Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Int J Mol Sci ; 24(12)2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37373013

RESUMEN

To investigate the potential of H2-calponin (CNN2) as a serum biomarker for hepatocellular carcinoma (HCC), this study employed the serological analysis of recombinantly expressed cDNA clone (SEREX) technique to identify the presence of CNN2 antibody in the serum of patients with HCC and other tumors. The CNN2 protein was produced through genetic engineering and used as an antigen to determine the positive rate of serum CNN2 autoantibodies via indirect enzyme-linked immunosorbent assay (ELISA). In addition, the mRNA and protein expressions of CNN2 in cells and tissues were evaluated using RT-PCR, in situ RT-PCR, and immunohistochemistry methods. The HCC group exhibited a significantly higher positive rate of anti-CNN2 antibody (54.8%) compared to gastric cancer (6.5%), lung cancer (3.2%), rectal cancer (9.7%), hepatitis (3.2%), liver cirrhosis (3.2%), and normal tissues (3.1%). The positive rates of CNN2 mRNA in HCC with metastasis, non-metastatic HCC, lung cancer, gastric cancer, nasopharyngeal cancer, liver cirrhosis, and hepatitis were 56.67%, 41.67%, 17.5%, 10.0%, 20.0%, 53.13%, and 41.67%, respectively. Meanwhile, the positive rates of CNN2 protein were 63.33%, 37.5%, 17.5%, 27.5%, 45%, 31.25%, and 20.83%, respectively. The down-regulation of CNN2 could inhibit the migration and invasion of liver cancer cells. CNN2 is a newly identified HCC-associated antigen that is implicated in the migration and invasion of liver cancer cells, making it a promising target for liver cancer therapy.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Neoplasias Nasofaríngeas , Humanos , Neoplasias Hepáticas/metabolismo , Carcinoma Hepatocelular/metabolismo , Autoanticuerpos , Cirrosis Hepática , ARN Mensajero , Biomarcadores de Tumor/genética , Calponinas
2.
J Stroke Cerebrovasc Dis ; 31(2): 106221, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34837757

RESUMEN

OBJECTIVE: To assess the potential effect of dl-3-N-butylphthalide (dl-NBP) for the proliferation and differentiation of neural stem cells (NSCs) against hypoxia and the underlying mechanism. MATERIALS AND METHODS: Hippocampal NSCs were obtained from fetal rats. NSCs combined with dl-NBP and single NSCs were cultured. The impact of siRNA-mediated hypoxia-inducible factor-1alpha (HIF-1α) knockdown on NSCs was detected with western blotting (WB) and quantitative real-time reverse transcription polymerase chain reaction (RT-qPCR). Cell-counting kit-8 assay was used for evaluating the viability of NSCs. Levels of HIF-1α protein were measured using WB, and vascular endothelial growth factor (VEGF) expression was quantified using RT-qPCR and enzyme-linked immunosorbent assay. RESULTS: Compared with 7 different concentrations of dl-NBP, 0.25 g/L was determined as the optimal concentration to significantly increase the viability of NSCs (p < 0.001). Dl-NBP can significantly increase the viability of hypoxic NSCs (p < 0.001) and improve the differentiation of hypoxic NSCs into astrocytes (p = 0.001) and oligodendrocytes (p < 0.001). Meanwhile, Dl-NBP can significantly elevate levels of HIF-1α protein (p < 0.001) and VEGF mRNA (p = 0.001) / protein (p < 0.001) in NSCs in the hypoxic environment. However, after transfection with HIF-1α siRNA in NSCs, the viability and differentiation of NSCs was not recovered using dl-NBP under the hypoxic condition, as well as levels of HIF-1α and VEGF. CONCLUSION: Dl-NBP can reverse the weaker proliferation and differentiation power of NSCs in the hypoxic environment. The HIF-1α - VEGF pathway may be implicated in this protective effect of dl-NBP.


Asunto(s)
Benzofuranos , Subunidad alfa del Factor 1 Inducible por Hipoxia , Hipoxia , Células-Madre Neurales , Animales , Benzofuranos/farmacología , Hipoxia/prevención & control , Subunidad alfa del Factor 1 Inducible por Hipoxia/efectos de los fármacos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Células-Madre Neurales/patología , Fármacos Neuroprotectores/farmacología , Ratas
4.
Neural Regen Res ; 18(2): 404-409, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35900437

RESUMEN

Our previous study demonstrated the potential therapeutic role of human neural stem cell-derived exosomes (hNSC-Exo) in ischemic stroke. Here, we loaded brain-derived neurotrophic factor (BDNF) into exosomes derived from NSCs to construct engineered exosomes (BDNF-hNSC-Exo) and compared their effects with those of hNSC-Exo on ischemic stroke both in vitro and in vivo. In a model of H2O2-induced oxidative stress in NSCs, BDNF-hNSC-Exo markedly enhanced cell survival. In a rat middle cerebral artery occlusion model, BDNF-hNSC-Exo not only inhibited the activation of microglia, but also promoted the differentiation of endogenous NSCs into neurons. These results suggest that BDNF can improve the function of NSC-derived exosomes in the treatment of ischemic stroke. Our research may support the clinical use of other neurotrophic factors for central nervous system diseases.

5.
Exp Anim ; 72(2): 209-217, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-36418078

RESUMEN

The middle cerebral artery occlusion model (MCAO) is one of the most common stroke models in neuroscience research. The establishment of the mouse MCAO model in terms of animal survival depends on anesthesia, which is an important part of the entire surgical process. The 7-day survival rate of the MCAO model under isoflurane (ISO) anesthesia (35%) was lower than ketamine/xylazine (KX) anesthesia (70%), which demonstrated that the success rate of the MCAO model under KX anesthesia would be significantly higher than that under ISO anesthesia. As confirmed by TTC staining and MRI, the cerebral infarction area of mice successfully modeled under ISO anesthesia was significantly smaller than that of KX anesthesia. The diameter of cerebral blood vessels under ISO anesthesia was significantly larger than that under KX, and the blood perfusion volume was also significantly increased in the same area. ISO has proven to delay the coagulation time and affect the activation of coagulation factors. ISO anesthesia may cause bleeding, vasodilation, respiratory depression, and other phenomena that affect the success rate and death of diseased animal models. In conclusion, compared with ISO anesthesia, KX anesthesia is a safer and more suitable method for the establishment of a mouse MCAO model. The data will inform safer and more detailed anesthesia recommendations forthe establishment of animal models of vascular-related major injury diseases.


Asunto(s)
Anestesia , Isoflurano , Ketamina , Ratones , Animales , Ketamina/farmacología , Isoflurano/efectos adversos , Xilazina/farmacología , Infarto de la Arteria Cerebral Media , Modelos Animales de Enfermedad
6.
Open Life Sci ; 17(1): 1324-1332, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36313859

RESUMEN

Corneal disease was the most critical cause of vision loss. This study aimed to research a new method and provide a theoretical basis for treating corneal injury. A mice corneal epithelial injury model was constructed by the method of mechanical curettage. Models were treated with sphingosine 1-phosphate (S1P) and si-Spns2. An immunofluorescence assay was used to detect ßIII-tubulin. The expressions of neurotrophic factor, S1P transporter, and extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway-related proteins were detected by western blot. Hematoxylin-eosin staining was processed to detect the effect of SIP on corneal repair in mice. si-Spns2 inhibited the effect of S1P. S1P significantly repaired the corneal injury, while si-Spns2 treatment made it more severe. Moreover, S1P could significantly increase the levels of NGF, BDNF, GDNF, Spns2, and p-ERK1/2. si-Spns2 inhibits the effect of S1P in the expression of these proteins. S1P significantly increased axonal differentiation of trigeminal ganglion neurons, which was inhibited after si-Spns2 treatment. S1P promoted corneal trigeminal neuron differentiation and corneal nerve repair via upregulating nerve growth factor expression in a mouse model. Treatment of corneal injury by S1P may be an effective approach.

7.
J Int Med Res ; 49(5): 3000605211013774, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34024193

RESUMEN

OBJECTIVE: Glioblastoma (GB) is a refractory malignancy with a high rate of recurrence and treatment resistance. Hypoxia-related genes are promising prognostic indicators for GB, so we herein developed a reliable hypoxia-related gene risk scoring model to predict the prognosis of patients with GB. METHOD: Gene expression profiles and corresponding clinicopathological features of patients with GB were obtained from the Cancer Genome Atlas (TCGA; n = 160) and Gene Expression Omnibus (GEO) GSE7696 (n = 80) databases. Univariate and multivariate Cox regression analyses of differentially expressed hypoxia-related genes were performed using R 3.5.1 software. RESULT: Fourteen prognosis-related genes were identified and used to construct a risk signature. Patients with high-risk scores had significantly lower overall survival (OS) than those with low-risk scores. The median risk score was used as a critical value and for OS prediction in an independent external verification GSE7696 cohort. Risk score was not significantly affected by clinical-related factors. We also developed a prediction nomogram based on the TCGA training set to predict survival rates, and included six independent prognostic parameters in the TCGA prediction model. CONCLUSION: We determined a reliable hypoxia-related gene risk scoring model for predicting the prognosis of patients with GB.


Asunto(s)
Glioblastoma , Regulación Neoplásica de la Expresión Génica , Glioblastoma/diagnóstico , Glioblastoma/genética , Humanos , Hipoxia/genética , Recurrencia Local de Neoplasia , Pronóstico
8.
Neural Regen Res ; 15(11): 2057-2062, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32394962

RESUMEN

Previous research found that cerebral dopamine neurotrophic factor (CDNF) has a protective effect on brain dopaminergic neurons, and CDNF is regarded as a promising therapeutic agent for neurodegenerative diseases. However, the effects of CDNF on the proliferation, differentiation, and apoptosis of neural stem cells (NSCs), which are very sensitive to hypoxic environments, remain unknown. In this study, NSCs were extracted from the hippocampi of fetal rats and cultured with different concentrations of CDNF. The results showed that 200 nM CDNF was the optimal concentration for significantly increasing the viability of NSCs under non-hypoxic environmental conditions. Then, the cells were cultured with 200 nM CDNF under the hypoxic conditions of 90% N2, 5% CO2, and 5% air for 6 hours. The results showed that CDNF significantly improved the viability of hypoxic NSCs and reduced apoptosis among hypoxic NSCs. The detection of markers showed that CDNF increased the differentiation of hypoxic NSCs into neurons and astrocytes. CDNF also reduced the expression level of Lin28 protein and increased the expression of Let-7 mRNA in NSCs, under hypoxic conditions. In conclusion, we determined that CDNF was able to reverse the adverse proliferation, differentiation, and apoptosis effects that normally affect NSCs in a hypoxic environment. Furthermore, the Lin28/Let-7 pathway may be involved in this regulated function of CDNF. The present study was approved by the Laboratory Animal Centre of Southeast University, China (approval No. 20180924006) on September 24, 2018.

9.
Front Oncol ; 10: 739, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32582530

RESUMEN

Recent advances in maximum safe glioma resection have included the introduction of a host of visualization techniques to complement intraoperative white-light imaging of tumors. However, barriers to the effective use of these techniques within the central nervous system remain. In the healthy brain, the blood-brain barrier ensures the stability of the sensitive internal environment of the brain by protecting the active functions of the central nervous system and preventing the invasion of microorganisms and toxins. Brain tumors, however, often cause degradation and dysfunction of this barrier, resulting in a heterogeneous increase in vascular permeability throughout the tumor mass and outside it. Thus, the characteristics of both the blood-brain and blood-brain tumor barriers hinder the vascular delivery of a variety of therapeutic substances to brain tumors. Recent developments in fluorescent visualization of brain tumors offer improvements in the extent of maximal safe resection, but many of these fluorescent agents must reach the tumor via the vasculature. As a result, these fluorescence-guided resection techniques are often limited by the extent of vascular permeability in tumor regions and by the failure to stain the full volume of tumor tissue. In this review, we describe the structure and function of both the blood-brain and blood-brain tumor barriers in the context of the current state of fluorescence-guided imaging of brain tumors. We discuss features of currently used techniques for fluorescence-guided brain tumor resection, with an emphasis on their interactions with the blood-brain and blood-tumor barriers. Finally, we discuss a selection of novel preclinical techniques that have the potential to enhance the delivery of therapeutics to brain tumors in spite of the barrier properties of the brain.

10.
Hum Immunol ; 75(11): 1104-9, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25300997

RESUMEN

Human alpha-defensins are natural antimicrobial peptides of neutrophils evolved in host defense reactions and circulating nonstressed alpha-defensins may be associated with serum lipid levels. The aim of this work was to examine whether the expression of alpha-defensins 1, 2 and 3 genes are changed and whether this changes are reversed following treatment in patients with hypercholesteremia. A total of 40 individuals of hypercholesteremia group were studied, compared with 40 individuals of normal control group. Protein levels and gene expression levels of alpha-defensins 1, 2 and 3 were significantly higher in patients with hypercholesteremia compared with subjects in normal control group. In patients with hypercholesteremia, protein levels of alpha-defensins 1, 2 and 3 correlated positively with the levels of total cholesterol and low-density lipoprotein cholesterol. Protein levels and gene expression levels of alpha-defensins 1, 2 and 3 were decreased significantly after a treatment with atorvastatin calcium 20mg daily compared with the patients before the treatment. Our results suggest that the expression of alpha-defensins 1, 2 and 3 genes is involved in dyslipidemia in patients with hypercholesteremia.


Asunto(s)
Hipercolesterolemia/genética , alfa-Defensinas/genética , Anciano , Anticolesterolemiantes/uso terapéutico , Atorvastatina , Estudios de Casos y Controles , Colesterol/sangre , LDL-Colesterol/sangre , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Ácidos Heptanoicos/uso terapéutico , Humanos , Hipercolesterolemia/sangre , Hipercolesterolemia/tratamiento farmacológico , Hipercolesterolemia/inmunología , Masculino , Persona de Mediana Edad , Neutrófilos/efectos de los fármacos , Neutrófilos/inmunología , Neutrófilos/metabolismo , Pirroles/uso terapéutico , alfa-Defensinas/antagonistas & inhibidores , alfa-Defensinas/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA