Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Neuroinflammation ; 19(1): 152, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35705957

RESUMEN

BACKGROUND: Inflammation is a potential risk factor of mental disturbance. FKBP5 that encodes FK506-binding protein 51 (FKBP51), a negative cochaperone of glucocorticoid receptor (GR), is a stress-inducible gene and has been linked to psychiatric disorders. Yet, the role of FKBP51 in the inflammatory stress-associated mental disturbance remained unclear. METHODS: Fkbp5-deficient (Fkbp5-KO) mice were used to study inflammatory stress by a single intraperitoneal injection of lipopolysaccharide (LPS). The anxiety-like behaviors, neuroimaging, immunofluorescence staining, immunohistochemistry, protein and mRNA expression analysis of inflammation- and neurotransmission-related mediators were evaluated. A dexamethasone drinking model was also applied to examine the effect of Fkbp5-KO in glucocorticoid-induced stress. RESULTS: LPS administration induced FKBP51 elevation in the liver and hippocampus accompanied with transient sickness. Notably, Fkbp5-KO but not wild-type (WT) mice showed anxiety-like behaviors 7 days after LPS injection (LPS-D7). LPS challenge rapidly increased peripheral and central immune responses and hippocampal microglial activation followed by a delayed GR upregulation on LPS-D7, and these effects were attenuated in Fkbp5-KO mice. Whole-brain [18F]-FEPPA neuroimaging, which target translocator protein (TSPO) to indicate neuroinflammation, showed that Fkbp5-KO reduced LPS-induced neuroinflammation in various brain regions including hippocampus. Interestingly, LPS elevated glutamic acid decarboxylase 65 (GAD65), the membrane-associated GABA-synthesizing enzyme, in the hippocampus of WT but not Fkbp5-KO mice on LPS-D7. This FKBP51-dependent GAD65 upregulation was observed in the ventral hippocampal CA1 accompanied by the reduction of c-Fos-indicated neuronal activity, whereas both GAD65 and neuronal activity were reduced in dorsal CA1 in a FKBP51-independent manner. GC-induced anxiety was also examined, which was attenuated in Fkbp5-KO and hippocampal GAD65 expression was unaffected. CONCLUSIONS: These results suggest that FKBP51/FKBP5 is involved in the systemic inflammation-induced neuroinflammation and hippocampal GR activation, which may contribute to the enhancement of GAD65 expression for GABA synthesis in the ventral hippocampus, thereby facilitating resilience to inflammation-induced anxiety.


Asunto(s)
Ansiedad/metabolismo , Glutamato Descarboxilasa/metabolismo , Lipopolisacáridos , Proteínas de Unión a Tacrolimus/metabolismo , Animales , Ansiedad/patología , Glucocorticoides/farmacología , Glutamato Descarboxilasa/genética , Hipocampo/metabolismo , Humanos , Inflamación/inducido químicamente , Inflamación/metabolismo , Lipopolisacáridos/toxicidad , Ratones , Receptores de GABA/metabolismo , Receptores de Glucocorticoides/metabolismo , Proteínas de Unión a Tacrolimus/genética , Ácido gamma-Aminobutírico/metabolismo
2.
J Biomed Sci ; 29(1): 51, 2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35821032

RESUMEN

BACKGROUND: Disruption of normal brain development is implicated in numerous psychiatric disorders with neurodevelopmental origins, including autism spectrum disorder (ASD). Widespread abnormalities in brain structure and functions caused by dysregulations of neurodevelopmental processes has been recently shown to exert adverse effects across generations. An imbalance between excitatory/inhibitory (E/I) transmission is the putative hypothesis of ASD pathogenesis, supporting by the specific implications of inhibitory γ-aminobutyric acid (GABA)ergic system in autistic individuals and animal models of ASD. However, the contribution of GABAergic system in the neuropathophysiology across generations of ASD is still unknown. Here, we uncover profound alterations in the expression and function of GABAA receptors (GABAARs) in the amygdala across generations of the VPA-induced animal model of ASD. METHODS: The F2 generation was produced by mating an F1 VPA-induced male offspring with naïve females after a single injection of VPA on embryonic day (E12.5) in F0. Autism-like behaviors were assessed by animal behavior tests. Expression and functional properties of GABAARs and related proteins were examined by using western blotting and electrophysiological techniques. RESULTS: Social deficit, repetitive behavior, and emotional comorbidities were demonstrated across two generations of the VPA-induced offspring. Decreased synaptic GABAAR and gephyrin levels, and inhibitory transmission were found in the amygdala from two generations of the VPA-induced offspring with greater reductions in the F2 generation. Weaker association of gephyrin with GABAAR was shown in the F2 generation than the F1 generation. Moreover, dysregulated NMDA-induced enhancements of gephyrin and GABAAR at the synapse in the VPA-induced offspring was worsened in the F2 generation than the F1 generation. Elevated glutamatergic modifications were additionally shown across generations of the VPA-induced offspring without generation difference. CONCLUSIONS: Taken together, these findings revealed the E/I synaptic abnormalities in the amygdala from two generations of the VPA-induced offspring with GABAergic deteriorations in the F2 generation, suggesting a potential therapeutic role of the GABAergic system to generational pathophysiology of ASD.


Asunto(s)
Trastorno del Espectro Autista , Receptores de GABA-A , Animales , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratas , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Sinapsis/fisiología , Ácido Valproico , Ácido gamma-Aminobutírico
3.
Cereb Cortex ; 31(1): 575-590, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32901273

RESUMEN

Intermittent theta-burst stimulation (iTBS), a form of repetitive transcranial magnetic stimulation, is considered a potential therapy for treatment-resistant depression. The synaptic mechanism of iTBS has long been known to be an effective method to induce long-term potentiation (LTP)-like plasticity in humans. However, there is limited evidence as to whether the antidepressant effect of iTBS is associated with change in synaptic function in the prefrontal cortex (PFC) in preclinical study. Hence, we applied an antidepressant (i.e., fluoxetine)-resistant depression rat model induced by severe foot-shocks to investigate the antidepressant efficacy of iTBS in the synaptic pathology. The results showed that iTBS treatment improved not only the impaired LTP, but also the aberrant long-term depression in the PFC of antidepressant-resistant depression model rats. Moreover, the mechanism of LTP improvement by iTBS involved downstream molecules of brain-derived neurotrophic factor, while the mechanism of long-term depression improvement by iTBS involved downstream molecules of proBDNF. The aberrant spine morphology was also improved by iTBS treatment. This study demonstrated that the mechanism of the iTBS paradigm is complex and may regulate not only excitatory but also inhibitory synaptic effects in the PFC.


Asunto(s)
Antidepresivos/farmacología , Trastorno Depresivo Resistente al Tratamiento/fisiopatología , Plasticidad Neuronal/fisiología , Corteza Prefrontal/fisiopatología , Sinapsis/patología , Animales , Potenciales Evocados Motores/efectos de los fármacos , Potenciales Evocados Motores/fisiología , Potenciación a Largo Plazo/fisiología , Masculino , Corteza Motora/efectos de los fármacos , Corteza Motora/fisiopatología , Plasticidad Neuronal/efectos de los fármacos , Corteza Prefrontal/efectos de los fármacos , Ratas Sprague-Dawley , Ritmo Teta/efectos de los fármacos , Ritmo Teta/fisiología , Estimulación Magnética Transcraneal/métodos
4.
Biochem Biophys Res Commun ; 562: 112-118, 2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-34049204

RESUMEN

Mood dysregulation refers to the inability of a person to control their negative emotions, and it is linked to various stressful experiences. Dysregulated neural synaptic plasticity and actin-filament dynamics are important regulators of stress response in animal models. However, until now, there is no evidence to differential the mechanisms of synaptic plasticity and actin-filament dynamics in stress susceptibility and stress-resistant. Here we found that depression-like behaviour was observed in the susceptible group following chronic social defeat stress (CSDS) exposure, but not in stress-resistant mice. High-frequency stimulation-induced long-term potentiation (LTP) was impaired in the CSDS-induced depression-susceptible group. Further, the levels of pro-brain derived neurotrophic factor (BDNF), mature BDNF, PSD-95, phosphorylated CaMKII, and phosphorylated Cofilin, an actin-filament dynamics regulator, were reduced in CSDS-induced depression-susceptible mice unlike in stress-resistant mice. These results demonstrate that synaptic plasticity-related molecules, such as BDNF and phosphorylated Cofilin, are important for maintaining synaptic functions and structure in mice that experience more stress.


Asunto(s)
Plasticidad Neuronal/fisiología , Conducta Social , Estrés Psicológico/fisiopatología , Animales , Ansiedad/fisiopatología , Conducta Animal , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Enfermedad Crónica , Susceptibilidad a Enfermedades , Potenciación a Largo Plazo , Masculino , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/metabolismo , Fosforilación , Sinapsis/metabolismo
5.
Phys Chem Chem Phys ; 23(18): 10919-10925, 2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-33912879

RESUMEN

Photon-induced trap deactivation is commonly observed in organometal halide perovskites. Trap deactivation is characterized by an obvious photoluminescence (PL) enhancement. In this work, the properties of traps in CH3NH3PbI3 perovskite films were studied based on the PL enhancement excited by lasers of different wavelengths (633 nm and 405 nm). Two types of electron traps were identified; one can be deactivated by both 633 nm and 405 nm illuminations, whereas the other one can only be deactivated by 405 nm illumination. The energy levels of both types of traps were beneath the conduction band minimum. The expressions of the PL enhancement kinetics due to the trap deactivations by lasers of different wavelengths were derived. The ratio of the constants of the radiative recombination rate and the initial capture rates for both traps was determined from the PL enhancement. The trap deactivation was a photon-related process rather than a photocarrier-related process, and the deactivation time was inversely proportional to the photon flux density.

6.
Biochem Biophys Res Commun ; 526(2): 491-496, 2020 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-32238266

RESUMEN

Potentiation of N-methyl-D-aspartate receptor (NMDAR)-mediated excitatory synaptic plasticity around 1 h after brief exposure to anoxia/aglycemia is called ischemic long-term potentiation (iLTP), which is considered a pathological form of synaptic response during the early phase of ischemic stroke. It is known that GABAergic inhibitory transmission is also an important molecular process involved in synaptic plasticity and learning memory. However, whether GABAergic transmission is involved in iLTP and early-phase plasticity in ischemic stroke remains unknown. In this study, iLTP was found to be induced in the hippocampal Schaffer-collateral pathway by exposure to oxygen glucose deprivation (OGD). Western blot analysis was conducted to analyze excitatory synaptic receptors and inhibitory synaptic receptors following OGD. The ß3 subunit of the GABAA receptor (GABAAR) was markedly reduced, whereas the GluN2B subunit of the NMDAR was increased in the hippocampal area in the OGD group. Using extracellular recording, we demonstrated that application of GABAAR agonist midazolam could abolish the hippocampal iLTP. Moreover, midazolam had no significant effect on the increase in NMDAR subunit GluN2B, but ameliorated the reduction in the ß3 subunit of GABAAR after OGD. In summary, our results indicated that hippocampal GABAAR reduction promoted synaptic potentiation after OGD. Activation of GABAergic inhibitory transmission function could inhibit iLTP; thus, modulation of GABAergic function is a protective treatment method in the acute phase of synaptic plasticity in ischemic stroke.


Asunto(s)
Región CA1 Hipocampal/fisiopatología , Hipoxia-Isquemia Encefálica/fisiopatología , Potenciación a Largo Plazo , Receptores de GABA-A/metabolismo , Animales , Región CA1 Hipocampal/efectos de los fármacos , Región CA1 Hipocampal/metabolismo , Moduladores del GABA/farmacología , Glucosa/metabolismo , Hipoxia-Isquemia Encefálica/tratamiento farmacológico , Hipoxia-Isquemia Encefálica/metabolismo , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Midazolam/farmacología , Oxígeno/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
7.
Psychol Med ; 50(8): 1285-1291, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31155020

RESUMEN

BACKGROUND: Major depressive disorder (MDD) is highly heterogeneous and can be classified as treatment-resistant depression (TRD) or antidepressant-responsive depression (non-TRD) based on patients' responses to antidepressant treatment. Methods for distinguishing between TRD and non-TRD are critical clinical concerns. Deficits of cortical inhibition (CI) have been reported to play an influential role in the pathophysiology of MDD. Whether TRD patients' CI is more impaired than that of non-TRD patients remains unclear. METHODS: Paired-pulse transcranial magnetic stimulation (ppTMS) was used to measure cortical inhibitory function including GABAA- and GABAB-receptor-related CI and cortical excitatory function including glutamate-receptor-related intracortical facilitation (ICF). We recruited 36 healthy controls (HC) and 36 patients with MDD (non-TRD, n = 16; TRD, n = 20). All participants received evaluations for depression severity and ppTMS examinations. Non-TRD patients received an additional ppTMS examination after 3 months of treatment with the SSRI escitalopram. RESULTS: Patients with TRD exhibited reduced short-interval intracortical inhibition (SICI) and long-interval intracortical inhibition (LICI), as shown by abnormally higher estimates, than those with non-TRD or HC (F = 11.030, p < 0.001; F = 10.309, p < 0.001, respectively). After an adequate trial of escitalopram treatment, the LICI of non-TRD reduced significantly (t = - 3.628, p < 0.001), whereas the ICF remained lower than that of HC and showed no difference from pretreatment non-TRD. CONCLUSIONS: TRD was characterized by relatively reduced CI, including both GABAA- and GABAB-receptor-mediated neurons while non-TRD preserved partial CI. In non-TRD, SSRIs may mainly modulate GABAB-receptor-related LICI. Our findings revealed distinguishable features of CI in antidepressant-resistant and responsive major depression.


Asunto(s)
Trastorno Depresivo Mayor/terapia , Trastorno Depresivo Resistente al Tratamiento/terapia , Potenciales Evocados Motores/fisiología , Corteza Motora/fisiopatología , Inhibición Neural/fisiología , Estimulación Magnética Transcraneal/métodos , Adulto , Antidepresivos/uso terapéutico , Estudios de Casos y Controles , Trastorno Depresivo Mayor/tratamiento farmacológico , Trastorno Depresivo Mayor/fisiopatología , Trastorno Depresivo Resistente al Tratamiento/fisiopatología , Femenino , Moduladores del GABA/farmacología , Agonistas de Receptores GABA-B/farmacología , Humanos , Masculino , Persona de Mediana Edad
8.
Molecules ; 25(16)2020 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-32806562

RESUMEN

Brain-derived neurotrophic factor (BDNF) is an important factor for memory consolidation and cognitive function. Protein kinase A (PKA) signaling interacts significantly with BDNF-provoked downstream signaling. Glucosamine (GLN), a common dietary supplement, has been demonstrated to perform a variety of beneficial physiological functions. In the current study, an in vivo model of 7-week-old C57BL/6 mice receiving daily intraperitoneal injection of GLN (0, 3, 10 and 30 mg/animal) was subjected to the novel object recognition test in order to determine cognitive performance. GLN significantly increased cognitive function. In the hippocampus GLN elevated tissue cAMP concentrations and CREB phosphorylation, and upregulated the expression of BDNF, CREB5 and the BDNF receptor TrkB, but it reduced PDE4B expression. With the in vitro model in the HT22 hippocampal cell line, GLN exposure significantly increased protein and mRNA levels of BDNF and CREB5 and induced cAMP responsive element (CRE) reporter activity; the GLN-mediated BDNF expression and CRE reporter induction were suppressed by PKA inhibitor H89. Our current findings suggest that GLN can exert a cognition-enhancing function and this may act at least in part by upregulating the BDNF levels via a cAMP/PKA/CREB-dependent pathway.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/biosíntesis , Cognición/efectos de los fármacos , Glucosamina/farmacología , Regulación hacia Arriba/efectos de los fármacos , Animales , AMP Cíclico/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Masculino , Glicoproteínas de Membrana/metabolismo , Ratones , Fosforilación/efectos de los fármacos , Proteínas Tirosina Quinasas/metabolismo
9.
J Formos Med Assoc ; 118(1 Pt 3): 420-428, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30031602

RESUMEN

BACKGROUND/PURPOSE: The main purpose of this study was to extend previously reported showing potent neuroprotective effect of valproic acid (VPA) in primary midbrain neuro-glial cultures to investigate whether VPA could protect dopamine (DA) neurons in vivo against 6-hydroxydopamine (6-OHDA)-induced neurodegeneration and to determine the underlying mechanism. METHODS: Male adult rats received a daily intraperitoneal injection of VPA or saline for two weeks before and after injection of 5, 10, or 15 µg of 6-OHDA into the brain. All rats were evaluated for motor function by rotarod performance. Brain samples were prepared for immunohistochemical staining and for determination of levels of dopamine, dopamine metabolites, and neurotrophic factors. RESULTS: 6-OHDA injection showed significant and dose-dependent damage of dopaminergic neurons and decrease of striatal dopamine content. Rats in the VPA-treated group were markedly protected from the loss of dopaminergic neurons and showed improvements in motor performance, compared to the control group at the moderate 6-OHDA dose (10 µg). VPA-treated rats also showed significantly increased brain-derived neurotrophic factor (BDNF) levels in the striatum and substantia nigra compared to the levels in control animals. CONCLUSION: Our studies demonstrate that VPA exerts neuroprotective effects in a rat model of 6-OHDA-induced Parkinson's disease (PD), likely in part by up-regulation BDNF.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Fármacos Neuroprotectores/farmacología , Enfermedad de Parkinson Secundaria/tratamiento farmacológico , Ácido Valproico/farmacología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Masculino , Oxidopamina , Enfermedad de Parkinson Secundaria/metabolismo , Ratas , Ratas Sprague-Dawley , Regulación hacia Arriba
11.
J Biomed Sci ; 25(1): 76, 2018 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-30404641

RESUMEN

BACKGROUND: The brain predominantly expressed RING finger protein, Znf179, is known to be important for embryonic neuronal differentiation during brain development. Downregulation of Znf179 has been observed in motor neurons of adult mouse models for amyotrophic lateral sclerosis (ALS), yet the molecular function of Znf179 in neurodegeneration has never been previously described. Znf179 contains the classical C3HC4 RING finger domain, and numerous proteins containing C3HC4 RING finger domain act as E3 ubiquitin ligases. Hence, we are interested to identify whether Znf179 possesses E3 ligase activity and its role in ALS neuropathy. METHODS: We used in vivo and in vitro ubiquitination assay to examine the E3 ligase autoubiquitination activity of Znf179 and its effect on 26S proteasome activity. To search for the candidate substrates of Znf179, we immunoprecipitated Znf179 and subjected to mass spectrometry (MS) analysis to identify its interacting proteins. We found that ALS/ FTLD-U (frontotemporal lobar degeneration (FTLD) with ubiquitin inclusions)-related neurodegenerative TDP-43 protein is the E3 ligase substrate of Znf179. To further clarify the role of E3 ubiquitin ligase Znf179 in neurodegenerative TDP-43-UBI (ubiquitinated inclusions) (+) proteinopathy, the effect of Znf179-mediated TDP-43 polyubiquitination on TDP-43 protein stability, aggregate formation and nucleus/cytoplasm mislocalization were evaluated in vitro cell culture system and in vivo animal model. RESULTS: Here we report that Znf179 is a RING E3 ubiquitin ligase which possesses autoubiquitination feature and regulates 26S proteasome activity through modulating the protein expression levels of 19S/20S proteasome subunits. Our immunoprecipitation assay and MS analysis results revealed that the neuropathological TDP-43 protein is one of its E3 ligase substrate. Znf179 interactes with TDP-43 protein and mediates polyubiquitination of TDP-43 in vitro and in vivo. In neurodegenerative TDP-43 proteinopathy, we found that Znf179-mediated polyubiquitination of TDP-43 accelerates its protein turnover rate and attenuates insoluble pathologic TDP-43 aggregates, while knockout of Znf179 in mouse brain results in accumulation of insoluble TDP-43 and cytosolic TDP-43 inclusions in cortex, hippocampus and midbrain regions. CONCLUSIONS: Here we unveil the important role for the novel E3 ligase Znf179 in TDP-43-mediated neuropathy, and provide a potential therapeutic strategy for combating ALS/ FTLD-U neurodegenerative pathologies.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Proteínas de Unión al ADN/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/fisiopatología , Animales , Línea Celular Tumoral , Proteínas de Unión al ADN/metabolismo , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Ubiquitina-Proteína Ligasas/metabolismo
13.
Int J Mol Sci ; 19(9)2018 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-30235871

RESUMEN

Deep brain stimulation (DBS) is known to be a promising treatment for resistant depression, which acts via the serotonin (5-hydroxytryptamine, 5-HT) system in the infralimbic prefrontal cortex (ILPFC). Previous study revealed that dysfunction of brain 5-HT homeostasis is related to a valproate (VPA)-induced rat autism spectrum disorder (ASD) model. Whether ILPFC DBS rescues deficits in VPA-induced offspring through the 5-HT system is not known. Using VPA-induced offspring, we therefore explored the effect of DBS in autistic phenotypes and further investigated the underlying mechanism. Using combined behavioral and molecular approaches, we observed that applying DBS and 5-HT1A receptor agonist treatment with 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) reversed sociability deficits, anxiety and hyperactivity in the VPA-exposed offspring. We then administered the selective 5-HT1A receptor antagonist N-[2-[4-(2-Methoxyphenyl)-1-piperazinyl]ethyl]-N-2-pyridinylcyclohexanecarboxamide maleate (WAY 100635), following which the effect of DBS in terms of improving autistic behaviors was blocked in the VPA-exposed offspring. Furthermore, we found that both 8-OH-DPAT and DBS treatment rescued autistic behaviors by decreasing the expressions of NR2B subunit of N-methyl-D-aspartate receptors (NMDARs) and the ß3 subunit of γ-aminobutyric acid type A receptors (GABAAR) in the PFC region. These results provided the first evidence of characteristic behavioral changes in VPA-induced offspring caused by DBS via the 5-HT system in the ILPFC.


Asunto(s)
Trastorno del Espectro Autista/terapia , Estimulación Encefálica Profunda , Serotonina/metabolismo , 8-Hidroxi-2-(di-n-propilamino)tetralin/uso terapéutico , Animales , Trastorno del Espectro Autista/tratamiento farmacológico , Trastorno del Espectro Autista/etiología , Masculino , Corteza Prefrontal/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Agonistas del Receptor de Serotonina 5-HT1/uso terapéutico , Ácido Valproico/toxicidad
14.
Neural Plast ; 2017: 3467805, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29138698

RESUMEN

Epoxyeicosatrienoic acids (EETs) are derived from arachidonic acid and metabolized by soluble epoxide hydrolase (sEH). The role of EETs in synaptic function in the central nervous system is still largely unknown. We found that pharmacological inhibition of sEH to stabilize endogenous EETs and exogenous 14,15-EET significantly increased the field excitatory postsynaptic potential (fEPSP) response in the CA1 area of the hippocampus, while additionally enhancing high-frequency stimulation- (HFS-) induced long-term potentiation (LTP) and forskolin- (FSK-) induced LTP. sEH inhibitor (sEHI) N-[1-(oxopropyl)-4-piperidinyl]-N'-[4-(trifluoromethoxy) phenyl)-urea (TPPU) and exogenous 14,15-EET increased HFS-LTP, which could be blocked by an N-methyl-D-aspartate (NMDA) receptor subunit NR2B antagonist. TPPU- or 14,15-EET-facilitated FSK-mediated LTP can be potentiated by an A1 adenosine receptor antagonist and a phosphodiesterase inhibitor, but is prevented by a cAMP-dependent protein kinase (PKA) inhibitor. sEHI and 14,15-EET upregulated the activation of extracellular signal-regulated kinases (ERKs) and Ca2+/calmodulin- (CaM-) dependent protein kinase II (CaMKII). Phosphorylation of synaptic receptors NR2B and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit GluR1 was increased by TPPU and 14,15-EET administration. These results indicated that EETs increased NMDAR- and FSK-mediated synaptic potentiation via the AC-cAMP-PKA signaling cascade and upregulated the ERKs and CaMKII, resulting in increased phosphorylation of NR2B and GluR1 in the hippocampus.


Asunto(s)
Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , AMP Cíclico/metabolismo , Epóxido Hidrolasas/metabolismo , Hipocampo/metabolismo , Potenciación a Largo Plazo , Ácido 8,11,14-Eicosatrienoico/administración & dosificación , Animales , Epóxido Hidrolasas/antagonistas & inhibidores , Hipocampo/efectos de los fármacos , Potenciación a Largo Plazo/efectos de los fármacos , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Transducción de Señal
15.
J Neuroinflammation ; 13(1): 92, 2016 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-27121378

RESUMEN

BACKGROUND: Transient receptor potential ankyrin 1 (TRPA1) channel plays an important role in pain and inflammation. However, little is known about the significance of the TRPA1 channel in the pathophysiology of Alzheimer's disease (AD). METHODS: Wild-type (WT), TRPA1(-/-), amyloid precursor protein (APP)/presenilin 1 (PS1) transgenic (APP/PS1 Tg) mice, the mouse model of AD, and APP/PS1 Tg/TRPA1(-/-) mice were used to examine the role of TRPA1 in pathogenesis of AD. Western blot was used for protein expression; immunohistochemistry was used for histological examination. The mouse behaviors were evaluated by locomotion, nesting building, Y-maze and Morris water maze tests; levels of interleukin (IL)-1ß, IL-4, IL-6 and IL-10 and the activities of protein phosphatase 2B (PP2B), NF-κB and nuclear factor of activated T cells (NFAT) were measured by conventional assay kits; Fluo-8 NW calcium (Ca(2+)) assay kit was used for the measurement of intracellular Ca(2+) level in primary astrocytes and HEK293 cells. RESULTS: The protein expression of TRPA1 channels was higher in brains, mainly astrocytes of the hippocampus, from APP/PS1 Tg mice than WT mice. Ablation of TRPA1-channel function in APP/PS1 Tg mice alleviated behavioral dysfunction, Aß plaque deposition and pro-inflammatory cytokine production but increased astrogliosis in brain lesions. TRPA1 channels were activated and Ca(2+) influx was elicited in both astrocytes and TRPA1-transfected HEK293 cells treated with fibrilized Aß1-42; these were abrogated by pharmacological inhibition of TRPA1 channel activity, disruption of TRPA1 channel function or removal of extracellular Ca(2+). Inhibition of TRPA1 channel activity exacerbated Aß1-42-induced astrogliosis but inhibited Aß1-42-increased PP2B activation, the production of pro-inflammatory cytokines and activities of transcriptional factors NF-κB and NFAT in astrocytes and in APP/PS1 Tg mice. Pharmacological inhibition of PP2B activity diminished the fibrilized Aß1-42-induced production of pro-inflammatory cytokines, activation of NF-κB and NFAT and astrogliosis in astrocytes. CONCLUSIONS: TRPA1 - Ca(2+) - PP2B signaling may play a crucial role in regulating astrocyte-derived inflammation and pathogenesis of AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Astrocitos/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo , Animales , Conducta Animal , Western Blotting , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Transducción de Señal/fisiología , Canal Catiónico TRPA1
16.
J Biomed Sci ; 23(1): 72, 2016 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-27769241

RESUMEN

BACKGROUND: In the central nervous system regions of the sporadic and familial FTLD and ALS patients, TDP-43 has been identified as the major component of UBIs inclusions which is abnormally hyperphosphorylated, ubiquitinated, and cleaved into C-terminal fragments to form detergent-insoluble aggregates. So far, the effective drugs for FTLD and ALS neurodegenerative diseases are yet to be developed. Autophagy has been demonstrated as the major metabolism route of the pathological TDP-43 inclusions, hence activation of autophagy is a potential therapeutic strategy for TDP-43 pathogenesis in FTLD and ALS. Berberine, a traditional herbal medicine, is an inhibitor of mTOR signal and an activator for autophagy. Berberine has been implicated in several kinds of diseases, including the neuronal-related pathogenesis, such as Parkinson's, Huntington's and Alzheimer's diseases. However, the therapeutic effect of berberine on FTLD or ALS pathology has never been investigated. RESULTS: Here we studied the molecular mechanism of berberine in cell culture model with TDP-43 proteinopathies, and found that berberine is able to reverse the processing of insoluble TDP-43 aggregates formation through deregulation of mTOR/p70S6K signal and activation of autophagic degradation pathway. And inhibition of autophagy by specific autophagosome inhibitor, 3-MA, reverses the effect of berberine on reducing the accumulation of insoluble TDP-43 and aggregates formation. These results gave us the notion that inhibition of autophagy by 3-MA reverses the effect of berberine on TDP-43 pathogenesis, and activation of mTOR-regulated autophagy plays an important role in berberine-mediated therapeutic effect on TDP-43 proteinopathies. CONCLUSION: We supported an important notion that the traditional herb berberine is a potential alternative therapy for TDP-43-related neuropathology. Here we demonstrated that berberine is able to reverse the processing of insoluble TDP-43 aggregates formation through deregulation of mTOR/p70S6K signal and activation of autophagic degradation pathway. mTOR-autophagy signals plays an important role in berberine-mediated autophagic clearance of TDP-43 aggregates. Exploring the detailed mechanism of berberine on TDP-43 proteinopathy provides a better understanding for the therapeutic development in FTLD and ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/terapia , Berberina/uso terapéutico , Degeneración Lobar Frontotemporal/terapia , Proteinopatías TDP-43/terapia , Esclerosis Amiotrófica Lateral/genética , Animales , Línea Celular Tumoral , Degeneración Lobar Frontotemporal/genética , Ratones , Proteinopatías TDP-43/genética
17.
Arch Toxicol ; 90(5): 1211-24, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-25995009

RESUMEN

Long-term exposure to di-(2-ethylhexyl) phthalate (DEHP) is highly associated with carcinogenicity, fetotoxicity, psychological disorders and metabolic diseases, but the detrimental effects and mechanisms are not fully understood. We investigated the effect of exposing mouse mothers to DEHP, and the underlying mechanism, on blood pressure, obesity and cholesterol metabolism as well as psychological and learning behaviors in offspring. Tail-cuff plethysmography was used for blood pressure measurement; Western blot used was for phosphorylation and expression of protein; hematoxylin and eosin staining, Nissl staining and Golgi staining were used for histological examination. The serum levels of cholesterol, triglycerides and glucose were measured by blood biochemical analysis. Hepatic cholesterol and triglyceride levels were assessed by colorimetric assay kits. Offspring behaviors were evaluated by open-field activity, elevated plus maze, social preference test and Morris water maze. Maternal DEHP exposure deregulated the phosphorylation of endothelial nitric oxide synthase and upregulated angiotensin type 1 receptor in offspring, which led to increased blood pressure. It led to obesity in offspring by increasing the size of adipocytes in white adipose tissue and number of adipocytes in brown adipose tissue. It increased the serum level of cholesterol in offspring by decreasing the hepatic capacity for cholesterol clearance. The impaired social interaction ability induced by maternal DEHP exposure might be due to abnormal neuronal development. Collectively, our findings provide new evidence that maternal exposure to DEHP has a lasting effect on the physiological functions of the vascular system, adipose tissue and nerve system in offspring.


Asunto(s)
Adiposidad/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Presión Sanguínea/efectos de los fármacos , Colesterol/sangre , Dietilhexil Ftalato/toxicidad , Hipertensión/inducido químicamente , Exposición Materna , Efectos Tardíos de la Exposición Prenatal , Conducta Social , Animales , Biomarcadores/sangre , Encéfalo/efectos de los fármacos , Encéfalo/patología , Encéfalo/fisiopatología , Femenino , Hipertensión/fisiopatología , Hígado/efectos de los fármacos , Hígado/metabolismo , Aprendizaje por Laberinto/efectos de los fármacos , Ratones Endogámicos C57BL , Actividad Motora/efectos de los fármacos , Embarazo
18.
J Biomed Sci ; 22: 94, 2015 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-26494028

RESUMEN

BACKGROUND: The soluble epoxide hydrolase (sEH) is an important enzyme chiefly involved in the metabolism of fatty acid signaling molecules termed epoxyeicosatrienoic acids (EETs). sEH inhibition (sEHI) has proven to be protective against experimental cerebral ischemia, and it is emerging as a therapeutic target for prevention and treatment of ischemic stroke. However, the role of sEH on synaptic function in the central nervous system is still largely unknown. This study aimed to test whether sEH C-terminal epoxide hydrolase inhibitor, 12-(3-adamantan-1-yl-ureido) dodecanoic acid (AUDA) affects basal synaptic transmission and synaptic plasticity in the prefrontal cortex area (PFC). Whole cell and extracellular recording examined the miniature excitatory postsynaptic currents (mEPSCs) and field excitatory postsynaptic potentials (fEPSPs); Western Blotting determined the protein levels of glutamate receptors and ERK phosphorylation in acute medial PFC slices. RESULTS: Application of the sEH C-terminal epoxide hydrolase inhibitor, AUDA significantly increased the amplitude of mEPSCs and fEPSPs in prefrontal cortex neurons, while additionally enhancing long term potentiation (LTP). Western Blotting demonstrated that AUDA treatment increased the expression of the N-methyl-D-aspartate receptor (NMDA) subunits NR1, NR2A, NR2B; the α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits GluR1, GluR2, and ERK phosphorylation. CONCLUSIONS: Inhibition of sEH induced an enhancement of PFC neuronal synaptic neurotransmission. This enhancement of synaptic neurotransmission is associated with an enhanced postsynaptic glutamatergic receptor and postsynaptic glutamatergic receptor mediated synaptic LTP. LTP is enhanced via ERK phosphorylation resulting from the delivery of glutamate receptors into the PFC by post-synapse by treatment with AUDA. These findings provide a possible link between synaptic function and memory processes.


Asunto(s)
Adamantano/análogos & derivados , Epóxido Hidrolasas/antagonistas & inhibidores , Ácidos Láuricos/farmacología , Plasticidad Neuronal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Transmisión Sináptica/efectos de los fármacos , Adamantano/farmacología , Animales , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Ratones , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
19.
Int J Neuropsychopharmacol ; 16(9): 2027-39, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23823694

RESUMEN

Accumulating evidence suggests that dysfunction of the amygdala is related to abnormal fear processing, anxiety, and social behaviors noted in autistic spectrum disorders (ASDs). In addition, studies have shown that disrupted brain serotonin homeostasis is linked to ASD. With a valproate (VPA)-induced rat ASD model, we investigated the possible role of amygdala serotonin homeostasis in autistic phenotypes and further explored the underlying mechanism. We first discovered that the distribution of tryptophan hydroxylase immunoreactivity in the caudal raphe system was modulated on postnatal day (PD) 28 of the VPA-exposed offspring. Then, we found a significantly higher serotonin transporter availability in the amygdala of the VPA-exposed offspring on PD 56 by using single photon emission computed tomography and computed tomography co-registration following injection of (123)I-labeled 2-((2-(dimethylamino)methyl)phenyl)thio)-5-iodophenylamine((123)I[ADAM]). Furthermore, treatment with 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), a 5-HT1A receptor agonist, increased social interaction and improved fear memory extinction in the VPA-exposed offspring. 8-OH-DPAT treatment also reversed the characteristics of miniature excitatory post-synaptic currents as well as paired pulse facilitation observed in lateral amygdala slices. These results provided further evidence to support the role of the amygdala in characteristic behavioral changes in the rat ASD model. The serotonergic projections that modulate the amygdala function might play a certain role in the development and treatment of behavioral symptoms exhibited in individuals with ASD.


Asunto(s)
8-Hidroxi-2-(di-n-propilamino)tetralin/farmacología , Amígdala del Cerebelo/efectos de los fármacos , Trastorno Autístico/tratamiento farmacológico , Conducta Animal/efectos de los fármacos , Receptor de Serotonina 5-HT1A/efectos de los fármacos , Agonistas del Receptor de Serotonina 5-HT1/farmacología , Conducta Social , Ácido Valproico , Amígdala del Cerebelo/diagnóstico por imagen , Amígdala del Cerebelo/metabolismo , Amígdala del Cerebelo/fisiopatología , Animales , Trastorno Autístico/inducido químicamente , Trastorno Autístico/diagnóstico , Trastorno Autístico/metabolismo , Trastorno Autístico/fisiopatología , Trastorno Autístico/psicología , Cinanserina/análogos & derivados , Modelos Animales de Enfermedad , Potenciales Postsinápticos Excitadores , Extinción Psicológica/efectos de los fármacos , Miedo/efectos de los fármacos , Femenino , Masculino , Memoria/efectos de los fármacos , Potenciales Postsinápticos Miniatura , Imagen Multimodal/métodos , Embarazo , Efectos Tardíos de la Exposición Prenatal , Radiofármacos , Ratas , Ratas Sprague-Dawley , Receptor de Serotonina 5-HT1A/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Factores de Tiempo , Tomografía Computarizada de Emisión de Fotón Único , Tomografía Computarizada por Rayos X , Triptófano Hidroxilasa/metabolismo
20.
Polymers (Basel) ; 15(12)2023 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-37376366

RESUMEN

Polyetheretherketone (PEEK) is an emerging thermoplastic polymer with good mechanical properties and an elastic modulus similar to that of alveolar bone. PEEK dental prostheses for computer-aided design/computer-aided manufacturing (CAD/CAM) systems on the market often have additives of titanium dioxide (TiO2) to strengthen their mechanical properties. However, the effects of combining aging, simulating a long-term intraoral environment, and TiO2 content on the fracture characteristics of PEEK dental prostheses have rarely been investigated. In this study, two types of commercially available PEEK blocks, containing 20% and 30% TiO2, were used to fabricate dental crowns by CAD/CAM systems and were aged for 5 and 10 h based on the ISO 13356 specifications. The compressive fracture load values of PEEK dental crowns were measured using a universal test machine. The morphology and crystallinity of the fracture surface were analyzed by scanning electron microscopy and an X-ray diffractometer, respectively. Statistical analysis was performed using the paired t-test (α = 0.05). Results showed no significant difference in the fracture load value of the test PEEK crowns with 20% and 30% TiO2 after 5 or 10 h of aging treatment; all test PEEK crowns have satisfactory fracture properties for clinical applications. Fracture surface analysis revealed that all test crowns fractured from the lingual side of the occlusal surface, with the fracture extending along the lingual sulcus to the lingual edge, showing a feather shape at the middle part of the fracture extension path and a coral shape at the end of the fracture. Crystalline analysis showed that PEEK crowns, regardless of aging time and TiO2 content, remained predominantly PEEK matrix and rutile phase TiO2. We would conclude that adding 20% or 30% TiO2 to PEEK crowns may have been sufficient to improve the fracture properties of PEEK crowns after 5 or 10 h of aging. Aging times below 10 h may still be safe for reducing the fracture properties of TiO2-containing PEEK crowns.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA