , alfa-Manosidasa/metabolismo , Animales , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Línea Celular , Pared Celular/metabolismo , Clonación Molecular , ADN Bacteriano/genética , Retículo Endoplásmico/enzimología , Prueba de Complementación Genética , Glicosilación , Aparato de Golgi/enzimología , Mutagénesis Insercional , Mutación , Filogenia , Raíces de Plantas/enzimología , ARN de Planta/genética , Spodoptera/citología , Especificidad por Sustrato , alfa-Manosidasa/genética
9.
Mol Cell Biol ; 27(19): 6581-92, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17646390

RESUMEN

Allelic forms of DRG1/AFG2 confer resistance to the drug diazaborine, an inhibitor of ribosome biogenesis in Saccharomyces cerevisiae. Our results show that the AAA-ATPase Drg1 is essential for 60S maturation and associates with 60S precursor particles in the cytoplasm. Functional inactivation of Drg1 leads to an increased cytoplasmic localization of shuttling pre-60S maturation factors like Rlp24, Arx1, and Tif6. Surprisingly, Nog1, a nuclear pre-60S factor, was also relocalized to the cytoplasm under these conditions, suggesting that it is a previously unsuspected shuttling preribosomal factor that is exported with the precursor particles and very rapidly reimported. Proteins that became cytoplasmic under drg1 mutant conditions were blocked on pre-60S particles at a step that precedes the association of Rei1, a later-acting preribosomal factor. A similar cytoplasmic accumulation of Nog1 and Rlp24 in pre-60S-bound form could be seen after overexpression of a dominant-negative Drg1 variant mutated in the D2 ATPase domain. We conclude that the ATPase activity of Drg1 is required for the release of shuttling proteins from the pre-60S particles shortly after their nuclear export. This early cytoplasmic release reaction defines a novel step in eukaryotic ribosome maturation.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Citoplasma/metabolismo , Precursores de Proteínas/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Adenosina Trifosfatasas/genética , Transporte Biológico/fisiología , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Proteínas de Filamentos Intermediarios/genética , Proteínas de Filamentos Intermediarios/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Factores de Iniciación de Péptidos/genética , Factores de Iniciación de Péptidos/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Precursores de Proteínas/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Ribosómicas , Subunidades Ribosómicas Grandes de Eucariotas/genética , Ribosomas/química , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
10.
Nat Commun ; 10(1): 3701, 2019 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-31420549

RESUMEN

The Arabidopsis ER-α-mannosidase I (MNS3) generates an oligomannosidic N-glycan structure that is characteristically found on ER-resident glycoproteins. The enzyme itself has so far not been detected in the ER. Here, we provide evidence that in plants MNS3 exclusively resides in the Golgi apparatus at steady-state. Notably, MNS3 remains on dispersed punctate structures when subjected to different approaches that commonly result in the relocation of Golgi enzymes to the ER. Responsible for this rare behavior is an amino acid signal motif (LPYS) within the cytoplasmic tail of MNS3 that acts as a specific Golgi retention signal. This retention is a means to spatially separate MNS3 from ER-localized mannose trimming steps that generate the glycan signal required for flagging terminally misfolded glycoproteins for ERAD. The physiological importance of the very specific MNS3 localization is demonstrated here by means of a structurally impaired variant of the brassinosteroid receptor BRASSINOSTEROID INSENSITIVE 1.


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , alfa-Manosidasa/metabolismo , Secuencias de Aminoácidos , Arabidopsis , Proteínas de Arabidopsis/genética , Glicoproteínas , Proteínas de Plantas/metabolismo , Proteínas Quinasas/genética , Transporte de Proteínas
11.
Phytochemistry ; 84: 24-30, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23009876

RESUMEN

In all eukaryotes N-glycosylation is the most prevalent protein modification of secretory and membrane proteins. Although the N-glycosylation capacity and the individual steps of the N-glycan processing pathway have been well studied in the model plant Arabidopsis thaliana, little attention has been paid to the characterization of the glycosylation status of individual proteins. We report here the structural analysis of all N-glycans present on the endogenous thioglucoside glucohydrolases (myrosinases) TGG1 and TGG2 from A. thaliana. All nine glycosylation sites of TGG1 and all four glycosylation sites of TGG2 are occupied by oligomannosidic structures with Man5GlcNAc2 as the major glycoform. Analysis of the oligomannosidic isomers from wild-type plants and mannose trimming deficient mutants by liquid chromatography with porous graphitic carbon and mass spectrometry revealed that the N-glycans from both myrosinases are processed by Golgi-located α-mannosidases.


Asunto(s)
Proteínas de Arabidopsis/química , Arabidopsis/enzimología , Glicósido Hidrolasas/química , Polisacáridos/química , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Conformación de Carbohidratos , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Glicosilación , Polisacáridos/metabolismo
12.
Plant Signal Behav ; 5(4): 476-8, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20383064

RESUMEN

In all eukaryotes, asparagine-linked glycosylation is one of the most common co- and posttranslational modifications of secretory and membrane proteins. In mammals, N-glycosylation is involved in several cellular processes including protein folding, protein stability, intracellular trafficking and interactions with other proteins. Until recently, the functional importance of protein N-glycosylation in plants has been widely elusive. We have now identified class I α-mannosidase mutants (mns) impaired in de-mannosylation of N-glycans.(1) The mns mutants accumulate high amounts of oligo-mannosidic N-glycans and display striking cell wall alterations and defects in root development. Especially the mns1 mns2 mns3 triple mutant forms short roots with radially swollen cortical cells and displays alterations in development of aerial plant parts. Our data indicate that the N-glycan processing defects in mns mutants affect one or several glycoproteins involved in cell wall formation, which could be linked to the potential impact of mannose trimming on glycoprotein quality control in the endoplasmic reticulum (ER) and ER-associated degradation of misfolded glycoproteins.

13.
Plant Physiol ; 145(1): 5-16, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17644627

RESUMEN

Plant glycoproteins contain substantial amounts of paucimannosidic N-glycans lacking terminal GlcNAc residues at their nonreducing ends. It has been proposed that this is due to the action of beta-hexosaminidases during late stages of N-glycan processing or in the course of N-glycan turnover. We have now cloned the three putative beta-hexosaminidase sequences present in the Arabidopsis (Arabidopsis thaliana) genome. When heterologously expressed as soluble forms in Spodoptera frugiperda cells, the enzymes (termed HEXO1-3) could all hydrolyze the synthetic substrates p-nitrophenyl-2-acetamido-2-deoxy-beta-d-glucopyranoside, p-nitrophenyl-2-acetamido-2-deoxy-beta-d-galactopyranoside, 4-methylumbelliferyl-2-acetamido-2-deoxy-beta-d-glucopyranoside, and 4-methylumbelliferyl-6-sulfo-2-acetamido-2-deoxy-beta-d-glucopyranoside, albeit to a varying extent. HEXO1 to HEXO3 were further able to degrade pyridylaminated chitotriose, whereas pyridylaminated chitobiose was only cleaved by HEXO1. With N-glycan substrates, HEXO1 displayed a much higher specific activity than HEXO2 and HEXO3. Nevertheless, all three enzymes were capable of removing terminal GlcNAc residues from the alpha1,3- and alpha1,6-mannosyl branches of biantennary N-glycans without any strict branch preference. Subcellular localization studies with HEXO-fluorescent protein fusions transiently expressed in Nicotiana benthamiana plants showed that HEXO1 is a vacuolar protein. In contrast, HEXO2 and HEXO3 are mainly located at the plasma membrane. These results indicate that HEXO1 participates in N-glycan trimming in the vacuole, whereas HEXO2 and/or HEXO3 could be responsible for the processing of N-glycans present on secretory glycoproteins.


Asunto(s)
Arabidopsis/enzimología , Proteoglicanos/metabolismo , Spodoptera/metabolismo , beta-N-Acetilhexosaminidasas/metabolismo , Secuencia de Aminoácidos , Animales , Arabidopsis/genética , Clonación Molecular , ADN Complementario , Expresión Génica , Humanos , Datos de Secuencia Molecular , Proteínas Recombinantes/metabolismo , Spodoptera/genética , beta-N-Acetilhexosaminidasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA