RESUMEN
An investigation was carried out on humic substances (HSs) isolated from the coal of the Kansk-Achinsk basin (Krasnoyarsk Territory, Russia). The coal HSs demonstrate the main parameters of molecular structure inherent to this class of natural compounds. An assessment was performed for the chemical, microbiological, and pharmacological safety parameters, as well as the biological efficacy. The HS sample meets the safety requirements in microbiological purity, toxic metals content (lead, cadmium, mercury, arsenic), and radionuclides. The presence of 11 essential elements was determined. The absence of general, systemic toxicity, cytotoxicity, and allergenic properties was demonstrated. The coal HS sample was classified as a Class V hazard (low danger substances). High antioxidant and antiradical activities and immunotropic and cytoprotective properties were identified. The ability of the HS to inhibit hydroxyl radicals and superoxide anion radicals was revealed. Pronounced actoprotective and nootropic activities were also demonstrated in vivo. Intragastric administration of the HS sample resulted in the improvement of physical parameters in mice as assessed by the "swim exhaustion" test. Furthermore, intragastric administration in mice with cholinergic dysfunction led to a higher ability of animals with scopolamine-induced amnesia to form conditioned reflexes. These findings suggest that the studied HS sample is a safe and effective natural substance, making it suitable for use as a dietary bioactive supplement.
Asunto(s)
Arsénico , Sustancias Húmicas , Animales , Ratones , Amnesia , Antioxidantes/farmacología , Carbón MineralRESUMEN
The genus Saussurea has been used in the preparation of therapies for a number of medical problems, yet not much is known about the therapeutic high-molecular-weight compounds present in extracts from these plants. Since polysaccharides are important in immune modulation, we investigated the chemical composition and immunomodulatory activity of Saussurea salicifolia L. and Saussurea frolovii Ledeb polysaccharides. Water-soluble polysaccharides from the aerial parts of these plants were extracted using water at pHs of 2 and 6 and subsequently precipitated in ethanol to obtain fractions SSP2 and SSP6 from S. salicifolia and fractions SSF2 and SSF6 from S. frolovii. The molecular weights of fractions SSP2, SSP6, SFP2, and SFP6 were estimated to be 143.7, 113.2, 75.3, and 64.3 kDa, respectively. The polysaccharides from S. frolovii contained xylose (67.1-71.7%) and glucose (28.3-32.9%), whereas the polysaccharides from S. frolovii contained xylose (63.1-76.7%), glucose (11.8-19.2%), galactose (4.7-8.3%), and rhamnose (6.8-9.4%). Fractions SSP2, SSP6, and SFP2 stimulated nitric oxide (NO) production by murine macrophages, and NO production induced by SSP2, SSP6, and SFP2 was not inhibited by polymyxin B treatment of the fractions, whereaspolymyxin B treatment diminished the effects of SFP6, suggesting that SFP6 could contain lipopolysaccharide (LPS). The LPS-free fractions SSP2, SSP6, and SFP2 had potent immunomodulatory activity, induced NO production, and activated transcription factors NF-κB/AP-1 in human monocytic THP-1 cells and cytokine production by human MonoMac-6 monocytic cells, including interleukin (IL)-1α, IL-1ß, IL-6, granulocyte macrophage colony-stimulating factor (GM-CSF), interferon-γ, monocyte chemotactic protein 1 (MCP-1), and tumor necrosis factor (TNF). These data suggest that at least part of the beneficial therapeutic effects reported for water extracts of the Saussurea species are due to the modulation of leukocyte functions by polysaccharides.
Asunto(s)
Saussurea , Humanos , Animales , Ratones , Xilosa , Polisacáridos/farmacología , Interferón gamma , Lipopolisacáridos/farmacología , GlucosaRESUMEN
PURPOSE: This article focuses on new method to estimate biological activity of peat humic acids (HAs) using artificial neural network (ANN) to process spectroscopic measurements in infrared and visible ranges. Conventional approaches generally rely on biological models and direct detection of chemical substances related to bioactivity. These methods proved to be accurate and reliable, but at the expense of speed and simplicity. MATERIALS AND METHODS: Recently, a conception of quantitative structure-activity relationship (QSAR) has been introduced and successfully implemented to predict effects of HAs on toxicity of polycyclic aromatic hydrocarbons. Our research stems from this conception, but employs multilayer perceptron (MLP) model to improve overall performance. The developed MLP model allowed us to estimate biological activity of the complete vertical peat cores collected from oligotrophic peat bog, located in southern taiga zone of West Siberia (north-eastern spurs of the Great Vasyugan Mire, 56°58' N 82о36' E). In total, 42 samples taken from the cores were collected. The protocol included spectroscopy (in infrared and visible ranges) and biological model with peritoneal activated macrophages as a reference method to directly measure biological activity of HAs. RESULTS: and discussion. Numerical experiments confirmed consistency of the measured and estimated bioactivity, coefficient of determination R2 = 0.97. These experiments also showed that the MLP model significantly outperforms conventional linear multiple regression models, mainly due to essential nonlinearity of structure-activity relationships. CONCLUSIONS: Our research demonstrates that biological activity of HAs extracted from peat samples can be estimated using an artificial neural network model trained on infrared and visible spectra.
Asunto(s)
Sustancias Húmicas , Hidrocarburos Policíclicos Aromáticos , Sustancias Húmicas/análisis , Redes Neurales de la Computación , Relación Estructura-Actividad Cuantitativa , SueloRESUMEN
The activation of c-Jun N-terminal kinase (JNK) plays an important role in stroke outcomes. Tryptanthrin-6-oxime (TRYP-Ox) is reported to have high affinity for JNK and anti-inflammatory activity and may be of interest as a promising neuroprotective agent. The aim of this study was to investigate the neuroprotective effects of TRYP-Ox in a rat model of transient focal cerebral ischemia (FCI), which involved intraluminal occlusion of the left middle cerebral artery (MCA) for 1 h. Animals in the experimental group were administered intraperitoneal injections of TRYP-Ox 30 min before reperfusion and 23 and 47 h after FCI. Neurological status was assessed 4, 24, and 48 h following FCI onset. Treatment with 5 and 10 mg/kg of TRYP-Ox decreased mean scores of neurological deficits by 35-49 and 46-67% at 24 and 48 h, respectively. At these doses, TRYP-Ox decreased the infarction size by 28-31% at 48 h after FCI. TRYP-Ox (10 mg/kg) reduced the content of interleukin (IL) 1ß and tumor necrosis factor (TNF) in the ischemic core area of the MCA region by 33% and 38%, respectively, and attenuated cerebral edema by 11% in the left hemisphere, which was affected by infarction, and by 6% in the right, contralateral hemisphere 24 h after FCI. TRYP-Ox reduced c-Jun phosphorylation in the MCA pool at 1 h after reperfusion. TRYP-Ox was predicted to have high blood-brain barrier permeability using various calculated descriptors and binary classification trees. Indeed, reactive oxidant production was significantly lower in the brain homogenates from rats treated with TRYP-Ox versus that in control animals. Our data suggest that the neuroprotective activity of TRYP-Ox may be due to the ability of this compound to inhibit JNK and exhibit anti-inflammatory and antioxidant activity. Thus, TRYP-Ox may be considered a promising neuroprotective agent that potentially could be used for the development of new treatment strategies in cerebral ischemia.