Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
EMBO Rep ; 24(4): e54731, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-36847607

RESUMEN

Ectopic lipid deposition and mitochondrial dysfunction are common etiologies of obesity and metabolic disorders. Excessive dietary uptake of saturated fatty acids (SFAs) causes mitochondrial dysfunction and metabolic disorders, while unsaturated fatty acids (UFAs) counterbalance these detrimental effects. It remains elusive how SFAs and UFAs differentially signal toward mitochondria for mitochondrial performance. We report here that saturated dietary fatty acids such as palmitic acid (PA), but not unsaturated oleic acid (OA), increase lysophosphatidylinositol (LPI) production to impact on the stability of the mitophagy receptor FUNDC1 and on mitochondrial quality. Mechanistically, PA shifts FUNDC1 from dimer to monomer via enhanced production of LPI. Monomeric FUNDC1 shows increased acetylation at K104 due to dissociation of HDAC3 and increased interaction with Tip60. Acetylated FUNDC1 can be further ubiquitinated by MARCH5 for proteasomal degradation. Conversely, OA antagonizes PA-induced accumulation of LPI, and FUNDC1 monomerization and degradation. A fructose-, palmitate-, and cholesterol-enriched (FPC) diet also affects FUNDC1 dimerization and promotes its degradation in a non-alcoholic steatohepatitis (NASH) mouse model. We thus uncover a signaling pathway that orchestrates lipid metabolism with mitochondrial quality.


Asunto(s)
Ácidos Grasos , Mitofagia , Ratones , Animales , Ácidos Grasos/metabolismo , Dimerización , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de la Membrana/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(42): e2203702119, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36215480

RESUMEN

The full activation process of G protein-coupled receptor (GPCR) plays an important role in cellular signal transduction. However, it remains challenging to simulate the whole process in which the GPCR is recognized and activated by a ligand and then couples to the G protein on a reasonable simulation timescale. Here, we developed a molecular dynamics (MD) approach named supervised (Su) Gaussian accelerated MD (GaMD) by incorporating a tabu-like supervision algorithm into a standard GaMD simulation. By using this Su-GaMD method, from the active and inactive structure of adenosine A1 receptor (A1R), we successfully revealed the full activation mechanism of A1R, including adenosine (Ado)-A1R recognition, preactivation of A1R, and A1R-G protein recognition, in hundreds of nanoseconds of simulations. The binding of Ado to the extracellular side of A1R initiates conformational changes and the preactivation of A1R. In turn, the binding of Gi2 to the intracellular side of A1R causes a decrease in the volume of the extracellular orthosteric site and stabilizes the binding of Ado to A1R. Su-GaMD could be a useful tool to reconstruct or even predict ligand-protein and protein-protein recognition pathways on a short timescale. The intermediate states revealed in this study could provide more detailed complementary structural characterizations to facilitate the drug design of A1R in the future.


Asunto(s)
Simulación de Dinámica Molecular , Receptores Purinérgicos P1 , Adenosina , Proteínas de Unión al GTP/metabolismo , Ligandos , Receptor de Adenosina A1/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Purinérgicos P1/metabolismo , Termodinámica
3.
Brief Bioinform ; 23(5)2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36007240

RESUMEN

Natural products (NPs) and their derivatives are important resources for drug discovery. There are many in silico target prediction methods that have been reported, however, very few of them distinguish NPs from synthetic molecules. Considering the fact that NPs and synthetic molecules are very different in many characteristics, it is necessary to build specific target prediction models of NPs. Therefore, we collected the activity data of NPs and their derivatives from the public databases and constructed four datasets, including the NP dataset, the NPs and its first-class derivatives dataset, the NPs and all its derivatives and the ChEMBL26 compounds dataset. Conditions, including activity thresholds and input features, were explored to access the performance of eight machine learning methods of target prediction of NPs, including support vector machines (SVM), extreme gradient boosting, random forests, K-nearest neighbor, naive Bayes, feedforward neural networks (FNN), convolutional neural networks and recurrent neural networks. As a result, the NPs and all their derivatives datasets were selected to build the best NP-specific models. Furthermore, the consensus models, as well as the voting models, were additionally applied to improve the prediction performance. More evaluations were made on the external validation set and the results demonstrated that (1) the NP-specific model performed better on the target prediction of NPs than the traditional models training on the whole compounds of ChEMBL26. (2) The consensus model of FNN + SVM possessed the best overall performance, and the voting model can significantly improve recall and specificity.


Asunto(s)
Productos Biológicos , Algoritmos , Teorema de Bayes , Aprendizaje Automático , Redes Neurales de la Computación , Máquina de Vectores de Soporte
4.
FASEB J ; 37(4): e22889, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36961375

RESUMEN

Cyclin-dependent kinases 2 (CDK2) is a serine/threonine-protein kinase, which plays a key role in the regulation of cell cycle and is related to the occurrence and development of melanoma. In this study, we identified potent inhibitors for CDK2 by combining a multistage virtual screening strategy with bioassay validations. The biochemical activity of compounds was validated with ADP-Glo™ Kinase assay in vitro, and the results indicated that the biochemical activity of compound 1 (C1) was better than other selected compounds. Cell viability assay showed that the minimum inhibition concentration of C1 for CDK2 was lower than 4 µM. Further functional test results showed that C1 exerted significant antiproliferative, pro-apoptosis, and anti-migration activity in melanoma cell lines (A375 cells, WM35 cells, and A875 cells). Our findings suggested that the C1, virtually screened from compound libraries, as the novel inhibitor of CDK2, may be further developed as an effective therapeutic agent in the treatment of melanoma lines.


Asunto(s)
Quinasas CDC2-CDC28 , Melanoma , Humanos , Quinasas Ciclina-Dependientes/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Melanoma/tratamiento farmacológico , Línea Celular , Quinasa 2 Dependiente de la Ciclina
5.
J Org Chem ; 89(1): 373-378, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38096478

RESUMEN

A highly efficient and regioselective method for constructing functionalized conjugated enals via the Tf2O-mediated tandem reaction of enaminones with thiophenols has been described. Chain products with excellent stereoselectivity could be obtained through substrate regulation. Additionally, a feasible method for synthesizing ß-naphthalaldehydes through PhSO2Na/DABCO promoting hydrogen atom transfer process has also been reported here. Mechanism studies have shown that 2-formyl vinyl triflate 8 and sulfonylated enal 9 were the key intermediates in this process.

6.
Nature ; 559(7715): 593-598, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30013119

RESUMEN

Genetically encoded protein scaffolds often serve as templates for the mineralization of biocomposite materials with complex yet highly controlled structural features that span from nanometres to the macroscopic scale1-4. Methods developed to mimic these fabrication capabilities can produce synthetic materials with well defined micro- and macro-sized features, but extending control to the nanoscale remains challenging5,6. DNA nanotechnology can deliver a wide range of customized nanoscale two- and three-dimensional assemblies with controlled sizes and shapes7-11. But although DNA has been used to modulate the morphology of inorganic materials12,13 and DNA nanostructures have served as moulds14,15 and templates16,17, it remains challenging to exploit the potential of DNA nanostructures fully because they require high-ionic-strength solutions to maintain their structure, and this in turn gives rise to surface charging that suppresses the material deposition. Here we report that the Stöber method, widely used for producing silica (silicon dioxide) nanostructures, can be adjusted to overcome this difficulty: when synthesis conditions are such that mineral precursor molecules do not deposit directly but first form clusters, DNA-silica hybrid materials that faithfully replicate the complex geometric information of a wide range of different DNA origami scaffolds are readily obtained. We illustrate this approach using frame-like, curved and porous DNA nanostructures, with one-, two- and three-dimensional complex hierarchical architectures that range in size from 10 to 1,000 nanometres. We also show that after coating with an amorphous silica layer, the thickness of which can be tuned by adjusting the growth time, hybrid structures can be up to ten times tougher than the DNA template while maintaining flexibility. These findings establish our approach as a general method for creating biomimetic silica nanostructures.


Asunto(s)
ADN/química , Nanoestructuras/química , Dióxido de Silicio/química , Biomimética , ADN/ultraestructura , Módulo de Elasticidad , Microscopía Electrónica de Transmisión , Simulación de Dinámica Molecular , Nanoestructuras/ultraestructura
7.
Appl Microbiol Biotechnol ; 108(1): 304, 2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38643456

RESUMEN

Tobramycin is an essential and extensively used broad-spectrum aminoglycoside antibiotic obtained through alkaline hydrolysis of carbamoyltobramycin, one of the fermentation products of Streptoalloteichus tenebrarius. To simplify the composition of fermentation products from industrial strain, the main byproduct apramycin was blocked by gene disruption and constructed a mutant mainly producing carbamoyltobramycin. The generation of antibiotics is significantly affected by the secondary metabolism of actinomycetes which could be controlled by modifying the pathway-specific regulatory proteins within the cluster. Within the tobramycin biosynthesis cluster, a transcriptional regulatory factor TobR belonging to the Lrp/AsnC family was identified. Based on the sequence and structural characteristics, tobR might encode a pathway-specific transcriptional regulatory factor during biosynthesis. Knockout and overexpression strains of tobR were constructed to investigate its role in carbamoyltobramycin production. Results showed that knockout of TobR increased carbamoyltobramycin biosynthesis by 22.35%, whereas its overexpression decreased carbamoyltobramycin production by 10.23%. In vitro electrophoretic mobility shift assay (EMSA) experiments confirmed that TobR interacts with DNA at the adjacent tobO promoter position. Strains overexpressing tobO with ermEp* promoter exhibited 36.36% increase, and tobO with kasOp* promoter exhibited 22.84% increase in carbamoyltobramycin titer. When the overexpressing of tobO and the knockout of tobR were combined, the production of carbamoyltobramycin was further enhanced. In the shake-flask fermentation, the titer reached 3.76 g/L, which was 42.42% higher than that of starting strain. Understanding the role of Lrp/AsnC family transcription regulators would be useful for other antibiotic biosynthesis in other actinomycetes. KEY POINTS: • The transcriptional regulator TobR belonging to the Lrp/AsnC family was identified.  • An oxygenase TobO was identified within the tobramycin biosynthesis cluster. • TobO and TobR have significant effects on the synthesis of carbamoyltobramycin.


Asunto(s)
Actinobacteria , Actinomycetales , Ingeniería Metabólica , Antibacterianos , Tobramicina
8.
Molecules ; 29(8)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38675695

RESUMEN

COVID-19 caused by SARS-CoV-2 has spread around the world. The receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 is a critical component that directly interacts with host ACE2. Here, we simulate the ACE2 recognition processes of RBD of the WT, Delta, and OmicronBA.2 variants using our recently developed supervised Gaussian accelerated molecular dynamics (Su-GaMD) approach. We show that RBD recognizes ACE2 through three contact regions (regions I, II, and III), which aligns well with the anchor-locker mechanism. The higher binding free energy in State d of the RBDOmicronBA.2-ACE2 system correlates well with the increased infectivity of OmicronBA.2 in comparison with other variants. For RBDDelta, the T478K mutation affects the first step of recognition, while the L452R mutation, through its nearby Y449, affects the RBDDelta-ACE2 binding in the last step of recognition. For RBDOmicronBA.2, the E484A mutation affects the first step of recognition, the Q493R, N501Y, and Y505H mutations affect the binding free energy in the last step of recognition, mutations in the contact regions affect the recognition directly, and other mutations indirectly affect recognition through dynamic correlations with the contact regions. These results provide theoretical insights for RBD-ACE2 recognition and may facilitate drug design against SARS-CoV-2.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Simulación de Dinámica Molecular , Unión Proteica , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/genética , Humanos , SARS-CoV-2/metabolismo , SARS-CoV-2/genética , Sitios de Unión , COVID-19/virología , COVID-19/metabolismo , Dominios Proteicos , Mutación
9.
J Biol Chem ; 298(7): 102089, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35640720

RESUMEN

Toxoplasma gondii is an intracellular parasite that generates amylopectin granules (AGs), a polysaccharide associated with bradyzoites that define chronic T. gondii infection. AGs are postulated to act as an essential energy storage molecule that enable bradyzoite persistence, transmission, and reactivation. Importantly, reactivation can result in the life-threatening symptoms of toxoplasmosis. T. gondii encodes glucan dikinase and glucan phosphatase enzymes that are homologous to the plant and animal enzymes involved in reversible glucan phosphorylation and which are required for efficient polysaccharide degradation and utilization. However, the structural determinants that regulate reversible glucan phosphorylation in T. gondii are unclear. Herein, we define key functional aspects of the T. gondii glucan phosphatase TgLaforin (TGME49_205290). We demonstrate that TgLaforin possesses an atypical split carbohydrate-binding-module domain. AlphaFold2 modeling combined with hydrogen-deuterium exchange mass spectrometry and differential scanning fluorimetry also demonstrate the unique structural dynamics of TgLaforin with regard to glucan binding. Moreover, we show that TgLaforin forms a dual specificity phosphatase domain-mediated dimer. Finally, the distinct properties of the glucan phosphatase catalytic domain were exploited to identify a small molecule inhibitor of TgLaforin catalytic activity. Together, these studies define a distinct mechanism of TgLaforin activity, opening up a new avenue of T. gondii bradyzoite biology as a therapeutic target.


Asunto(s)
Toxoplasma , Toxoplasmosis , Animales , Glucanos/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Polisacáridos/metabolismo , Toxoplasma/metabolismo , Toxoplasmosis/parasitología
10.
Bioinformatics ; 38(10): 2863-2871, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35561160

RESUMEN

MOTIVATION: In the process of discovery and optimization of lead compounds, it is difficult for non-expert pharmacologists to intuitively determine the contribution of substructure to a particular property of a molecule. RESULTS: In this work, we develop a user-friendly web service, named interpretable-absorption, distribution, metabolism, excretion and toxicity (ADMET), which predict 59 ADMET-associated properties using 90 qualitative classification models and 28 quantitative regression models based on graph convolutional neural network and graph attention network algorithms. In interpretable-ADMET, there are 250 729 entries associated with 59 kinds of ADMET-associated properties for 80 167 chemical compounds. In addition to making predictions, interpretable-ADMET provides interpretation models based on gradient-weighted class activation map for identifying the substructure, which is important to the particular property. Interpretable-ADMET also provides an optimize module to automatically generate a set of novel virtual candidates based on matched molecular pair rules. We believe that interpretable-ADMET could serve as a useful tool for lead optimization in drug discovery. AVAILABILITY AND IMPLEMENTATION: Interpretable-ADMET is available at http://cadd.pharmacy.nankai.edu.cn/interpretableadmet/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Descubrimiento de Drogas , Redes Neurales de la Computación , Algoritmos
11.
Plant Cell ; 32(9): 2917-2931, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32699169

RESUMEN

C-Glycosyltransferases (CGTs) catalyze the formation of C-glycosidic bonds for the biosynthesis of C-glycosides, but the underlying mechanism is unclear. This process improves the solubility and bioavailability of specialized metabolites, which play important roles in plant growth and development and represent rich resources for drug discovery. Here, we performed functional and structural studies of the CGT UGT708C1 from buckwheat (Fagopyrum esculentum). Enzymatic analysis showed that UGT708C1 is capable of utilizing both UDP-galactose and UDP-glucose as sugar donors. Our structural studies of UGT708C1 complexed with UDP-glucose and UDP identified the key roles of Asp382, Gln383, Thr151, and Thr150 in recognizing the sugar moiety of the donor substrate and Phe130, Tyr102, and Phe198 in binding and stabilizing the acceptor. A systematic site-directed mutagenesis study confirmed the important roles of these residues. Further structural analysis combined with molecular dynamics simulations revealed that phloretin binds to the acceptor binding pocket in a bent state with a precise spatial disposition and complementarity. These findings provide insights into a catalytic mechanism for CGTs.


Asunto(s)
Fagopyrum/enzimología , Glicosiltransferasas/química , Glicosiltransferasas/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Glicosilación , Glicosiltransferasas/genética , Cinética , Modelos Moleculares , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Mutación , Floretina/metabolismo , Proteínas de Plantas/genética , Azúcares/química , Azúcares/metabolismo
12.
BMC Public Health ; 23(1): 1502, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37553622

RESUMEN

BACKGROUND: During the COVID-19 epidemic, the prevalence of neck pain among college students has increased due to the shift from offline to online learning and increasing academic and employment pressures. Therefore, this systematic review aimed to identify the personal, occupational, and psychological factors associated with the development of neck pain to promote the development of preventive strategies and early intervention treatment. METHODS: Seven electronic databases were searched from inception to December 2022 for cross-sectional studies, cohort studies, case----control studies, and randomized controlled trials (RCTs) on neck pain. The quality of the selected studies were assessed by American Agency for Healthcare Research and Quality (AHRQ) or the Newcastle-Ottawa Scale (NOS). Pooled odds ratios (ORs) with corresponding 95% confidence intervals (CIs) were calculated to evaluate the effects of the included risk factors on neck pain. RESULTS: Thirty studies were included, including 18,395 participants. And a total of 33 potentially associated risk factors were identified. Ultimately, 11 risk factors were included in the meta-analysis after assessing, and all results were statistically significant (P < 0.05). The factors supported by strong evidence mainly include the improper use of the pillow (OR = 2.20, 95% CI: 1.39 to 3.48), lack of exercise (OR = 1.88, 95% CI: 1.53 to 2.30), improper sitting posture (OR = 1.97, 95% CI: 1.39 to 2.78), history of neck and shoulder trauma (OR = 2.32, 95% CI: 1.79 to 3.01), senior grade (OR = 2.86, 95% CI: 2.07 to 3.95), staying up late (OR = 1.80, 95% CI: 1.35 to 2.41), long-time electronic product usage daily (OR = 1.53, 95% CI: 1.33 to 1.76), long-time to bow head (OR = 2.04, 95% CI: 1.58 to 2.64), and emotional problems (OR = 2.09; 95% CI: 1.66  to 2.63). Risk factors supported by moderate evidence were high stress (OR = 1.61, 95% CI: 1.02 to 2.52) and female gender (OR = 1.69, 95% CI: 1.52 to 1.87). CONCLUSION: This study obtained 11 main risk factors affecting college students neck pain, including improper use of the pillow, lack of exercise, improper sitting posture, history of neck and shoulder trauma, senior grade, staying up late, long-term electronic product usage daily, long time to bow head, high stress, emotional problems and female gender.


Asunto(s)
COVID-19 , Dolor de Cuello , Femenino , Humanos , Dolor de Cuello/epidemiología , Cuello , Factores de Riesgo , Estudiantes
13.
Int J Mol Sci ; 24(12)2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-37373132

RESUMEN

Cuproptosis is an unusual form of cell death caused by copper accumulation in mitochondria. Cuproptosis is associated with hepatocellular carcinoma (HCC). Long noncoding RNAs (LncRNAs) have been shown to be effective prognostic biomarkers, yet the link between lncRNAs and cuproptosis remains unclear. We aimed to build a prognostic model of lncRNA risk and explore potential biomarkers of cuproptosis in HCC. Pearson correlations were used to derive lncRNAs co-expressed in cuproptosis. The model was constructed using Cox, Lasso, and multivariate Cox regressions. Kaplan-Meier survival analysis, principal components analysis, receiver operating characteristic curve, and nomogram analyses were carried out for validation. Seven lncRNAs were identified as prognostic factors. A risk model was an independent prognostic predictor. Among these seven lncRNAs, prostate cancer associated transcript 6 (PCAT6) is highly expressed in different types of cancer, activating Wnt, PI3K/Akt/mTOR, and other pathways; therefore, we performed further functional validation of PCAT6 in HCC. Reverse transcription-polymerase chain reaction results showed that PCAT6 was aberrantly highly expressed in HCC cell lines (HepG2 and Hep3B) compared to LO2 (normal hepatocytes). When its expression was knocked down, cells proliferated and migrated less. PCAT6 might be a potential biomarker for predicting prognosis in HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , ARN Largo no Codificante , Masculino , Humanos , Carcinoma Hepatocelular/genética , Pronóstico , ARN Largo no Codificante/genética , Fosfatidilinositol 3-Quinasas , Neoplasias Hepáticas/genética , Cobre , Apoptosis/genética
14.
Molecules ; 28(4)2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36838538

RESUMEN

Before fermentation with hemicellulosic hydrolysate as a substrate, it is generally necessary to detoxify the toxic substances that are harmful to microorganism growth. Cyclic AMP receptor protein (CRP) is a global regulator, and mutation of its key sites may have an important impact on E. coli virulence tolerance. Using corncob hydrolysate without ion-exchange or lime detoxification as the substrate, shake flask fermentation experiments showed that CRP mutant IS5-dG (I112L, T127G, A144T) produced 18.4 g/L of xylitol within 34 h, and the OD600 was 9.7 at 24 h; these values were 41.5% and 21.3% higher than those of the starting strain, IS5-d, respectively. This mutant produced 82 g/L of xylitol from corncob hydrolysate without ion-exchange or lime detoxification during fed-batch fermentation in a 15-L bioreactor, with a productivity of 1.04 g/L/h; these values were 173% and 174% higher than the starting strain, respectively. To our knowledge, this is the highest xylitol concentration and productivity produced by microbial fermentation using completely non-detoxified hemicellulosic hydrolysate as the substrate to date. This study also showed that alkali neutralization, high temperature sterilization, and fermentation of the hydrolysate had important effects on the xylose loss rate and xylitol production.


Asunto(s)
Escherichia coli , Xilitol , Escherichia coli/metabolismo , Zea mays/química , Fermentación , Xilosa/metabolismo , Hidrólisis
15.
Pharm Biol ; 61(1): 722-736, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37096936

RESUMEN

CONTEXT: Chinese medicinal herbs (CMH) have been considered a potentially efficacious approach for patients with breast cancer that experience adverse effects from endocrine treatment. OBJECTIVE: To investigate the impact of CMH on endocrine therapy-induced side effects in patients with hormone receptor-positive (HR+) breast cancer. METHODS: Ten databases (e.g., PubMed, Web of Science, Cochrane Library, China National Knowledge Information Database and other databases) were searched up to 20 May 2022. The search terms included Chinese herb, breast cancer, endocrine therapy, clinical trial and their mesh terms. The study selection and data extraction were performed by two independent reviewers. The risk of bias was evaluated using the Cochrane risk of bias method. RESULTS: A total of 31 studies with 2288 patients were included. There were significant improvements in bone mineral density (BMD) [lumbar BMD (MD 0.08, 95% CI 0.07 to 0.09, p < 0.00001) and femoral neck BMD (MD 0.08, 95% CI 0.07 to 0.10, p < 0.00001)] and bone gal protein (BGP) (MD 0.24, 95% CI 0.17 to 0.31, p < 0.00001), with a significant reduction in triglycerides (MD -0.53, 95% CI -1.00 to -0.07, p < 0.05) and no effect on estradiol levels (MD 0.90, 95% CI -0.31 to 2.12, p = 0.15). CONCLUSIONS: CMH combined with complementary therapy can moderately reduce endocrine therapy-induced side effects, including bone loss and dyslipidemia in patients with HR + breast cancer, revealing the potential role of CMH in treating (HR+) breast cancer. More high-quality RCTs are warranted to further validate the effectiveness and safety of CMH.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Plantas Medicinales , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Antineoplásicos/uso terapéutico , Densidad Ósea , China
16.
Angew Chem Int Ed Engl ; 62(22): e202303818, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-36973833

RESUMEN

Protein tyrosine phosphatase 1B (PTP1B) and T-cell protein tyrosine phosphatase (TC-PTP) play non-redundant negative regulatory roles in T-cell activation, tumor antigen presentation, insulin and leptin signaling, and are potential targets for several therapeutic applications. Here, we report the development of a highly potent and selective small molecule degrader DU-14 for both PTP1B and TC-PTP. DU-14 mediated PTP1B and TC-PTP degradation requires both target protein(s) and VHL E3 ligase engagement and is also ubiquitination- and proteasome-dependent. DU-14 enhances IFN-γ induced JAK1/2-STAT1 pathway activation and promotes MHC-I expression in tumor cells. DU-14 also activates CD8+ T-cells and augments STAT1 and STAT5 phosphorylation. Importantly, DU-14 induces PTP1B and TC-PTP degradation in vivo and suppresses MC38 syngeneic tumor growth. The results indicate that DU-14, as the first PTP1B and TC-PTP dual degrader, merits further development for treating cancer and other indications.


Asunto(s)
Neoplasias , Proteína Tirosina Fosfatasa no Receptora Tipo 2 , Humanos , Proteína Tirosina Fosfatasa no Receptora Tipo 2/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Linfocitos T CD8-positivos/metabolismo , Neoplasias/tratamiento farmacológico , Fosforilación , Inmunoterapia
17.
PLoS Biol ; 17(4): e3000229, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-31039149

RESUMEN

Hepatitis A virus (HAV), an enigmatic and ancient pathogen, is a major causative agent of acute viral hepatitis worldwide. Although there are effective vaccines, antivirals against HAV infection are still required, especially during fulminant hepatitis outbreaks. A more in-depth understanding of the antigenic characteristics of HAV and the mechanisms of neutralization could aid in the development of rationally designed antiviral drugs targeting HAV. In this paper, 4 new antibodies-F4, F6, F7, and F9-are reported that potently neutralize HAV at 50% neutralizing concentration values (neut50) ranging from 0.1 nM to 0.85 nM. High-resolution cryo-electron microscopy (cryo-EM) structures of HAV bound to F4, F6, F7, and F9, together with results of our previous studies on R10 fragment of antigen binding (Fab)-HAV complex, shed light on the locations and nature of the epitopes recognized by the 5 neutralizing monoclonal antibodies (NAbs). All the epitopes locate within the same patch and are highly conserved. The key structure-activity correlates based on the antigenic sites have been established. Based on the structural data of the single conserved antigenic site and key structure-activity correlates, one promising drug candidate named golvatinib was identified by in silico docking studies. Cell-based antiviral assays confirmed that golvatinib is capable of blocking HAV infection effectively with a 50% inhibitory concentration (IC50) of approximately 1 µM. These results suggest that the single conserved antigenic site from complete HAV capsid is a good antiviral target and that golvatinib could function as a lead compound for anti-HAV drug development.


Asunto(s)
Anticuerpos Neutralizantes/ultraestructura , Diseño de Fármacos , Virus de la Hepatitis A/inmunología , Aminopiridinas/metabolismo , Aminopiridinas/farmacología , Anticuerpos Monoclonales , Anticuerpos Neutralizantes/metabolismo , Anticuerpos Antivirales , Antígenos Virales , Cápside/metabolismo , Simulación por Computador , Epítopos , Antígenos de Hepatitis A/metabolismo , Antígenos de Hepatitis A/ultraestructura , Virus de la Hepatitis A/patogenicidad , Virus de la Hepatitis A/ultraestructura , Humanos , Piperazinas/metabolismo , Piperazinas/farmacología , Unión Proteica
18.
PLoS Comput Biol ; 17(3): e1008821, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33739970

RESUMEN

Adenosine receptors (ARs) have been demonstrated to be potential therapeutic targets against Parkinson's disease (PD). In the present study, we describe a multistage virtual screening approach that identifies dual adenosine A1 and A2A receptor antagonists using deep learning, pharmacophore models, and molecular docking methods. Nineteen hits from the ChemDiv library containing 1,178,506 compounds were selected and further tested by in vitro assays (cAMP functional assay and radioligand binding assay); of these hits, two compounds (C8 and C9) with 1,2,4-triazole scaffolds possessing the most potent binding affinity and antagonistic activity for A1/A2A ARs at the nanomolar level (pKi of 7.16-7.49 and pIC50 of 6.31-6.78) were identified. Further molecular dynamics (MD) simulations suggested similarly strong binding interactions of the complexes between the A1/A2A ARs and two compounds (C8 and C9). Notably, the 1,2,4-triazole derivatives (compounds C8 and C9) were identified as the most potent dual A1/A2A AR antagonists in our study and could serve as a basis for further development. The effective multistage screening approach developed in this study can be utilized to identify potent ligands for other drug targets.


Asunto(s)
Antagonistas del Receptor de Adenosina A1 , Antagonistas del Receptor de Adenosina A2 , Aprendizaje Profundo , Descubrimiento de Drogas/métodos , Humanos , Simulación del Acoplamiento Molecular , Enfermedad de Parkinson , Unión Proteica , Receptor de Adenosina A2A/química , Receptor de Adenosina A2A/genética , Receptor de Adenosina A2A/metabolismo
19.
Phys Chem Chem Phys ; 24(48): 29520-29527, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36448469

RESUMEN

Ferric oxide (Fe2O3) is an attractive anode material for lithium-ion batteries (LIBs) with a high theoretical capacity of 1005 mA h g-1. However, its practical application is greatly restrained by the rapid capacity fading caused by the large volume expansion upon lithiation. To address this issue, we have designed and synthesized a unique yolk-shell Fe2O3/N-doped carbon hybrid structure (YS-Fe2O3@NC) with rich oxygen vacancies for robust lithium storage. The obtained results show that YS-Fe2O3@NC delivers a high reversible capacity of 578 mA h g-1 after 300 cycles at a current density of 5 A g-1, about 11 times that (53.7 mA h g-1) of pristine Fe2O3. Furthermore, a high specific capacity of 300.5 mA h g-1 even at 10 A g-1 is achieved. The high reversible capacities, excellent rate capability and cycle stability of YS-Fe2O3@NC might be attributed to the elaborate yolk-shell nanoarchitecture. Moreover, electron percolation and a local built-in electric field induced by oxygen vacancies in the Fe2O3 matrix could also enhance the kinetics of Li+ insertion/deinsertion.

20.
Nucleic Acids Res ; 48(11): 5967-5985, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32406921

RESUMEN

During infection of a host, Pseudomonas aeruginosa orchestrates global gene expression to adapt to the host environment and counter the immune attacks. P. aeruginosa harbours hundreds of regulatory genes that play essential roles in controlling gene expression. However, their contributions to the bacterial pathogenesis remain largely unknown. In this study, we analysed the transcriptomic profile of P. aeruginosa cells isolated from lungs of infected mice and examined the roles of upregulated regulatory genes in bacterial virulence. Mutation of a novel regulatory gene pvrA (PA2957) attenuated the bacterial virulence in an acute pneumonia model. Chromatin immunoprecipitation (ChIP)-Seq and genetic analyses revealed that PvrA directly regulates genes involved in phosphatidylcholine utilization and fatty acid catabolism. Mutation of the pvrA resulted in defective bacterial growth when phosphatidylcholine or palmitic acid was used as the sole carbon source. We further demonstrated that palmitoyl coenzyme A is a ligand for the PvrA, enhancing the binding affinity of PvrA to its target promoters. An arginine residue at position 136 was found to be essential for PvrA to bind palmitoyl coenzyme A. Overall, our results revealed a novel regulatory pathway that controls genes involved in phosphatidylcholine and fatty acid utilization and contributes to the bacterial virulence.


Asunto(s)
Proteínas Bacterianas/metabolismo , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Genes Bacterianos/genética , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/patogenicidad , Animales , Arginina/metabolismo , Secuencia de Bases , Inmunoprecipitación de Cromatina , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Ligandos , Ratones , Modelos Moleculares , Mutación , Ácido Palmítico/metabolismo , Palmitoil Coenzima A/metabolismo , Fosfatidilcolinas/metabolismo , Neumonía Bacteriana/microbiología , Regiones Promotoras Genéticas , Pseudomonas aeruginosa/genética , Transcriptoma , Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA