Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Cell ; 164(3): 433-46, 2016 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-26824656

RESUMEN

The phosphoinositide 3-kinase (PI3K) pathway regulates multiple steps in glucose metabolism and also cytoskeletal functions, such as cell movement and attachment. Here, we show that PI3K directly coordinates glycolysis with cytoskeletal dynamics in an AKT-independent manner. Growth factors or insulin stimulate the PI3K-dependent activation of Rac, leading to disruption of the actin cytoskeleton, release of filamentous actin-bound aldolase A, and an increase in aldolase activity. Consistently, PI3K inhibitors, but not AKT, SGK, or mTOR inhibitors, cause a significant decrease in glycolysis at the step catalyzed by aldolase, while activating PIK3CA mutations have the opposite effect. These results point toward a master regulatory function of PI3K that integrates an epithelial cell's metabolism and its form, shape, and function, coordinating glycolysis with the energy-intensive dynamics of actin remodeling.


Asunto(s)
Fructosa-Bifosfato Aldolasa/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Animales , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Citoesqueleto/metabolismo , Citosol/metabolismo , Modelos Animales de Enfermedad , Células Epiteliales/metabolismo , Glucólisis , Humanos , Insulina/metabolismo , Ratones , Inhibidores de las Quinasa Fosfoinosítidos-3 , Transducción de Señal
2.
Immunity ; 50(5): 1129-1131, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-31117009

RESUMEN

Metabolic changes affect T lymphocyte function, and understanding this phenomenon could improve immunotherapy. In a recent paper in Science, Vodnala et al. (2019) report that tumor microenvironmental potassium impairs T cell nutrient uptake and thus causes functional caloric restriction and allows improved anti-tumor immune responses.


Asunto(s)
Células Asesinas Naturales , Neoplasias , Humanos , Inmunoterapia , Linfocitos T , Microambiente Tumoral
3.
Nature ; 608(7921): 192-198, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35896750

RESUMEN

In response to hormones and growth factors, the class I phosphoinositide-3-kinase (PI3K) signalling network functions as a major regulator of metabolism and growth, governing cellular nutrient uptake, energy generation, reducing cofactor production and macromolecule biosynthesis1. Many of the driver mutations in cancer with the highest recurrence, including in receptor tyrosine kinases, Ras, PTEN and PI3K, pathologically activate PI3K signalling2,3. However, our understanding of the core metabolic program controlled by PI3K is almost certainly incomplete. Here, using mass-spectrometry-based metabolomics and isotope tracing, we show that PI3K signalling stimulates the de novo synthesis of one of the most pivotal metabolic cofactors: coenzyme A (CoA). CoA is the major carrier of activated acyl groups in cells4,5 and is synthesized from cysteine, ATP and the essential nutrient vitamin B5 (also known as pantothenate)6,7. We identify pantothenate kinase 2 (PANK2) and PANK4 as substrates of the PI3K effector kinase AKT8. Although PANK2 is known to catalyse the rate-determining first step of CoA synthesis, we find that the minimally characterized but highly conserved PANK49 is a rate-limiting suppressor of CoA synthesis through its metabolite phosphatase activity. Phosphorylation of PANK4 by AKT relieves this suppression. Ultimately, the PI3K-PANK4 axis regulates the abundance of acetyl-CoA and other acyl-CoAs, CoA-dependent processes such as lipid metabolism and proliferation. We propose that these regulatory mechanisms coordinate cellular CoA supplies with the demands of hormone/growth-factor-driven or oncogene-driven metabolism and growth.


Asunto(s)
Coenzima A , Ácido Pantoténico , Fosfatidilinositol 3-Quinasa , Acetilcoenzima A/metabolismo , Adenosina Trifosfato/metabolismo , Proliferación Celular , Coenzima A/biosíntesis , Coenzima A/química , Cisteína/metabolismo , Metabolismo de los Lípidos , Espectrometría de Masas , Metabolómica , Ácido Pantoténico/química , Ácido Pantoténico/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Fosforilación , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
4.
Nature ; 599(7884): 302-307, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34671163

RESUMEN

Dietary interventions can change metabolite levels in the tumour microenvironment, which might then affect cancer cell metabolism to alter tumour growth1-5. Although caloric restriction (CR) and a ketogenic diet (KD) are often thought to limit tumour progression by lowering blood glucose and insulin levels6-8, we found that only CR inhibits the growth of select tumour allografts in mice, suggesting that other mechanisms contribute to tumour growth inhibition. A change in nutrient availability observed with CR, but not with KD, is lower lipid levels in the plasma and tumours. Upregulation of stearoyl-CoA desaturase (SCD), which synthesises monounsaturated fatty acids, is required for cancer cells to proliferate in a lipid-depleted environment, and CR also impairs tumour SCD activity to cause an imbalance between unsaturated and saturated fatty acids to slow tumour growth. Enforcing cancer cell SCD expression or raising circulating lipid levels through a higher-fat CR diet confers resistance to the effects of CR. By contrast, although KD also impairs tumour SCD activity, KD-driven increases in lipid availability maintain the unsaturated to saturated fatty acid ratios in tumours, and changing the KD fat composition to increase tumour saturated fatty acid levels cooperates with decreased tumour SCD activity to slow tumour growth. These data suggest that diet-induced mismatches between tumour fatty acid desaturation activity and the availability of specific fatty acid species determine whether low glycaemic diets impair tumour growth.


Asunto(s)
Glucemia/metabolismo , Dieta Baja en Carbohidratos , Ácidos Grasos/metabolismo , Metabolismo de los Lípidos , Neoplasias/metabolismo , Neoplasias/patología , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/patología , Aloinjertos , Animales , Restricción Calórica , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Proliferación Celular , Dieta Cetogénica , Líquido Extracelular/química , Ácidos Grasos Insaturados/metabolismo , Femenino , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Trasplante de Neoplasias , Nutrientes/análisis , Nutrientes/sangre , Estearoil-CoA Desaturasa/metabolismo , Microambiente Tumoral/efectos de los fármacos
5.
EMBO J ; 41(9): e110466, 2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35307861

RESUMEN

Pancreatic ductal adenocarcinoma (PDA) tumor cells are deprived of oxygen and nutrients and therefore must adapt their metabolism to ensure proliferation. In some physiological states, cells rely on ketone bodies to satisfy their metabolic needs, especially during nutrient stress. Here, we show that PDA cells can activate ketone body metabolism and that ß-hydroxybutyrate (ßOHB) is an alternative cell-intrinsic or systemic fuel that can promote PDA growth and progression. PDA cells activate enzymes required for ketogenesis, utilizing various nutrients as carbon sources for ketone body formation. By assessing metabolic gene expression from spontaneously arising PDA tumors in mice, we find HMG-CoA lyase (HMGCL), involved in ketogenesis, to be among the most deregulated metabolic enzymes in PDA compared to normal pancreas. In vitro depletion of HMGCL impedes migration, tumor cell invasiveness, and anchorage-independent tumor sphere compaction. Moreover, disrupting HMGCL drastically decreases PDA tumor growth in vivo, while ßOHB stimulates metastatic dissemination to the liver. These findings suggest that ßOHB increases PDA aggressiveness and identify HMGCL and ketogenesis as metabolic targets for limiting PDA progression.


Asunto(s)
Cuerpos Cetónicos , Neoplasias Pancreáticas , Ácido 3-Hidroxibutírico/metabolismo , Animales , Cuerpos Cetónicos/metabolismo , Ratones , Oxo-Ácido-Liasas , Páncreas/metabolismo
6.
Nature ; 558(7711): 600-604, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29925948

RESUMEN

Malignancy is accompanied by changes in the metabolism of both cells and the organism1,2. Pancreatic ductal adenocarcinoma (PDAC) is associated with wasting of peripheral tissues, a metabolic syndrome that lowers quality of life and has been proposed to decrease survival of patients with cancer3,4. Tissue wasting is a multifactorial disease and targeting specific circulating factors to reverse this syndrome has been mostly ineffective in the clinic5,6. Here we show that loss of both adipose and muscle tissue occurs early in the development of pancreatic cancer. Using mouse models of PDAC, we show that tumour growth in the pancreas but not in other sites leads to adipose tissue wasting, suggesting that tumour growth within the pancreatic environment contributes to this wasting phenotype. We find that decreased exocrine pancreatic function is a driver of adipose tissue loss and that replacement of pancreatic enzymes attenuates PDAC-associated wasting of peripheral tissues. Paradoxically, reversal of adipose tissue loss impairs survival in mice with PDAC. When analysing patients with PDAC, we find that depletion of adipose and skeletal muscle tissues at the time of diagnosis is common, but is not associated with worse survival. Taken together, these results provide an explanation for wasting of adipose tissue in early PDAC and suggest that early loss of peripheral tissue associated with pancreatic cancer may not impair survival.


Asunto(s)
Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Insuficiencia Pancreática Exocrina/etiología , Insuficiencia Pancreática Exocrina/metabolismo , Neoplasias Pancreáticas/complicaciones , Neoplasias Pancreáticas/patología , Animales , Composición Corporal , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Insuficiencia Pancreática Exocrina/patología , Femenino , Masculino , Ratones , Neoplasias Pancreáticas/metabolismo
7.
Mol Cell ; 62(6): 929-942, 2016 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-27237051

RESUMEN

The retinoblastoma (Rb) protein exerts its tumor suppressor function primarily by inhibiting the E2F family of transcription factors that govern cell-cycle progression. However, it remains largely elusive whether the hyper-phosphorylated, non-E2F1-interacting form of Rb has any physiological role. Here we report that hyper-phosphorylated Rb directly binds to and suppresses the function of mTORC2 but not mTORC1. Mechanistically, Rb, but not p107 or p130, interacts with Sin1 and blocks the access of Akt to mTORC2, leading to attenuated Akt activation and increased sensitivity to chemotherapeutic drugs. As such, inhibition of Rb phosphorylation by depleting cyclin D or using CDK4/6 inhibitors releases Rb-mediated mTORC2 suppression. This, in turn, leads to elevated Akt activation to confer resistance to chemotherapeutic drugs in Rb-proficient cells, which can be attenuated with Akt inhibitors. Therefore, our work provides a molecular basis for the synergistic usage of CDK4/6 and Akt inhibitors in treating Rb-proficient cancer.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Complejos Multiproteicos/metabolismo , Neoplasias/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteína de Retinoblastoma/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proliferación Celular/efectos de los fármacos , Ciclina D/genética , Ciclina D/metabolismo , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 4 Dependiente de la Ciclina/metabolismo , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 6 Dependiente de la Ciclina/metabolismo , Relación Dosis-Respuesta a Droga , Resistencia a Antineoplásicos , Sinergismo Farmacológico , Activación Enzimática , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Diana Mecanicista del Complejo 2 de la Rapamicina , Ratones , Terapia Molecular Dirigida , Neoplasias/enzimología , Neoplasias/genética , Neoplasias/patología , Fosforilación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Interferencia de ARN , Transducción de Señal , Factores de Tiempo , Transfección
8.
Proc Natl Acad Sci U S A ; 117(46): 28918-28921, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33168727

RESUMEN

REV1/POLζ-dependent mutagenic translesion synthesis (TLS) promotes cell survival after DNA damage but is responsible for most of the resulting mutations. A novel inhibitor of this pathway, JH-RE-06, promotes cisplatin efficacy in cancer cells and mouse xenograft models, but the mechanism underlying this combinatorial effect is not known. We report that, unexpectedly, in two different mouse xenograft models and four human and mouse cell lines we examined in vitro cisplatin/JH-RE-06 treatment does not increase apoptosis. Rather, it increases hallmarks of senescence such as senescence-associated ß-galactosidase, increased p21 expression, micronuclei formation, reduced Lamin B1, and increased expression of the immune regulators IL6 and IL8 followed by cell death. Moreover, although p-γ-H2AX foci formation was elevated and ATR expression was low in single agent cisplatin-treated cells, the opposite was true in cells treated with cisplatin/JH-RE-06. These observations suggest that targeting REV1 with JH-RE-06 profoundly affects the nature of the persistent genomic damage after cisplatin treatment and also the resulting physiological responses. These data highlight the potential of REV1/POLζ inhibitors to alter the biological response to DNA-damaging chemotherapy and enhance the efficacy of chemotherapy.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Inhibidores Enzimáticos/farmacología , Neoplasias/tratamiento farmacológico , Nitroquinolinas/farmacología , Nucleotidiltransferasas/antagonistas & inhibidores , Envejecimiento/efectos de los fármacos , Envejecimiento/patología , Envejecimiento/fisiología , Animales , Línea Celular Tumoral , Cisplatino/administración & dosificación , Cisplatino/farmacología , ADN/biosíntesis , Daño del ADN/fisiología , Reparación del ADN , Replicación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Resistencia a Antineoplásicos , Sinergismo Farmacológico , Inhibidores Enzimáticos/administración & dosificación , Humanos , Proteínas Mad2/metabolismo , Ratones , Mutagénesis , Neoplasias/enzimología , Neoplasias/patología , Proteínas Nucleares/metabolismo , Nucleotidiltransferasas/metabolismo , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
9.
EMBO J ; 37(22)2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30348863

RESUMEN

The Hippo pathway and its nuclear effector Yap regulate organ size and cancer formation. While many modulators of Hippo activity have been identified, little is known about the Yap target genes that mediate these growth effects. Here, we show that yap-/- mutant zebrafish exhibit defects in hepatic progenitor potential and liver growth due to impaired glucose transport and nucleotide biosynthesis. Transcriptomic and metabolomic analyses reveal that Yap regulates expression of glucose transporter glut1, causing decreased glucose uptake and use for nucleotide biosynthesis in yap-/- mutants, and impaired glucose tolerance in adults. Nucleotide supplementation improves Yap deficiency phenotypes, indicating functional importance of glucose-fueled nucleotide biosynthesis. Yap-regulated glut1 expression and glucose uptake are conserved in mammals, suggesting that stimulation of anabolic glucose metabolism is an evolutionarily conserved mechanism by which the Hippo pathway controls organ growth. Together, our results reveal a central role for Hippo signaling in glucose metabolic homeostasis.


Asunto(s)
Glucosa/metabolismo , Hígado/embriología , Nucleótidos/biosíntesis , Transducción de Señal/fisiología , Transactivadores/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Glucosa/genética , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 1/metabolismo , Ratones , Nucleótidos/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Serina-Treonina Quinasa 3 , Transactivadores/genética , Proteínas Señalizadoras YAP , Pez Cebra/genética , Proteínas de Pez Cebra/genética
10.
Proc Natl Acad Sci U S A ; 113(30): E4338-47, 2016 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-27402769

RESUMEN

We previously reported that combining a phosphoinositide 3-kinase (PI3K) inhibitor with a poly-ADP Rib polymerase (PARP)-inhibitor enhanced DNA damage and cell death in breast cancers that have genetic aberrations in BRCA1 and TP53. Here, we show that enhanced DNA damage induced by PI3K inhibitors in this mutational background is a consequence of impaired production of nucleotides needed for DNA synthesis and DNA repair. Inhibition of PI3K causes a reduction in all four nucleotide triphosphates, whereas inhibition of the protein kinase AKT is less effective than inhibition of PI3K in suppressing nucleotide synthesis and inducing DNA damage. Carbon flux studies reveal that PI3K inhibition disproportionately affects the nonoxidative pentose phosphate pathway that delivers Rib-5-phosphate required for base ribosylation. In vivo in a mouse model of BRCA1-linked triple-negative breast cancer (K14-Cre BRCA1(f/f)p53(f/f)), the PI3K inhibitor BKM120 led to a precipitous drop in DNA synthesis within 8 h of drug treatment, whereas DNA synthesis in normal tissues was less affected. In this mouse model, combined PI3K and PARP inhibition was superior to either agent alone to induce durable remissions of established tumors.


Asunto(s)
Daño del ADN , Nucleósidos/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Aminopiridinas/administración & dosificación , Aminopiridinas/farmacología , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , ADN de Neoplasias/genética , ADN de Neoplasias/metabolismo , Femenino , Humanos , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Morfolinas/administración & dosificación , Morfolinas/farmacología , Fosfatidilinositol 3-Quinasa/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/administración & dosificación , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo
11.
Proc Natl Acad Sci U S A ; 113(38): E5562-71, 2016 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-27588899

RESUMEN

Selenium, an essential micronutrient known for its cancer prevention properties, is incorporated into a class of selenocysteine-containing proteins (selenoproteins). Selenoprotein H (SepH) is a recently identified nucleolar oxidoreductase whose function is not well understood. Here we report that seph is an essential gene regulating organ development in zebrafish. Metabolite profiling by targeted LC-MS/MS demonstrated that SepH deficiency impairs redox balance by reducing the levels of ascorbate and methionine, while increasing methionine sulfoxide. Transcriptome analysis revealed that SepH deficiency induces an inflammatory response and activates the p53 pathway. Consequently, loss of seph renders larvae susceptible to oxidative stress and DNA damage. Finally, we demonstrate that seph interacts with p53 deficiency in adulthood to accelerate gastrointestinal tumor development. Overall, our findings establish that seph regulates redox homeostasis and suppresses DNA damage. We hypothesize that SepH deficiency may contribute to the increased cancer risk observed in cohorts with low selenium levels.


Asunto(s)
Carcinogénesis/genética , Proteínas de Unión al ADN/genética , Neoplasias Gastrointestinales/genética , Selenoproteínas/genética , Proteína p53 Supresora de Tumor/genética , Animales , Daño del ADN/genética , Proteínas de Unión al ADN/metabolismo , Femenino , Neoplasias Gastrointestinales/patología , Regulación Neoplásica de la Expresión Génica , Homeostasis , Humanos , Masculino , Oxidación-Reducción , Estrés Oxidativo/genética , Selenio/metabolismo , Selenoproteínas/metabolismo , Transcriptoma/genética , Pez Cebra/genética
12.
Recent Results Cancer Res ; 207: 39-72, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27557534

RESUMEN

In the past decade, there has been a resurgence of interest in elucidating how metabolism is altered in cancer cells and how such dependencies can be targeted for therapeutic gain. At the core of this research is the concept that metabolic pathways are reprogrammed in cancer cells to divert nutrients toward anabolic processes to facilitate enhanced growth and proliferation. Importantly, physiological cellular signaling mechanisms normally tightly regulate the ability of cells to gain access to and utilize nutrients, posing a fundamental barrier to transformation. This barrier is often overcome by aberrations in cellular signaling that drive tumor pathogenesis by enabling cancer cells to make critical cellular decisions in a cell-autonomous manner. One of the most frequently altered pathways in human cancer is the PI3K-Akt-mTOR signaling pathway. Here, we describe mechanisms by which this signaling network is responsible for controlling cellular metabolism. Through both the post-translational regulation and the induction of transcriptional programs, the PI3K-Akt-mTOR pathway coordinates the uptake and utilization of multiple nutrients, including glucose, glutamine, nucleotides, and lipids, in a manner best suited for supporting the enhanced growth and proliferation of cancer cells. These regulatory mechanisms illustrate how metabolic changes in cancer are closely intertwined with oncogenic signaling pathways that drive tumor initiation and progression.


Asunto(s)
Neoplasias/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/metabolismo , Carcinogénesis/patología , Proliferación Celular/fisiología , Humanos , Neoplasias/patología
13.
Nat Cell Biol ; 26(5): 825-838, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38605144

RESUMEN

Blocking the import of nutrients essential for cancer cell proliferation represents a therapeutic opportunity, but it is unclear which transporters to target. Here we report a CRISPR interference/activation screening platform to systematically interrogate the contribution of nutrient transporters to support cancer cell proliferation in environments ranging from standard culture media to tumours. We applied this platform to identify the transporters of amino acids in leukaemia cells and found that amino acid transport involves high bidirectional flux dependent on the microenvironment composition. While investigating the role of transporters in cystine starved cells, we uncovered a role for serotonin uptake in preventing ferroptosis. Finally, we identified transporters essential for cell proliferation in subcutaneous tumours and found that levels of glucose and amino acids can restrain proliferation in that environment. This study establishes a framework for systematically identifying critical cellular nutrient transporters, characterizing their function and exploring how the tumour microenvironment impacts cancer metabolism.


Asunto(s)
Proliferación Celular , Microambiente Tumoral , Humanos , Animales , Sistemas CRISPR-Cas , Nutrientes/metabolismo , Línea Celular Tumoral , Transporte Biológico , Glucosa/metabolismo , Aminoácidos/metabolismo , Serotonina/metabolismo , Sistemas de Transporte de Aminoácidos/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Ratones , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas
14.
bioRxiv ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38766165

RESUMEN

Ferroptosis is a form of cell death caused by lipid peroxidation that is emerging as a target for cancer therapy, highlighting the need to identify factors that govern ferroptosis susceptibility. Lipid peroxidation occurs primarily on phospholipids containing polyunsaturated fatty acids (PUFAs). Here, we show that even though extracellular lipid limitation reduces cellular PUFA levels, lipid-starved cancer cells are paradoxically more sensitive to ferroptosis. Using mass spectrometry-based lipidomics with stable isotope fatty acid labeling, we show that lipid limitation induces a fatty acid trafficking pathway in which PUFAs are liberated from triglycerides to synthesize highly unsaturated PUFAs such as arachidonic acid and adrenic acid. These PUFAs then accumulate in phospholipids, particularly ether phospholipids, to promote ferroptosis sensitivity. Therefore, PUFA levels within cancer cells do not necessarily correlate with ferroptosis susceptibility. Rather, how cancer cells respond to extracellular lipid levels by trafficking PUFAs into proper phospholipid pools dictates their sensitivity to ferroptosis.

15.
Mol Metab ; 80: 101876, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38216123

RESUMEN

OBJECTIVE: NF1 is a tumor suppressor gene and its protein product, neurofibromin, is a negative regulator of the RAS pathway. NF1 is one of the top driver mutations in sporadic breast cancer such that 27 % of breast cancers exhibit damaging NF1 alterations. NF1 loss-of-function is a frequent event in the genomic evolution of estrogen receptor (ER)+ breast cancer metastasis and endocrine resistance. Individuals with Neurofibromatosis type 1 (NF) - a disorder caused by germline NF1 mutations - have an increased risk of dying from breast cancer [1-4]. NF-related breast cancers are associated with decreased overall survival compared to sporadic breast cancer. Despite numerous studies interrogating the role of RAS mutations in tumor metabolism, no study has comprehensively profiled the NF1-deficient breast cancer metabolome to define patterns of energetic and metabolic reprogramming. The goals of this investigation were (1) to define the role of NF1 deficiency in estrogen receptor-positive (ER+) breast cancer metabolic reprogramming and (2) to identify potential targeted pathway and metabolic inhibitor combination therapies for NF1-deficient ER + breast cancer. METHODS: We employed two ER+ NF1-deficient breast cancer models: (1) an NF1-deficient MCF7 breast cancer cell line to model sporadic breast cancer, and (2) three distinct, Nf1-deficient rat models to model NF-related breast cancer [1]. IncuCyte proliferation analysis was used to measure the effect of NF1 deficiency on cell proliferation and drug response. Protein quantity was assessed by Western Blot analysis. We then used RNAseq to investigate the transcriptional effect of NF1 deficiency on global and metabolism-related transcription. We measured cellular energetics using Agilent Seahorse XF-96 Glyco Stress Test and Mito Stress Test assays. We performed stable isotope labeling and measured [U-13C]-glucose and [U-13C]-glutamine metabolite incorporation and measured total metabolite pools using mass spectrometry. Lastly, we used a Bliss synergy model to investigate NF1-driven changes in targeted and metabolic inhibitor synergy. RESULTS: Our results revealed that NF1 deficiency enhanced cell proliferation, altered neurofibromin expression, and increased RAS and PI3K/AKT pathway signaling while constraining oxidative ATP production and restricting energetic flexibility. Neurofibromin deficiency also increased glutamine influx into TCA intermediates and dramatically increased lipid pools, especially triglycerides (TG). Lastly, NF1 deficiency alters the synergy between metabolic inhibitors and traditional targeted inhibitors. This includes increased synergy with inhibitors targeting glycolysis, glutamine metabolism, mitochondrial fatty acid transport, and TG synthesis. CONCLUSIONS: NF1 deficiency drives metabolic reprogramming in ER+ breast cancer. This reprogramming is characterized by oxidative ATP constraints, glutamine TCA influx, and lipid pool expansion, and these metabolic changes introduce novel metabolic-to-targeted inhibitor synergies.


Asunto(s)
Neurofibromatosis 1 , Neurofibromina 1 , Animales , Ratas , Adenosina Trifosfato/metabolismo , Glutamina/metabolismo , Lípidos , Reprogramación Metabólica , Neurofibromatosis 1/genética , Neurofibromina 1/genética , Neurofibromina 1/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo
16.
bioRxiv ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38948703

RESUMEN

Background: Metabolic remodeling is a hallmark of the failing heart. Oncometabolic stress during cancer increases the activity and abundance of the ATP-dependent citrate lyase (ACL, Acly ), which promotes histone acetylation and cardiac adaptation. ACL is critical for the de novo synthesis of lipids, but how these metabolic alterations contribute to cardiac structural and functional changes remains unclear. Methods: We utilized human heart tissue samples from healthy donor hearts and patients with hypertrophic cardiomyopathy. Further, we used CRISPR/Cas9 gene editing to inactivate Acly in cardiomyocytes of MyH6-Cas9 mice. In vivo, positron emission tomography and ex vivo stable isotope tracer labeling were used to quantify metabolic flux changes in response to the loss of ACL. We conducted a multi-omics analysis using RNA-sequencing and mass spectrometry-based metabolomics and proteomics. Experimental data were integrated into computational modeling using the metabolic network CardioNet to identify significantly dysregulated metabolic processes at a systems level. Results: Here, we show that in mice, ACL drives metabolic adaptation in the heart to sustain contractile function, histone acetylation, and lipid modulation. Notably, we show that loss of ACL increases glucose oxidation while maintaining fatty acid oxidation. Ex vivo isotope tracing experiments revealed a reduced efflux of glucose-derived citrate from the mitochondria into the cytosol, confirming that citrate is required for reductive metabolism in the heart. We demonstrate that YAP inactivation facilitates ACL deficiency. Computational flux analysis and integrative multi-omics analysis indicate that loss of ACL induces alternative isocitrate dehydrogenase 1 flux to compensate. Conclusions: This study mechanistically delineates how cardiac metabolism compensates for suppressed citrate metabolism in response to ACL loss and uncovers metabolic vulnerabilities in the heart.

17.
Biochemistry ; 52(1): 115-24, 2013 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-23210626

RESUMEN

The ability of cells to sense and respond appropriately to changing environmental conditions is often mediated by signal transduction pathways that employ mitogen-activated protein kinases (MAPKs). In the yeast Saccharomyces cerevisiae, the high-osmolarity glycerol (HOG) and filamentous growth (FG) pathways are activated following hyperosmotic stress and nutrient deprivation, respectively. Whereas the HOG pathway requires the MAPK Hog1, the FG pathway employs the MAPK Kss1. We conducted a comprehensive screen of nearly 5000 gene deletion strains for mutants that exhibit inappropriate cross-talk between the HOG and FG pathways. We identified two novel mutants, mnn10Δ and mnn11Δ, that allow activation of Kss1 under conditions that normally stimulate Hog1. MNN10 and MNN11 encode mannosyltransferases that are part of the N-glycosylation machinery within the Golgi apparatus; deletion of either gene results in N-glycosylated proteins that have shorter mannan chains. Deletion of the cell surface mucin Msb2 suppressed the mnn11Δ phenotype, while mutation of a single glycosylation site within Msb2 was sufficient to confer inappropriate activation of Kss1 by salt stress. These findings reveal new components of the N-glycosylation machinery needed to ensure MAPK signaling fidelity.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Glicerol/metabolismo , Glicosilación , Proteínas Quinasas Activadas por Mitógenos/genética , Presión Osmótica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
18.
Curr Opin Biotechnol ; 84: 102993, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37716318

RESUMEN

The potential for 'anti-cancer' diets to markedly alter cancer risk and prognosis has captured the imagination of patients, physicians, and researchers alike, but many of these dietary recommendations come from correlative studies that attribute certain diets to altered cancer risk. While provocative, little is known about the molecular mechanisms behind how these dietary interventions impact cancer progression. Within this context, however, changes in tumor lipid metabolism are emerging as a key contributor. In this review, we examine the current understanding of lipid metabolism in the tumor microenvironment (TME), suggesting how diet-induced changes in lipid composition may regulate tumor progression and therapeutic efficacy. By dissecting various cellular pathways involved in lipid metabolism, we highlight how diet modulates the balance between saturated and unsaturated fatty acid (FA) species in tumors to impact cancer cell and stromal cell function. Finally, we describe how current cancer therapies may synergize with diet to improve therapeutic efficacy.


Asunto(s)
Ácidos Grasos , Neoplasias , Humanos , Ácidos Grasos/metabolismo , Metabolismo de los Lípidos , Dieta , Neoplasias/terapia , Microambiente Tumoral
19.
bioRxiv ; 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38187759

RESUMEN

Aging is accompanied by multiple molecular changes that contribute to aging-associated pathologies, such as accumulation of cellular damage and mitochondrial dysfunction. Tissue metabolism can also change with age, in part because mitochondria are central to cellular metabolism. Moreover, the co-factor NAD+, which is reported to decline across multiple tissue types during aging, plays a central role in metabolic pathways such as glycolysis, the tricarboxylic acid cycle, and the oxidative synthesis of nucleotides, amino acids, and lipids. To further characterize how tissue metabolism changes with age, we intravenously infused [U-13C]-glucose into young and old C57BL/6J, WSB/EiJ, and Diversity Outbred mice to trace glucose fate into downstream metabolites within plasma, liver, gastrocnemius muscle, and brain tissues. We found that glucose incorporation into central carbon and amino acid metabolism was robust during healthy aging across these different strains of mice. We also observed that levels of NAD+, NADH, and the NAD+/NADH ratio were unchanged in these tissues with healthy aging. However, aging tissues, particularly brain, exhibited evidence of up-regulated fatty acid and sphingolipid metabolism reactions that regenerate NAD+ from NADH. Because mitochondrial respiration, a major source of NAD+ regeneration, is reported to decline with age, our data supports a model where NAD+-generating lipid metabolism reactions may buffer against changes in NAD+/NADH during healthy aging.

20.
Cancers (Basel) ; 14(20)2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36291790

RESUMEN

The PI3K/Akt pathway is frequently deregulated in human cancers, and multiple Akt inhibitors are currently under clinical evaluation. Based on the experience from other molecular targeted therapies, however, it is likely that acquired resistance will be developed in patients treated with Akt inhibitors. We established breast cancer models of acquired resistance by prolonged treatment of cells with allosteric or ATP-competitive Akt inhibitors. Phospho-Receptor tyrosine kinase (Phospho-RTK) arrays revealed hyper-phosphorylation of multiple RTKS, including EGFR, Her2, HFGR, EhpB3 and ROR1, in Akt-inhibitor-resistant cells. Importantly, resistance can be overcome by treatment with an EGFR inhibitor. We further showed that cancer stem cells (CSCs) are enriched in breast tumor cells that have developed resistance to Akt inhibitors. Several candidates of CSC regulators, such as ID4, are identified by RNA sequencing. Cosmic analysis indicated that sensitivity of tumor cells to Akt inhibitors can be predicted by ID4 and stem cell/epithelial-mesenchymal transition pathway targets. These findings indicate the potential of targeting the EGFR pathway and CSC program to circumvent Akt inhibitor resistance in breast cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA