RESUMEN
BACKGROUND: Cardiac regeneration after injury is limited by the low proliferative capacity of adult mammalian cardiomyocytes (CMs). However, certain animals readily regenerate lost myocardium through a process involving dedifferentiation, which unlocks their proliferative capacities. METHODS: We bred mice with inducible, CM-specific expression of the Yamanaka factors, enabling adult CM reprogramming and dedifferentiation in vivo. RESULTS: Two days after induction, adult CMs presented a dedifferentiated phenotype and increased proliferation in vivo. Microarray analysis revealed that upregulation of ketogenesis was central to this process. Adeno-associated virus-driven HMGCS2 overexpression induced ketogenesis in adult CMs and recapitulated CM dedifferentiation and proliferation observed during partial reprogramming. This same phenomenon was found to occur after myocardial infarction, specifically in the border zone tissue, and HMGCS2 knockout mice showed impaired cardiac function and response to injury. Finally, we showed that exogenous HMGCS2 rescues cardiac function after ischemic injury. CONCLUSIONS: Our data demonstrate the importance of HMGCS2-induced ketogenesis as a means to regulate metabolic response to CM injury, thus allowing cell dedifferentiation and proliferation as a regenerative response.
Asunto(s)
Infarto del Miocardio , Miocitos Cardíacos , Ratones , Animales , Miocitos Cardíacos/metabolismo , Corazón , Miocardio/metabolismo , Ratones Noqueados , Regeneración/genética , Proliferación Celular , MamíferosRESUMEN
BACKGROUND: The impact of gut microbiota on the regulation of host physiology has recently garnered considerable attention, particularly in key areas such as the immune system and metabolism. These areas are also crucial for the pathophysiology of and repair after myocardial infarction (MI). However, the role of the gut microbiota in the context of MI remains to be fully elucidated. METHODS: To investigate the effects of gut microbiota on cardiac repair after MI, C57BL/6J mice were treated with antibiotics 7 days before MI to deplete mouse gut microbiota. Flow cytometry was applied to examine the changes in immune cell composition in the heart. 16S rDNA sequencing was conducted as a readout for changes in gut microbial composition. Short-chain fatty acid (SCFA) species altered after antibiotic treatment were identified by high-performance liquid chromatography. Fecal reconstitution, transplantation of monocytes, or dietary SCFA or Lactobacillus probiotic supplementation was conducted to evaluate the cardioprotective effects of microbiota on the mice after MI. RESULTS: Antibiotic-treated mice displayed drastic, dose-dependent mortality after MI. We observed an association between the gut microbiota depletion and significant reductions in the proportion of myeloid cells and SCFAs, more specifically acetate, butyrate, and propionate. Infiltration of CX3CR1+ monocytes to the peri-infarct zone after MI was also reduced, suggesting impairment of repair after MI. Accordingly, the physiological status and survival of mice were significantly improved after fecal reconstitution, transplantation of monocytes, or dietary SCFA supplementation. MI was associated with a reorganization of the gut microbial community such as a reduction in Lactobacillus. Supplementing antibiotic-treated mice with a Lactobacillus probiotic before MI restored myeloid cell proportions, yielded cardioprotective effects, and shifted the balance of SCFAs toward propionate. CONCLUSIONS: Gut microbiota-derived SCFAs play an important role in maintaining host immune composition and repair capacity after MI. This suggests that manipulation of these elements may provide opportunities to modulate pathological outcome after MI and indeed human health and disease as a whole.
Asunto(s)
Antibacterianos/toxicidad , Bacterias/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Monocitos/inmunología , Infarto del Miocardio/microbiología , Miocardio/inmunología , Animales , Bacterias/inmunología , Bacterias/metabolismo , Modelos Animales de Enfermedad , Disbiosis , Ácidos Grasos/administración & dosificación , Ácidos Grasos/metabolismo , Trasplante de Microbiota Fecal , Femenino , Interacciones Huésped-Patógeno , Lactobacillus/inmunología , Lactobacillus/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Monocitos/metabolismo , Monocitos/trasplante , Infarto del Miocardio/inmunología , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Miocardio/metabolismo , Miocardio/patología , Probióticos/administración & dosificación , Células RAW 264.7RESUMEN
Rationale: Gut microbiota plays a crucial role in cancer development and treatment. Studies show that although the gut microbiota is able to promote tumor growth, its presence also improves the efficacy of cancer treatment such as immunotherapy. To date, understanding of the potential impact of the gut microbiota on other treatment modalities such as cancer nanomedicine is still limited. In this study, we aimed to establish the relationship between gut microbiota and cancer nanomedicine, which can potentially open a new path in cancer treatment that combines gut microbiota modulation along with nanotherapeutics. Methods: Mice bearing 4T1 triple-negative breast cancer cells were subjected to gut microbiota modulation by antibiotics (ABX) treatment in the drinking water. Mice given normal water was used for control. The effects of ABX treatment towards gut bacteria was studied by RT-qPCR and 16S next generation sequencing of fecal samples. The mice were then subjected to liposomal doxorubicin (LipoDox) treatment and the amount of nanotherapeutics that accumulated in the tumors was quantified. For therapeutic efficacy, the mice were subjected to ABX treatment and given three injections of LipoDox or saline, while the tumor growth was monitored throughout. Results: Analysis of fecal bacterial content showed that ABX treatment resulted in depletion of gut microbiota. Quantification of LipoDox content revealed significantly increased accumulation in ABX tumor compared to control. Compared to LipoDox treatment alone, we found that combined gut microbiota depletion and LipoDox treatment resulted in augmented long-term anti-tumor efficacy and significantly improved median survival compared to LipoDox only (control vs ABX = 58.5 vs 74 days, p = 0.0002, n = 10 for both groups), with two mice surviving until the end of the experimental end point without experiencing relapse. We also identified the increase in vascular permeability of ABX-treated tumors correlated to for improved therapeutic efficacy and outcome. Conclusion: We showed that gut microbiota depletion led to enhanced tumor vascular permeability, which allowed a larger amount of LipoDox nanoparticles to accumulate in the tumor, leading to better long-term effects. Our results suggest that gut microbiota modulation may be exploited in combination with available nanomedicine-based therapeutics to improve cancer diagnosis, therapeutic efficacy and outcome.
Asunto(s)
Microbioma Gastrointestinal , Nanomedicina , Ratones , Animales , Recurrencia Local de Neoplasia , DoxorrubicinaRESUMEN
Considering the broad therapeutic potential of omega-3 polyunsaturated fatty acids such as docosahexaenoic acid (DHA), here we study the effect of PEGylation of DHA-incorporated hexosomes on their physicochemical characteristics and biodistribution following intravenous injection into mice. Hexosomes were formed from phosphatidylglycerol and DHA with a weight ratio of 3:2. PEGylation was achieved through the incorporation of either d-α-tocopheryl succinate poly(ethylene glycol)2000 (TPGS-mPEG2000) or 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-methoxy-poly(ethylene glycol)2000 (DSPE-mPEG2000) at a concentration of 1.5 wt %. Nanoparticle tracking analysis, synchrotron small-angle scattering, and cryo-transmission electron microscopy were employed to characterize the nanodispersions. The results show that PEGylated lipids induce a structural transition from an inverse hexagonal (H2) phase inside the nanoparticles (hexosomes) to a lamellar (Lα) phase (vesicles). We also followed the effect of mouse plasma on the nanodispersion size distribution, number, and morphology because changes brought by plasma constituents could regulate the in vivo performance of intravenously injected nanodispersions. For comparative biodistribution studies, fluorescently labeled nanodispersions of equivalent quantum yields were injected intravenously into healthy mice. TPGS-mPEG2000-induced vesicles were most effective in avoiding hepatosplenic clearance at early time points. In an orthotopic xenograft murine model of glioblastoma, TPGS-mPEG2000-induced vesicles also showed improved localization to the brain compared with native hexosomes. We discuss these observations and their implications for the future design of injectable lyotropic nonlamellar liquid crystalline drug delivery nanosystems for therapeutic interventions of brain and liver diseases.
Asunto(s)
Ácidos Docosahexaenoicos , Nanopartículas , Humanos , Animales , Ratones , Fosfatidilgliceroles , Distribución Tisular , Polietilenglicoles/química , Nanopartículas/química , alfa-Tocoferol , SuccinatosRESUMEN
In this study, we establish a population-based human induced pluripotent stem cell (hiPSC) drug screening platform for toxicity assessment. After recruiting 1,000 healthy donors and screening for high-frequency human leukocyte antigen (HLA) haplotypes, we identify 13 HLA-homozygous "super donors" to represent the population. These "super donors" are also expected to represent at least 477,611,135 of the global population. By differentiating these representative hiPSCs into cardiomyocytes and neurons we show their utility in a high-throughput toxicity screen. To validate hit compounds, we demonstrate dose-dependent toxicity of the hit compounds and assess functional modulation. We also show reproducible in vivo drug toxicity results using mouse models with select hit compounds. This study shows the feasibility of using a population-based hiPSC drug screening platform to assess cytotoxicity, which can be used as an innovative tool to study inter-population differences in drug toxicity and adverse drug reactions in drug discovery applications.
Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Células Madre Pluripotentes Inducidas , Animales , Cardiotoxicidad , Diferenciación Celular , Células Cultivadas , Humanos , Ratones , Miocitos Cardíacos , NeuronasRESUMEN
The blood-brain barrier (BBB) selectively controls the passage of endogenous and exogenous molecules between systemic circulation and the brain parenchyma. Nanocarrier-based drugs such as liposomes and nanoparticles are an attractive prospect for cancer therapy since they can carry a drug payload and be modified to improve targeting and retention at the desired site. However, the BBB prevents most therapeutic drugs from entering the brain, including physically restricting the passage of liposomes and nanoparticles. In this paper, we show that a low dose of systemically injected recombinant human vascular endothelial growth factor induces a short period of increased BBB permeability. We have shown increased delivery of a range of nanomedicines to the brain including contrast agents for imaging, varying sizes of nanoparticles, small molecule chemotherapeutics, tracer dyes, and liposomal chemotherapeutics. However, this effect was not uniform across all brain regions, and permeability varied depending on the drug or molecule measured. We have found that this window of BBB permeability effect is transient, with normal BBB integrity restored within 4 h. This strategy, combined with liposomal doxorubicin, was able to significantly extend survival in a mouse model of human glioblastoma. We have found no evidence of systemic toxicity, and the technique was replicated in pigs, demonstrating that this technique could be scaled up and potentially be translated to the clinic, thus allowing the use of nanocarrier-based therapies for brain disorders.
Asunto(s)
Antineoplásicos/farmacocinética , Barrera Hematoencefálica/efectos de los fármacos , Neoplasias Encefálicas/tratamiento farmacológico , Glioblastoma/tratamiento farmacológico , Liposomas/metabolismo , Factor A de Crecimiento Endotelial Vascular/farmacología , Animales , Antineoplásicos/uso terapéutico , Barrera Hematoencefálica/metabolismo , Neoplasias Encefálicas/diagnóstico por imagen , Permeabilidad Capilar/efectos de los fármacos , Medios de Contraste/farmacocinética , Doxorrubicina/farmacocinética , Doxorrubicina/uso terapéutico , Femenino , Colorantes Fluorescentes/farmacocinética , Glioblastoma/diagnóstico por imagen , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos ICR , Ratones Desnudos , Ratones SCID , Porcinos , Factor A de Crecimiento Endotelial Vascular/administración & dosificaciónRESUMEN
Rationale: Long non-coding RNA (lncRNAs) has been identified as a pivotal novel regulators in cardiac development as well as cardiac pathogenesis. lncRNA H19 is known as a fetal gene but it is exclusively abundant in the heart and skeletal muscles in adulthood, and is evolutionarily conserved in humans and mice. It has been reported to possess a significant correlation with the risk of coronary artery diseases. However, the function of H19 is not well characterized in heart. Methods: Loss-of-function and gain-of-function mouse models with left anterior descending coronary artery-ligation surgery were utilized to evaluate the functionality of H19 in vivo. For mechanistic studies, hypoxia condition were exerted in in vitro models to mimic cardiac ischemic injury. Chromatin isolation by RNA immunoprecipitation (ChIRP) was performed to reveal the interacting protein of lncRNA H19. Results: lncRNA H19 was significantly upregulated in the infarct area post-surgery day 4 in mouse model. Ectopic expression of H19 in the mouse heart resulted in severe cardiac dilation and fibrosis. Several extracellular matrix (ECM) genes were significantly upregulated. While genetic ablation of H19 by CRISPR-Cas9 ameliorated post-MI cardiac remodeling with reduced expression in ECM genes. Through chromatin isolation by RNA purification (ChIRP), we identified Y-box-binding protein (YB)-1, a suppressor of Collagen 1A1, as an interacting protein of H19. Furthermore, H19 acted to antagonize YB-1 through direct interaction under hypoxia, which resulted in de-repression of Collagen 1A1 expression and cardiac fibrosis. Conclusions: Together these results demonstrate that lncRNA H19 and its interacting protein YB-1 are crucial for ECM regulation during cardiac remodeling.