Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Nano Lett ; 24(2): 632-639, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38175932

RESUMEN

Electrical control of magnetism is highly desirable for energy-efficient spintronic applications. Realizing electric-field-driven perpendicular magnetization switching has been a long-standing goal, which, however, remains a major challenge. Here, electric-field control of perpendicularly magnetized ferrimagnetic order via strain-mediated magnetoelectric coupling is reported. We show that the gate voltages isothermally toggle the dominant magnetic sublattice of the compensated ferrimagnet FeTb at room temperature, showing high reversibility and good endurance under ambient conditions. By implementing this strategy in FeTb/Pt/Co spin valves with giant magnetoresistance (GMR), we demonstrate that the distinct high and low resistance states can be selectively controlled by the gate voltages with assisting magnetic fields. Our results provide a promising route to use ferrimagnets for developing electric-field-controlled, low-power memory and logic devices.

2.
J Am Chem Soc ; 146(29): 19748-19755, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38980287

RESUMEN

Hybrid halide perovskites are good candidates for a range of functional materials such as optical electronic and photovoltaic devices due to their tunable band gaps, long carrier diffusion lengths, and solution processability. However, the instability in moisture/air, the toxicity of lead, and rigorous reaction setup or complex postprocessing have long been the bottlenecks for practical application. Herein, we present a simultaneous configurational entropy design at A-sites, B-sites, and X-sites in the typical (CHA)2PbBr4 two-dimensional (2D) hybrid perovskite. Our results demonstrate that the high-entropy effect favors the stabilization of the hybrid perovskite phase and facilitates a simple crystallization process without precise control of the cooling rate to prepare regular crystals. Moreover, high-entropy 2D perovskite crystals exhibit tunable energy band gaps, broadband emission, and a long carrier lifetime. Meanwhile, the high-entropy composition almost maintains the initial crystal structure in deionized water for 18 h while the original (CHA)2PbBr4 crystal mostly decomposes, suggesting obviously improved humidity stability. This work offers a facile approach to synthesize humidity-stable hybrid perovskites under mild conditions, accelerating relevant preparation of optoelectronics and light-emitting devices and facilitating the ultimate commercialization of halide perovskite.

3.
Nat Mater ; 21(9): 1074-1080, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35668148

RESUMEN

Electrostatic dielectric capacitors are essential components in advanced electronic and electrical power systems due to their ultrafast charging/discharging speed and high power density. A major challenge, however, is how to improve their energy densities to effectuate the next-generation applications that demand miniaturization and integration. Here, we report a high-entropy stabilized Bi2Ti2O7-based dielectric film that exhibits an energy density as high as 182 J cm-3 with an efficiency of 78% at an electric field of 6.35 MV cm-1. Our results reveal that regulating the atomic configurational entropy introduces favourable and stable microstructural features, including lattice distorted nano-crystalline grains and a disordered amorphous-like phase, which enhances the breakdown strength and reduces the polarization switching hysteresis, thus synergistically contributing to the energy storage performance. This high-entropy approach is expected to be widely applicable for the development of high-performance dielectrics.

4.
Molecules ; 26(20)2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34684728

RESUMEN

As one of the most important energy storage devices, dielectric capacitors have attracted increasing attention because of their ultrahigh power density, which allows them to play a critical role in many high-power electrical systems. To date, four typical dielectric materials have been widely studied, including ferroelectrics, relaxor ferroelectrics, anti-ferroelectrics, and linear dielectrics. Among these materials, linear dielectric polymers are attractive due to their significant advantages in breakdown strength and efficiency. However, the practical application of linear dielectrics is usually severely hindered by their low energy density, which is caused by their relatively low dielectric constant. This review summarizes some typical studies on linear dielectric polymers and their nanocomposites, including linear dielectric polymer blends, ferroelectric/linear dielectric polymer blends, and linear polymer nanocomposites with various nanofillers. Moreover, through a detailed analysis of this research, we summarize several existing challenges and future perspectives in the research area of linear dielectric polymers, which may propel the development of linear dielectric polymers and realize their practical application.

5.
Phys Chem Chem Phys ; 22(46): 27096-27104, 2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33220667

RESUMEN

In this paper, we systematically studied the thermoelectric power factor of Bi2O2Se when doped with a total of 21 main group elements. This was achieved using first principles density functional theory combined with semi-classical Boltzmann transport theory. Starting from the integral factor in Mott's formula, we thoroughly examined the thermoelectric power factor that was determined from the electronic structure. We also determined the mechanisms of action of temperature and carrier concentrations on these properties. The results show that there are different optimization strategies for the density of states (DOS) with different shapes around the Fermi level. The unconventional behaviours of the Sn, In and Tl doping cases are discussed. The present work uses a theoretical approach to study the effect of doping elements on the thermoelectric power factor of Bi2O2Se, which is valuable for optimizing its desired properties.

6.
Inorg Chem ; 57(10): 6051-6056, 2018 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-29722989

RESUMEN

The quaternary compound Cu2ZnSnSe4 (CZTSe), as a typical candidate for both solar cells and thermoelectrics, is of great interest for energy harvesting applications. Materials with a high thermoelectric efficiency have a relatively low thermal conductivity, which is closely related to their chemical bonding and lattice dynamics. Therefore, it is essential to investigate the lattice dynamics of materials to further improve their thermoelectric efficiency. Here we report a lattice dynamic study in a cobalt-substituted CZTSe system using temperature-dependent X-ray absorption fine structure spectroscopy (TXAFS). The lattice contribution to the thermal conductivity is dominant, and its reduction is mainly ascribed to the increment of point defects after cobalt substitution. Furthermore, a lattice dynamic study shows that the Einstein temperature of atomic pairs is reduced after cobalt substitution, revealing that increasing local structure disorder and weakened bonding for each of the atomic pairs are achieved, which gives us a new perspective for understanding the behavior of lattice thermal conductivity.

7.
Phys Chem Chem Phys ; 18(21): 14580-7, 2016 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-27181423

RESUMEN

The misfit layered cobaltate thermoelectrics are good candidates for high temperature thermoelectric applications. Ca3Co4O9 is a typical compound of this family, which consists of rock salt Ca2CoO3 slabs alternating with hexagonal CoO2 slabs with a large lattice mismatch along the b axis. Each slab is 0.3-0.5 nm thick and shows an inherent structural heterogeneity at the nanoscale. The latter is a key parameter that affects the electrical transport and the heat flow in these misfit structured thermoelectrics. To clarify the physical origin of the thermoelectric performance of iron doped Ca3Co4O9 we combined X-ray near-edge absorption spectroscopy (XANES) and quantum modeling using density functional theory. In contrast to single-site doping, the iron doping first occurs at the Co1 site of the rock salt slab at low doping while at higher doping it prefers the Ca1 site of the rock salt slab. Doping at the Ca1 site modifies the electronic structure tuning the nanoscale structural heterogeneity. This mechanism may open a new route to optimizing the thermoelectric performance of misfit layered thermoelectrics.

9.
Phys Chem Chem Phys ; 17(17): 11229-33, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25829235

RESUMEN

Ga doped In2O3-based thermoelectric materials were prepared by spark plasma sintering (SPS) using sintered powders in the low temperature solid phase. The solubility of Ga in In2O3 is about 10 at%, much larger than other elements such as Ge, Ce, etc. The larger solubility of Ga allows us to optimize the thermal and electrical transport properties of Ga doped In2O3 in a wider window. While tuning the concentration of dopants, the thermoelectric performance of Ga doped In2O3 was enhanced through a synergistic approach combining band-gap engineering and phonon suppression. The power factor increases from ∼0.5 × 10(-4) to ∼9.6 × 10(-4) W mK(-2) at 700 °C while thermal conductivity reduces from ∼4 to ∼2 W mK(-1) at 700 °C in In1.9Ga0.1O3. The maximum ZT of 0.37, increased by a factor of 4 from the pristine In2O3, is achieved in In1.9Ga0.1O3 at 700 °C.

10.
Adv Mater ; : e2403400, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806163

RESUMEN

The compromise of contradictive parameters, polarization, and breakdown strength, is necessary to achieve a high energy storage performance. The two can be tuned, regardless of material types, by controlling microstructures: amorphous states possess higher breakdown strength, while crystalline states have larger polarization. However, how to achieve a balance of amorphous and crystalline phases requires systematic and quantitative investigations. Herein, the trade-off between polarization and breakdown field is comprehensively evaluated with the evolution of microstructure, i.e., grain size and crystallinity, by phase-field simulations. The results indicate small grain size (≈10-35 nm) with moderate crystallinity (≈60-80%) is more beneficial to maintain relatively high polarization and breakdown field simultaneously, consequently contributing to a high overall energy storage performance. Experimentally, therefore an ultrahigh energy density of 131 J cm-3 is achieved with a high efficiency of 81.6% in the microcrystal-amorphous dual-phase Bi3NdTi4O12 films. This work provides a guidance to substantially enhance dielectric energy storage by a simple and effective microstructure design.

11.
Small Methods ; : e2301619, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38488726

RESUMEN

BiCuSeO is a promising oxygen-containing thermoelectric material due to its intrinsically low lattice thermal conductivity and excellent service stability. However, the low electrical conductivity limits its thermoelectric performance. Aliovalent element doping can significantly improve their carrier concentration, but it may also impact carrier mobility and thermal transport properties. Considering the influence of graphene on carrier-phonon decoupling, Bi0.88 Pb0.06 Ca0.06 CuSeO (BPCCSO)-graphene composites are designed. For further practical application, a rapid preparation method is employed, taking less than 1 h, which combines self-propagating high-temperature synthesis with spark plasma sintering. The incorporation of graphene simultaneously optimizes the electrical properties and thermal conductivity, yielding a high ratio of weighted mobility to lattice thermal conductivity (144 at 300 K and 95 at 923 K). Ultimately, BPCCSO-graphene composites achieve exceptional thermoelectric performance with a ZT value of 1.6 at 923 K, bringing a ≈40% improvement over BPCCSO without graphene. This work further promotes the practical application of BiCuSeO-based materials and this facile and effective strategy can also be extended to other thermoelectric systems.

12.
Science ; 384(6692): 185-189, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38603510

RESUMEN

Ultrahigh-power-density multilayer ceramic capacitors (MLCCs) are critical components in electrical and electronic systems. However, the realization of a high energy density combined with a high efficiency is a major challenge for practical applications. We propose a high-entropy design in barium titanate (BaTiO3)-based lead-free MLCCs with polymorphic relaxor phase. This strategy effectively minimizes hysteresis loss by lowering the domain-switching barriers and enhances the breakdown strength by the high atomic disorder with lattice distortion and grain refining. Benefiting from the synergistic effects, we achieved a high energy density of 20.8 joules per cubic centimeter with an ultrahigh efficiency of 97.5% in the MLCCs. This approach should be universally applicable to designing high-performance dielectrics for energy storage and other related functionalities.

13.
Nat Commun ; 15(1): 5975, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39013854

RESUMEN

Magnons, bosonic quasiparticles carrying angular momentum, can flow through insulators for information transmission with minimal power dissipation. However, it remains challenging to develop a magnon-based logic due to the lack of efficient electrical manipulation of magnon transport. Here we show the electric excitation and control of multiferroic magnon modes in a spin-source/multiferroic/ferromagnet structure. We demonstrate that the ferroelectric polarization can electrically modulate the magnon-mediated spin-orbit torque by controlling the non-collinear antiferromagnetic structure in multiferroic bismuth ferrite thin films with coupled antiferromagnetic and ferroelectric orders. In this multiferroic magnon torque device, magnon information is encoded to ferromagnetic bits by the magnon-mediated spin torque. By manipulating the two coupled non-volatile state variables-ferroelectric polarization and magnetization-we further present reconfigurable logic operations in a single device. Our findings highlight the potential of multiferroics for controlling magnon information transport and offer a pathway towards room-temperature voltage-controlled, low-power, scalable magnonics for in-memory computing.

14.
Phys Chem Chem Phys ; 15(40): 17595-600, 2013 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-24037115

RESUMEN

Indium oxides such as In2O3 based thermoelectric ceramics exhibit a figure of merit ZT ~0.5 above 1000 K, while optimized ZnO based thermoelectrics may reach ZT ~0.3 at 1273 K. A way to further optimize the thermoelectric performance is to tune the thermal conductivity. In this work, a reduction of the thermal conductivity greater than 30% has been observed. Combining thermal conductivity measurements, Scanning Electron Microscopy (SEM) images, X-ray Absorption Fine-structure spectroscopy (XAFS) data and Full Multiple Scattering calculations, we associated the phenomenon with an effective scattering of mid- and long-wavelength phonons by embedded ZnO nano-inclusions in the In2O3 matrix. The results suggest a protocol for the synthesis of new heat-designed materials for many novel applications, such as high ZT thermoelectrics, thermal crystals, heat optics devices, etc.

15.
ACS Appl Mater Interfaces ; 15(10): 13144-13154, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36858952

RESUMEN

As for the self-supporting composite films, it is significant to develop a structural design that allows for excellent flexibility while reducing the negative effect on thermoelectric (TE) properties. Herein, a robust, flexible TE film was fabricated by in situ chemical transformation and vacuum-assisted filtration without any organic solvents involved. The performance of the films was further optimized by adjusting the Ag/Te ratio and post-treatment methods. Owing to the semi-interpenetrating nanonetwork structure formed by AgxTe nanowires and bacterial cellulose, the obtained TE film displayed a high tensile strength of ∼78.4 MPa and a high power factor of 48.9 µW m-1 K-2 at room temperature. A slight electrical conductivity decrement of the TE film in flexible test (∼2% after 1000 bending cycles) indicates an excellent flexibility. Finally, a TE bracelet was assembled to harvest body heat energy, and a steady current of ∼2.7 µA was generated when worn on the wrist indoors. This work provides a reference for the structural design and practical application of flexible TE films.

16.
Nat Commun ; 14(1): 2410, 2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37105970

RESUMEN

Thermoelectric materials can realize direct conversion between heat and electricity, showing excellent potential for waste heat recovery. Cu2Se is a typical superionic conductor thermoelectric material having extraordinary ZT values, but its superionic feature causes poor service stability and low mobility. Here, we reported a fast preparation method of self-propagating high-temperature synthesis to realize in situ compositing of BiCuSeO and Cu2Se to optimize the service stability. Additionally, using the interface design by introducing graphene in these composites, the carrier mobility could be obviously enhanced, and the strong phonon scatterings could lead to lower lattice thermal conductivity. Ultimately, the Cu2Se-BiCuSeO-graphene composites presented excellent thermoelectric properties with a ZTmax value of ~2.82 at 1000 K and a ZTave value of ~1.73 from 473 K to 1000 K. This work provides a facile and effective strategy to largely improve the performance of Cu2Se-based thermoelectric materials, which could be further adopted in other thermoelectric systems.

17.
Nat Commun ; 14(1): 5458, 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37673896

RESUMEN

Current induced spin-orbit torque (SOT) holds great promise for next generation magnetic-memory technology. Field-free SOT switching of perpendicular magnetization requires the breaking of in-plane symmetry, which can be artificially introduced by external magnetic field, exchange coupling or device asymmetry. Recently it has been shown that the exploitation of inherent crystal symmetry offers a simple and potentially efficient route towards field-free switching. However, applying this approach to the benchmark SOT materials such as ferromagnets and heavy metals is challenging. Here, we present a strategy to break the in-plane symmetry of Pt/Co heterostructures by designing the orientation of Burgers vectors of dislocations. We show that the lattice of Pt/Co is tilted by about 1.2° when the Burgers vector has an out-of-plane component. Consequently, a tilted magnetic easy axis is induced and can be tuned from nearly in-plane to out-of-plane, enabling the field-free SOT switching of perpendicular magnetization components at room temperature with a relatively low current density (~1011 A/m2) and excellent stability (> 104 cycles). This strategy is expected to be applicable to engineer a wide range of symmetry-related functionalities for future electronic and magnetic devices.

18.
Adv Sci (Weinh) ; 10(8): e2206203, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36703616

RESUMEN

The anomalous Hall effect (AHE) is a quantum coherent transport phenomenon that conventionally vanishes at elevated temperatures because of thermal dephasing. Therefore, it is puzzling that the AHE can survive in heavy metal (HM)/antiferromagnetic (AFM) insulator (AFMI) heterostructures at high temperatures yet disappears at low temperatures. In this paper, an unconventional high-temperature AHE in HM/AFMI is observed only around the Néel temperature of AFM, with large anomalous Hall resistivity up to 40 nΩ cm is reported. This mechanism is attributed to the emergence of a noncollinear AFM spin texture with a non-zero net topological charge. Atomistic spin dynamics simulation shows that such a unique spin texture can be stabilized by the subtle interplay among the collinear AFM exchange coupling, interfacial Dyzaloshinski-Moriya interaction, thermal fluctuation, and bias magnetic field.

19.
Artículo en Inglés | MEDLINE | ID: mdl-35536045

RESUMEN

In this work, ultrahigh-performance single-walled carbon nanotube (SWCNT)/Se nanowire (NW)/poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) ternary thermoelectric (TE) nanocomposite films are successfully designed by rational design of CNT/Se/PEDOT:PSS ternary nanocomposites. The addition of CNTs apparently improves the electrical conductivity of composite films, resulting in a relatively huge growth of the power factor. The PEDOT:PSS interface layers uniformly attach on both sides of the Se NWs and CNTs effectively, forming a tightly interleaving and interconnected three-dimensional network. As a consequence, a maximum power factor of 863.83 µW/(m·K2) has been achieved for the sample containing 26 wt % CNTs at 434 K. Ultimately, a flexible TE generator prototype consisting of 5-unit freestanding composite film strips is fabricated using the optimized composite films, which can generate a maximum output power of 206.8 nW at a temperature gradient of 44.7 K. Therefore, the present work has a further potential to be used for the flexible polymer/carbon TE nanocomposite films and devices.

20.
ACS Appl Mater Interfaces ; 14(28): 32218-32226, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35816115

RESUMEN

Lead-free relaxor ferroelectric ceramics are potential for energy storage applications due to their comprehensive energy storage properties. However, the energy efficiency of many relaxor ceramics is not high enough, leading to high Joule heat during the charge-discharge cycles, thus lowering their energy storage performance. In this work, tantalum (Ta) dopants were introduced into sodium niobate-based relaxor ceramics to improve the resistivity and energy efficiency. The leakage current was reduced by Ta doping, especially at the high electric field. The enhanced resistivity is attributed to the increased bandgap induced by Ta doping. The impedance spectroscopy shows that both the grain and grain boundary resistivities are improved in the high temperature region. As a result, the optimal recoverable energy density and energy efficiency are 6.5 J/cm3 and 94% at 450 kV/cm, respectively. In addition, the energy storage properties exhibit satisfactory temperature stability and cycling reliability. All these merits demonstrate that the Ta modified sodium niobate-based relaxor ceramic a potential candidate for high-power energy storage applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA