Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Acta Biochim Biophys Sin (Shanghai) ; 56(4): 513-524, 2024 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-38229544

RESUMEN

Thioredoxin-interacting protein (TXNIP) is a crucial thioredoxin-binding protein that is recognized as a tumor suppressor in diverse malignancies, such as breast cancer, lung cancer, hepatocellular carcinoma, and thyroid cancer. However, the specific role and molecular mechanisms of TXNIP in the pathogenesis and progression of pancreatic cancer cells have not been determined. In this study, we investigate the relationship between TXNIP expression and overall survival prognosis in pancreatic cancer patients. Mechanistic studies are conducted to reveal the role of TXNIP in pancreatic cancer cell proliferation, migration, and regulation during malignancy. Our findings indicate that patients with high TXNIP expression have a more favorable prognosis. In vitro experiments with pancreatic cell lines show that overexpression of TXNIP suppresses the proliferation and migration of pancreatic cancer cells. Furthermore, we find that TXNIP inhibits the activation of the MAPK signaling pathway, thereby decreasing the malignant potential of pancreatic cancer. In conclusion, our study reveals TXNIP as a promising new predictive marker and therapeutic target for pancreatic cancer.


Asunto(s)
Neoplasias Hepáticas , Neoplasias Pancreáticas , Humanos , Línea Celular Tumoral , Neoplasias Pancreáticas/metabolismo , Transducción de Señal , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Neoplasias Hepáticas/patología , Proliferación Celular , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo
2.
Cell Death Dis ; 14(11): 778, 2023 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-38012214

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant digestive tract tumor with limited clinical treatments. Transforming acidic coiled-coil-containing protein 3 (TACC3) is a component of the centrosome axis and a member of the TACC family, which affect mitosis and regulate chromosome stability and are involved in tumor development and progression. However, the role of TACC3 in PDAC remains elusive. In this study, by exploiting the TCGA database, we found that high TACC3 expression in PDAC is associated with poor prognosis. shRNA-mediated TACC3 knockdown caused S phase arrest of the cell cycle and inhibited proliferation in PDAC cell lines. Through RNA sequencing and protein co-immunoprecipitation combined with mass spectrometry, KIF11 was identified as a protein that interacts with TACC3. TACC3 stabilizes and regulates KIF11 protein expression levels in PDAC cells through physical interaction. Knockdown of TACC3 or KIF11 resulted in abnormal spindle formation during cell division both in vitro and in vivo. Pharmacological inhibition of TACC3 or KIF11 can suppress tumor cell proliferation and promote apoptosis. Our studies further demonstrated that high expression of TACC3 and KIF11 mediated the resistance of PDAC to gemcitabine, and deficiency of TACC3 or KIF11 increased the sensitivity of PDAC cells to chemotherapy. In conclusion, our study reveals the fundamental role of TACC3 expression in PDAC cell proliferation and chemoresistance, suggesting that TACC3 can be used as a molecular marker to evaluate the prognosis of PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Centrosoma/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Mitosis , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Animales , Ratones
3.
Cancer Lett ; 576: 216411, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37757903

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is extremely malignant with limited treatment options. Deubiquitinases (DUBs), which cleave ubiquitin on substrates, can regulate tumor progression and are appealing therapeutic targets, but there are few related studies in PDAC. In our study, we screened the expression levels and prognostic value of USP family members based on published databases and selected USP10 as the potential interventional target in PDAC. IHC staining of the PDAC microarray revealed that USP10 expression was an adverse clinical feature of PDAC. USP10 promoted tumor growth both in vivo and in vitro in PDAC. Co-IP experiments revealed that USP10 directly interacts with PABPC1. Deubiquitination assays revealed that USP10 decreased the K27/29-linked ubiquitination level of the RRM2 domain of PABPC1. Deubiquitinated PABPC1 was able to couple more CLK2 mRNA and eIF4G1, which increased the translation efficiency. Replacing PABPC1 with a mutant that could not be ubiquitinated impaired USP10 knock-down-mediated tumor suppression in PDAC. Targeting USP10 significantly delayed the growth of cell-derived xenograft and patient-derived xenograft tumors. Collectively, our study first identified USP10 as the DUB of PABPC1 and provided a rationale for potential therapeutic options for PDAC with high USP10 expression.

4.
Cancer Lett ; 530: 142-155, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35077803

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) usually presents infrequent infiltration of T lymphocytes. The known immune-checkpoint inhibitors to date focus on activating T cells and manifest limited effectiveness in PDAC. SIGLEC15 was identified as a novel tumor-associated macrophage (TAM)-related immune-checkpoint in other cancer types, while its immunosuppressive role and clinical significance remained unclear in PDAC. In our study, SIGLEC15 presented immunosuppressive relevance in PDAC via bioinformatic analysis and expressed on TAM and PDAC cells. SIGLEC15+ TAM, rather than SIGLEC15+ PDAC cells or SIGLEC15- TAM, correlated with poor prognosis and immunosuppressive microenvironment in the PDAC microarray cohort. Compared with SIGLEC15- TAM, SIGLEC15+ TAM presented an M2-like phenotype that could be modulated by SIGLEC15 in a tumor cell-dependent manner. In mechanism, SIGLEC15 interacted with PDAC-expressed sialic acid, preferentially α-2, 3 sialic acids, to stimulate SYK phosphorylation in TAM, which further promoted its immunoregulatory cytokines and chemokines production. In vivo, SIGLEC15+ TAM also presented an M2-like phenotype, accelerated tumor growth, and facilitated immunosuppressive microenvironment, which was greatly abolished by SYK inhibitor. Our study highlighted a novel M2-promoting function of SIGLEC15 and strongly suggested SIGLEC15 as a potential immunotherapeutic target for PDAC.


Asunto(s)
Inmunoglobulinas/genética , Proteínas de la Membrana/genética , Neoplasias Pancreáticas/genética , Macrófagos Asociados a Tumores/patología , Animales , Carcinoma Ductal Pancreático/genética , Línea Celular Tumoral , Citocinas/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Terapia de Inmunosupresión/métodos , Ratones , Ratones Endogámicos C57BL , Linfocitos T/patología , Células THP-1 , Microambiente Tumoral/genética , Neoplasias Pancreáticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA