Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Biol Chem ; 291(27): 14199-14212, 2016 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-27189941

RESUMEN

The viral vector-mediated overexpression of the defined transcription factors, Brn4/Pou3f4, Sox2, Klf4, and c-Myc (BSKM), could induce the direct conversion of somatic fibroblasts into induced neural stem cells (iNSCs). However, viral vectors may be randomly integrated into the host genome thereby increasing the risk for undesired genotoxicity, mutagenesis, and tumor formation. Here we describe the generation of integration-free iNSCs from mouse fibroblasts by non-viral episomal vectors containing BSKM. The episomal vector-derived iNSCs (e-iNSCs) closely resemble control NSCs, and iNSCs generated by retrovirus (r-iNSCs) in morphology, gene expression profile, epigenetic status, and self-renewal capacity. The e-iNSCs are functionally mature, as they could differentiate into all the neuronal cell types both in vitro and in vivo Our study provides a novel concept for generating functional iNSCs using a non-viral, non-integrating, plasmid-based system that could facilitate their biomedical applicability.


Asunto(s)
Células-Madre Neurales/citología , Animales , Fibroblastos/citología , Vectores Genéticos , Factor 4 Similar a Kruppel , Ratones , Ratones Endogámicos C3H , Transfección
2.
J Biol Chem ; 289(47): 32512-25, 2014 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-25294882

RESUMEN

The spinal cord does not spontaneously regenerate, and treatment that ensures functional recovery after spinal cord injury (SCI) is still not available. Recently, fibroblasts have been directly converted into induced neural stem cells (iNSCs) by the forced expression defined transcription factors. Although directly converted iNSCs have been considered to be a cell source for clinical applications, their therapeutic potential has not yet been investigated. Here we show that iNSCs directly converted from mouse fibroblasts enhance the functional recovery of SCI animals. Engrafted iNSCs could differentiate into all neuronal lineages, including different subtypes of mature neurons. Furthermore, iNSC-derived neurons could form synapses with host neurons, thus enhancing the locomotor function recovery. A time course analysis of iNSC-treated SCI animals revealed that engrafted iNSCs effectively reduced the inflammatory response and apoptosis in the injured area. iNSC transplantation also promoted the active regeneration of the endogenous recipient environment in the absence of tumor formation. Therefore, our data suggest that directly converted iNSCs hold therapeutic potential for treatment of SCI and may thus represent a promising cell source for transplantation therapy in patients with SCI.


Asunto(s)
Células Madre Pluripotentes Inducidas/trasplante , Células-Madre Neurales/trasplante , Traumatismos de la Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/terapia , Animales , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Células Cultivadas , Embrión de Mamíferos/citología , Potenciales Evocados Motores/genética , Potenciales Evocados Motores/fisiología , Femenino , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Inmunohistoquímica , Células Madre Pluripotentes Inducidas/metabolismo , Ratones Endogámicos C3H , Microscopía Fluorescente , Regeneración Nerviosa/genética , Regeneración Nerviosa/fisiología , Nestina/genética , Nestina/metabolismo , Células-Madre Neurales/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Ratas Sprague-Dawley , Recuperación de la Función/genética , Recuperación de la Función/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Traumatismos de la Médula Espinal/genética , Sinapsis/metabolismo , Sinapsis/fisiología
3.
Stem Cell Reports ; 10(5): 1522-1536, 2018 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-29606616

RESUMEN

Disorders of the biliary epithelium, known as cholangiopathies, cause severe and irreversible liver diseases. The limited accessibility of bile duct precludes modeling of several cholangiocyte-mediated diseases. Therefore, novel approaches for obtaining functional cholangiocytes with high purity are needed. Previous work has shown that the combination of Hnf1ß and Foxa3 could directly convert mouse fibroblasts into bipotential hepatic stem cell-like cells, termed iHepSCs. However, the efficiency of converting fibroblasts into iHepSCs is low, and these iHepSCs exhibit extremely low differentiation potential into cholangiocytes, thus hindering the translation of iHepSCs to the clinic. Here, we describe that the expression of Hnf1α and Foxa3 dramatically facilitates the robust generation of iHepSCs. Notably, prolonged in vitro culture of Hnf1α- and Foxa3-derived iHepSCs induces a Notch signaling-mediated secondary conversion into cholangiocyte progenitor-like cells that display dramatically enhanced differentiation capacity into mature cholangiocytes. Our study provides a robust two-step approach for obtaining cholangiocyte progenitor-like cells using defined factors.


Asunto(s)
Sistema Biliar/citología , Diferenciación Celular , Fibroblastos/citología , Células Madre/citología , Animales , Células Epiteliales/citología , Células Epiteliales/metabolismo , Fibroblastos/metabolismo , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Factor Nuclear 3-gamma del Hepatocito/metabolismo , Hepatocitos/citología , Hepatocitos/metabolismo , Hígado/citología , Ratones Endogámicos C57BL , Receptores Notch/metabolismo , Transducción de Señal , Células Madre/metabolismo , Transcripción Genética
4.
Stem Cell Res ; 16(2): 460-8, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26930613

RESUMEN

Somatic cells could be directly converted into induced neural stem cells (iNSCs) by ectopic expression of defined transcription factors. However, the underlying mechanism of direct lineage transition into iNSCs is largely unknown. In this study, we examined the effect of genetic background on the direct conversion process into an iNSC state. The iNSCs from two different mouse strains exhibited the distinct efficiency of lineage conversion as well as clonal expansion. Furthermore, the expression levels of endogenous NSC markers, silencing of transgenes, and in vitro differentiation potential were also different between iNSC lines from different strains. Therefore, our data suggest that the genetic background of starting cells influences the conversion efficiency as well as reprogramming status of directly converted iNSCs.


Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Células-Madre Neurales/citología , Animales , Diferenciación Celular , Células Cultivadas , Reprogramación Celular , Colágeno Tipo I/metabolismo , Cadena alfa 1 del Colágeno Tipo I , Fibroblastos/citología , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Fluorescente , Nestina/metabolismo , Células-Madre Neurales/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Cell Rep ; 15(4): 814-829, 2016 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-27149847

RESUMEN

Recent studies have shown that defined factors could lead to the direct conversion of fibroblasts into induced hepatocyte-like cells (iHeps). However, reported conversion efficiencies are very low, and the underlying mechanism of the direct hepatic reprogramming is largely unknown. Here, we report that direct conversion into iHeps is a stepwise transition involving the erasure of somatic memory, mesenchymal-to-epithelial transition, and induction of hepatic cell fate in a sequential manner. Through screening for additional factors that could potentially enhance the conversion kinetics, we have found that c-Myc and Klf4 (CK) dramatically accelerate conversion kinetics, resulting in remarkably improved iHep generation. Furthermore, we identified small molecules that could lead to the robust generation of iHeps without CK. Finally, we show that Hnf1α supported by small molecules is sufficient to efficiently induce direct hepatic reprogramming. This approach might help to fully elucidate the direct conversion process and also facilitate the translation of iHep into the clinic.

6.
Sci Rep ; 5: 15706, 2015 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-26503743

RESUMEN

The ability to generate integration-free induced hepatocyte-like cells (iHeps) from somatic fibroblasts has the potential to advance their clinical application. Here, we have generated integration-free, functional, and expandable iHeps from mouse somatic fibroblasts. To elicit this direct conversion, we took advantage of an oriP/EBNA1-based episomal system to deliver a set of transcription factors, Gata4, Hnf1a, and Foxa3, to the fibroblasts. The established iHeps exhibit similar morphology, marker expression, and functional properties to primary hepatocytes. Furthermore, integration-free iHeps prolong the survival of fumarylacetoacetate-hydrolase-deficient (Fah(-/-)) mice after cell transplantation. Our study provides a novel concept for generating functional and expandable iHeps using a non-viral, non-integrating, plasmid-based system that could facilitate their pharmaceutical and biomedical application.


Asunto(s)
Fibroblastos/citología , Factor de Transcripción GATA4/genética , Factor Nuclear 1-alfa del Hepatocito/genética , Factor Nuclear 3-gamma del Hepatocito/genética , Hepatocitos/citología , Animales , Cadherinas/genética , Cadherinas/metabolismo , Diferenciación Celular , Células Cultivadas , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Embrión de Mamíferos/citología , Fibroblastos/metabolismo , Hepatocitos/metabolismo , Hidrolasas/deficiencia , Hidrolasas/genética , Cariotipificación , Queratina-18/genética , Queratina-18/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Fluorescente , Albúmina Sérica/genética , Albúmina Sérica/metabolismo , Proteína de la Zonula Occludens-1/genética , Proteína de la Zonula Occludens-1/metabolismo
7.
Theriogenology ; 79(2): 284-90.e1-2, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23174779

RESUMEN

The Wnt/ß-catenin signaling pathway plays essential roles in the regulation of cell fate and polarity during embryonic development of many animal species. This study investigated the possible involvement of Wnt/ß-catenin signaling pathway during hatching and trophectoderm (TE) development in pig blastocysts. Results showed that ß-catenin and DVL3, the key mediators of Wnt/ß-catenin signaling, disappeared from the nucleus after blastocyst hatching. Specific inhibition of Wnt/ß-catenin signaling pathway, by Dickkopf-1, increased the rate of blastocyst hatching, total nuclear number per blastocyst, and reduced the ratio of inner cell mass (ICM):TE (P < 0.05). In contrast, specific activation of the Wnt/ß-catenin signaling pathway, by lithium chloride, reduced the rate of blastocyst hatching, total nuclear number per blastocyst, and increased the ratio of ICM:TE (P < 0.05). The change in the ICM:TE ratio was associated with the change in the number of TE cells but not the ICM cells. Activation or inhibition of Wnt/ß-catenin signaling and ß-catenin nuclear accumulation, by lithium chloride or Dickkopf-1, also altered the expression of CDX2. These data therefore, suggest the possible involvement of Wnt/ß-catenin signaling in regulating hatching and TE fate during the development of pig blastocyst.


Asunto(s)
Blastocisto/fisiología , Porcinos/embriología , Vía de Señalización Wnt/fisiología , Proteínas Adaptadoras Transductoras de Señales/análisis , Animales , Blastocisto/química , Blastocisto/citología , Diferenciación Celular , Ectodermo/citología , Ectodermo/embriología , Técnicas de Cultivo de Embriones/veterinaria , Células Epiteliales/citología , Femenino , Fertilización In Vitro/veterinaria , Péptidos y Proteínas de Señalización Intercelular/farmacología , Cloruro de Litio/farmacología , Masculino , Vía de Señalización Wnt/efectos de los fármacos , beta Catenina/análisis
8.
PLoS One ; 8(6): e67594, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23825671

RESUMEN

Epiblast stem cells (EpiSCs) and embryonic stem cells (ESCs) differ in their in vivo differentiation potential. While ESCs form teratomas and efficiently contribute to the development of chimeras, EpiSCs form teratomas but very rarely chimeras. In contrast to their differentiation potential, the reprogramming potential of EpiSCs has not yet been investigated. Here we demonstrate that the epiblast-derived pluripotent stem cells EpiSCs and P19 embryonal carcinoma cells (ECCs) exhibit a lower reprogramming potential than ESCs and F9 ECCs. In addition, we show that the low reprogramming ability is due to the lower levels of Sox2 in epiblast-derived stem cells. Consistent with this observation, overexpression of Sox2 enhances reprogramming efficiency. In summary, these findings suggest that a low reprogramming potential is a general feature of epiblast-derived stem cells and that the Sox2 level is a determinant of the cellular reprogramming potential.


Asunto(s)
Reprogramación Celular , Factores de Transcripción SOXB1/fisiología , Animales , Células Cultivadas , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA