Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Cell ; 154(3): 637-50, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23911326

RESUMEN

Synaptic plasticity induced by cocaine and other drugs underlies addiction. Here we elucidate molecular events at synapses that cause this plasticity and the resulting behavioral response to cocaine in mice. In response to D1-dopamine-receptor signaling that is induced by drug administration, the glutamate-receptor protein metabotropic glutamate receptor 5 (mGluR5) is phosphorylated by microtubule-associated protein kinase (MAPK), which we show potentiates Pin1-mediated prolyl-isomerization of mGluR5 in instances where the product of an activity-dependent gene, Homer1a, is present to enable Pin1-mGluR5 interaction. These biochemical events potentiate N-methyl-D-aspartate receptor (NMDAR)-mediated currents that underlie synaptic plasticity and cocaine-evoked motor sensitization as tested in mice with relevant mutations. The findings elucidate how a coincidence of signals from the nucleus and the synapse can render mGluR5 accessible to activation with consequences for drug-induced dopamine responses and point to depotentiation at corticostriatal synapses as a possible therapeutic target for treating addiction.


Asunto(s)
Trastornos Relacionados con Cocaína/fisiopatología , Cocaína/metabolismo , Dopamina/metabolismo , Isomerasa de Peptidilprolil/metabolismo , Secuencia de Aminoácidos , Animales , Encéfalo/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Embrión de Mamíferos/metabolismo , Proteínas de Andamiaje Homer , Potenciación a Largo Plazo , Ratones , Datos de Secuencia Molecular , Peptidilprolil Isomerasa de Interacción con NIMA , Fosforilación , Receptores AMPA/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Ácido Kaínico/química , Receptores de Ácido Kaínico/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/metabolismo
2.
Mol Cell ; 75(1): 13-25.e5, 2019 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-31151856

RESUMEN

Arc is a synaptic protein essential for memory consolidation. Recent studies indicate that Arc originates in evolution from a Ty3-Gypsy retrotransposon GAG domain. The N-lobe of Arc GAG domain acquired a hydrophobic binding pocket in higher vertebrates that is essential for Arc's canonical function to weaken excitatory synapses. Here, we report that Arc GAG also acquired phosphorylation sites that can acutely regulate its synaptic function. CaMKII phosphorylates the N-lobe of the Arc GAG domain and disrupts an interaction surface essential for high-order oligomerization. In Purkinje neurons, CaMKII phosphorylation acutely reverses Arc's synaptic action. Mutant Arc that cannot be phosphorylated by CaMKII enhances metabotropic receptor-dependent depression in the hippocampus but does not alter baseline synaptic transmission or long-term potentiation. Behavioral studies indicate that hippocampus- and amygdala-dependent learning requires Arc GAG domain phosphorylation. These studies provide an atomic model for dynamic and local control of Arc function underlying synaptic plasticity and memory.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Proteínas del Citoesqueleto/metabolismo , Potenciación a Largo Plazo/fisiología , Memoria/fisiología , Proteínas del Tejido Nervioso/metabolismo , Células de Purkinje/metabolismo , Secuencia de Aminoácidos , Amígdala del Cerebelo/citología , Amígdala del Cerebelo/metabolismo , Animales , Sitios de Unión , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/química , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/genética , Técnicas de Sustitución del Gen , Células HEK293 , Hipocampo/citología , Hipocampo/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Moleculares , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Fosforilación , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Células de Purkinje/citología , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Sinapsis/fisiología , Transmisión Sináptica
3.
Cell ; 145(5): 758-72, 2011 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-21565394

RESUMEN

We have created a mouse genetic model that mimics a human mutation of Shank3 that deletes the C terminus and is associated with autism. Expressed as a single copy [Shank3(+/ΔC) mice], Shank3ΔC protein interacts with the wild-type (WT) gene product and results in >90% reduction of Shank3 at synapses. This "gain-of-function" phenotype is linked to increased polyubiquitination of WT Shank3 and its redistribution into proteasomes. Similarly, the NR1 subunit of the NMDA receptor is reduced at synapses with increased polyubiquitination. Assays of postsynaptic density proteins, spine morphology, and synapse number are unchanged in Shank3(+/ΔC) mice, but the amplitude of NMDAR responses is reduced together with reduced NMDAR-dependent LTP and LTD. Reciprocally, mGluR-dependent LTD is markedly enhanced. Shank3(+/ΔC) mice show behavioral deficits suggestive of autism and reduced NMDA receptor function. These studies reveal a mechanism distinct from haploinsufficiency by which mutations of Shank3 can evoke an autism-like disorder.


Asunto(s)
Trastorno Autístico/genética , Proteínas Portadoras/metabolismo , Modelos Animales de Enfermedad , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Trastorno Autístico/metabolismo , Trastorno Autístico/fisiopatología , Proteínas Portadoras/genética , Hipocampo/metabolismo , Humanos , Relaciones Interpersonales , Potenciación a Largo Plazo , Depresión Sináptica a Largo Plazo , Ratones , Proteínas de Microfilamentos , Proteínas del Tejido Nervioso , Receptores de Glutamato Metabotrópico/metabolismo , Sinapsis/metabolismo , Ubiquitinación
4.
J Neurosci ; 39(25): 4874-4888, 2019 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-30992373

RESUMEN

Surgical ovariectomy has been shown to reduce spine density in hippocampal CA1 pyramidal cells of rodents, and this reduction is reversed by 17ß-estradiol (E2) treatment in a model of human estrogen replacement therapy. Here, we report reduction of spine density in apical dendrites of layer 5 pyramidal neurons of several neocortical regions that is reversed by subsequent E2 treatment in ovariectomized (OVX) female Thy1M-EGFP mice. We also found that OVX-associated reduction of spine density in somatosensory cortex was accompanied by a reduction in miniature EPSC (mEPSC) frequency (but not mIPSC frequency), indicating a change in functional synapses. OVX-associated spine loss in somatosensory cortex was also rescued by an agonist of the G-protein-linked estrogen receptor (GPER) but not by agonists of the classic estrogen receptors ERα/ERß, whereas the opposite selectivity was found in area CA1. Acute treatment of neocortical slices with E2 also rescued the OVX-associated reduction in mEPSC frequency, which could be mimicked by a GPER agonist and abolished by a GPER antagonist. Time-lapse in vivo two-photon imaging showed that OVX-associated reduction in spine density is achieved by both an increase in spine loss rate and a decrease in spine gain rate and that subsequent rescue by E2 reversed both of these processes. Crucially, the spines added after E2 rescue were no more likely to reappear at or nearby the sites of pre-OVX spines than those in control mice treated with vehicle. Thus, a model of estrogen replacement therapy, although restoring spine density and dynamics, does not entirely restore functional connectivity.SIGNIFICANCE STATEMENT Estrogen replacement therapy following menopause or surgical removal of the ovaries is a widespread medical practice, yet little is known about the consequences of such treatment for cells in the brain. Here, we show that estrogen replacement reverses some of the effects of surgical removal of the ovaries on the structure and function of brain cells in the mouse. Yet, importantly, the fine wiring of the brain is not returned to the presurgery state by estrogen treatment, suggesting lasting functional consequences.


Asunto(s)
Espinas Dendríticas/efectos de los fármacos , Estradiol/farmacología , Neocórtex/efectos de los fármacos , Células Piramidales/efectos de los fármacos , Animales , Espinas Dendríticas/metabolismo , Estrógenos/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Femenino , Ratones , Potenciales Postsinápticos Miniatura/efectos de los fármacos , Neocórtex/citología , Neocórtex/metabolismo , Ovariectomía , Células Piramidales/citología , Células Piramidales/metabolismo
5.
J Neurochem ; 153(1): 33-50, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31419307

RESUMEN

It is important to monitor serotonin neurochemistry in the context of brain disorders. Specifically, a better understanding of biophysical alterations and associated biochemical functionality within subregions of the brain will enable better of understanding of diseases such as depression. Fast voltammetric tools at carbon fiber microelectrodes provide an opportunity to make direct evoked and ambient serotonin measurements in vivo in mice. In this study, we characterize novel stimulation and measurement circuitries for serotonin analyses in brain regions relevant to psychiatric disease. Evoked and ambient serotonin in these brain areas, the CA2 region of the hippocampus and the medial prefrontal cortex, are compared to ambient and evoked serotonin in the substantia nigra pars reticulata, an area well established previously for serotonin measurements with fast voltammetry. Stimulation of a common axonal location evoked serotonin in all three brain regions. Differences are observed in the serotonin release and reuptake profiles between these three brain areas which we hypothesize to arise from tissue physiology heterogeneity around the carbon fiber microelectrodes. We validate this hypothesis mathematically and via confocal imaging. We thereby show that fast voltammetric methods can provide accurate information about local physiology and highlight implications for chemical mapping. Cover Image for this issue: doi: 10.1111/jnc.14739.


Asunto(s)
Encéfalo/fisiopatología , Técnicas Electroquímicas/métodos , Trastornos Mentales/fisiopatología , Serotonina/análisis , Serotonina/metabolismo , Animales , Axones/fisiología , Química Encefálica/fisiología , Fibra de Carbono , Estimulación Eléctrica , Potenciales Evocados , Hipocampo/química , Masculino , Haz Prosencefálico Medial , Ratones , Ratones Endogámicos C57BL , Microelectrodos , Modelos Teóricos , Corteza Prefrontal/química , Sustancia Negra/química
6.
J Neurosci ; 37(37): 8876-8894, 2017 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-28821659

RESUMEN

Control of Ca2+ flux between the cytosol and intracellular Ca2+ stores is essential for maintaining normal cellular function. It has been well established in both neuronal and non-neuronal cells that stromal interaction molecule 1 (STIM1) initiates and regulates refilling Ca2+ into the ER. Here, we describe a novel, additional role for STIM1, the regulation of free cytosolic Ca2+, and the consequent control of spike firing in neurons. Among central neurons, cerebellar Purkinje neurons express the highest level of STIM1, and they fire continuously in the absence of stimulation, making somatic Ca2+ homeostasis of particular importance. By using Purkinje neuron-specific STIM1 knock-out (STIM1PKO) male mice, we found that the deletion of STIM1 delayed clearance of cytosolic Ca2+ in the soma during ongoing neuronal firing. Deletion of STIM1 also reduced the Purkinje neuronal excitability and impaired intrinsic plasticity without affecting long-term synaptic plasticity. In vestibulo-ocular reflex learning, STIM1PKO male mice showed severe deficits in memory consolidation, whereas they were normal in memory acquisition. Our results suggest that STIM1 is critically involved in the regulation of the neuronal excitability and the intrinsic plasticity of the Purkinje neurons as well as cerebellar memory consolidation.SIGNIFICANCE STATEMENT Stromal interaction molecule 1 (STIM1), which regulates the refilling of ER Ca2+, has been investigated in several systems including the CNS. In addition to a previous study showing that STIM1 regulates dendritic ER Ca2+ refilling and mGluR1-mediated synaptic transmission, we provide compelling evidence describing a novel role of STIM1 in spike firing Purkinje neurons. We found that STIM1 regulates cytosolic Ca2+ clearance of the soma during spike firing, and the interruption of this cytosolic Ca2+ clearing disrupts neuronal excitability and cerebellar memory consolidation. Our results provide new insights into neuronal functions of STIM1 from single neuronal Ca2+ dynamics to behavior level.


Asunto(s)
Potenciales de Acción/fisiología , Señalización del Calcio/fisiología , Calcio/metabolismo , Consolidación de la Memoria/fisiología , Células de Purkinje/fisiología , Molécula de Interacción Estromal 1/metabolismo , Animales , Células Cultivadas , Masculino , Ratones , Ratones Endogámicos C57BL , Molécula de Interacción Estromal 1/genética
7.
J Neurosci ; 37(45): 10808-10816, 2017 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-29118209

RESUMEN

In vivo optical imaging has emerged as a powerful tool with which to study cellular responses to injury and disease in the mammalian CNS. Important new insights have emerged regarding axonal degeneration and regeneration, glial responses and neuroinflammation, changes in the neurovascular unit, and, more recently, neural transplantations. Accompanying a 2017 SfN Mini-Symposium, here, we discuss selected recent advances in understanding the neuronal, glial, and other cellular responses to CNS injury and disease with in vivo imaging of the rodent brain or spinal cord. We anticipate that in vivo optical imaging will continue to be at the forefront of breakthrough discoveries of fundamental mechanisms and therapies for CNS injury and disease.


Asunto(s)
Enfermedades del Sistema Nervioso Central/diagnóstico por imagen , Sistema Nervioso Central/diagnóstico por imagen , Sistema Nervioso Central/lesiones , Neuroimagen/métodos , Animales , Humanos , Ratones , Neuroimagen/instrumentación , Ratas
8.
J Neurosci Res ; 96(4): 512-526, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28485037

RESUMEN

It is widely held that injured neurons in the central nervous system do not undergo axonal regrowth. However, there is mounting evidence that serotonin axons are a notable exception. Serotonin axons undergo long-distance regrowth in the neocortex after amphetamine lesion, and, following a penetrating stab injury, they can regrow from cut ends to traverse the stab rift. Traumatic brain injury (TBI) is clinically prevalent and can lead to pathologies, such as depression, that are related to serotonergic dysfunction. Thus, whether serotonin axons can regrow after TBI is an important question. We used two models for TBI-a persistent open skull condition and controlled cortical impact-to evoke injury in adult female mouse neocortex, and assessed serotonin axon density 1 week, 1 month, and 3 months after injury by serotonin transporter immunohistochemistry. We found that after both forms of TBI, serotonin axon density is decreased posterior but not anterior to the injury site when measured in layer 1 at 1 week post surgery, and that serotonin axons are capable of regrowing into the distal zone to increase density by 1 month post surgery. This pattern is consistent with the anterior-to-posterior course of serotonin axons in the neocortex. TBI in these models is associated with significant reactive astrogliosis both anterior and posterior to the impact, but the degree of reactive astrogliosis is not correlated with serotonin axon density when measured 1 week after TBI. Microglial density remains constant following both types of injuries, but microglial condensation was detected 1 week after controlled cortical impact.


Asunto(s)
Axones/fisiología , Lesiones Traumáticas del Encéfalo/fisiopatología , Neocórtex/fisiopatología , Regeneración Nerviosa/fisiología , Neuronas Serotoninérgicas/fisiología , Animales , Axones/metabolismo , Axones/patología , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/patología , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al ADN , Femenino , Proteína Ácida Fibrilar de la Glía/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas de Microfilamentos/metabolismo , Microglía/metabolismo , Microglía/patología , Neocórtex/metabolismo , Neocórtex/patología , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Neuronas Serotoninérgicas/citología , Neuronas Serotoninérgicas/metabolismo , Neuronas Serotoninérgicas/patología
9.
Neurobiol Dis ; 103: 144-153, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28392471

RESUMEN

In addition to motor function, the cerebellum has been implicated in cognitive and social behaviors. Various structural and functional abnormalities of Purkinje cells (PCs) have been observed in schizophrenia and autism. As PCs express the gene Disrupted-In-Schizophrenia-1 (DISC1), and DISC1 variants have been associated with neurodevelopmental disorders, we evaluated the role of DISC1 in cerebellar physiology and associated behaviors using a mouse model of inducible and selective expression of a dominant-negative, C-terminus truncated human DISC1 (mutant DISC1) in PCs. Mutant DISC1 male mice demonstrated impaired social and novel placement recognition. No group differences were found in novelty-induced hyperactivity, elevated plus maze test, spontaneous alternation, spatial recognition in Y maze, sociability or accelerated rotarod. Expression of mutant DISC1 was associated with a decreased number of large somata PCs (volume: 3000-5000µm3) and an increased number of smaller somata PCs (volume: 750-1000µm3) without affecting the total number of PCs or the volume of the cerebellum. Compared to control mice, attached loose patch recordings of PCs in mutant DISC1 mice revealed increased spontaneous firing of PCs; and whole cell recordings showed increased amplitude and frequency of mEPSCs without significant changes in either Rinput or parallel fiber EPSC paired-pulse ratio. Our findings indicate that mutant DISC1 alters the physiology of PCs, possibly leading to abnormal recognition memory in mice.


Asunto(s)
Disfunción Cognitiva/metabolismo , Potenciales Postsinápticos Excitadores/fisiología , Locomoción/fisiología , Proteínas del Tejido Nervioso/biosíntesis , Células de Purkinje/metabolismo , Conducta Social , Animales , Disfunción Cognitiva/genética , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética
10.
Proc Natl Acad Sci U S A ; 110(34): 13976-81, 2013 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-23918399

RESUMEN

The dynamic trafficking of AMPA receptors (AMPARs) into and out of synapses is crucial for synaptic transmission, plasticity, learning, and memory. The protein interacting with C-kinase 1 (PICK1) directly interacts with GluA2/3 subunits of the AMPARs. Although the role of PICK1 in regulating AMPAR trafficking and multiple forms of synaptic plasticity is known, the exact molecular mechanisms underlying this process remain unclear. Here, we report a unique interaction between PICK1 and all three members of the protein kinase C and casein kinase II substrate in neurons (PACSIN) family and show that they form a complex with AMPARs. Our results reveal that knockdown of the neuronal-specific protein, PACSIN1, leads to a significant reduction in AMPAR internalization following the activation of NMDA receptors in hippocampal neurons. The interaction between PICK1 and PACSIN1 is regulated by PACSIN1 phosphorylation within the variable region and is required for AMPAR endocytosis. Similarly, the binding of PICK1 to the ubiquitously expressed PACSIN2 is also regulated by the homologous phosphorylation sites within the PACSIN2-variable region. Genetic deletion of PACSIN2, which is highly expressed in Purkinje cells, eliminates cerebellar long-term depression. This deficit can be fully rescued by overexpressing wild-type PACSIN2, but not by a PACSIN2 phosphomimetic mutant, which does not bind PICK1 efficiently. Taken together, our data demonstrate that the interaction of PICK1 and PACSIN is required for the activity-dependent internalization of AMPARs and for the expression of long-term depression in the cerebellum.


Asunto(s)
Proteínas Portadoras/metabolismo , Hipocampo/citología , Proteínas Nucleares/metabolismo , Receptores AMPA/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica/fisiología , Animales , Células Cultivadas , Proteínas del Citoesqueleto , Escherichia coli , Células HEK293 , Hipocampo/metabolismo , Humanos , Inmunohistoquímica , Inmunoprecipitación , ARN Interferente Pequeño/genética , Ratas
11.
J Neurosci ; 33(39): 15401-7, 2013 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-24068808

RESUMEN

The palmitoyl acyltransferase (PAT) DHHC8 is implicated in synaptic regulation but few DHHC8 substrates are known. Here we report that DHHC8 binds and palmitoylates the PDZ domain-containing protein PICK1 at a cysteine residue that is essential for long-term synaptic depression (LTD) in cultured mouse cerebellar Purkinje neurons. Cerebellar LTD is palmitoylation-dependent and induction of LTD requires DHHC8. Furthermore, PICK1 is a critical DHHC8 substrate whose palmitoylation is necessary for LTD. These results identify the first DHHC8 substrate required for a specific form of synaptic plasticity and provide new insights into synaptic roles of palmitoylation.


Asunto(s)
Aciltransferasas/metabolismo , Proteínas Portadoras/metabolismo , Cerebelo/fisiología , Lipoilación , Depresión Sináptica a Largo Plazo , Proteínas de la Membrana/metabolismo , Proteínas Nucleares/metabolismo , Células de Purkinje/metabolismo , Aciltransferasas/genética , Animales , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas de Ciclo Celular , Células Cultivadas , Cerebelo/citología , Cerebelo/metabolismo , Cisteína/metabolismo , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Proteínas Nucleares/química , Proteínas Nucleares/genética , Dominios PDZ
12.
eNeuro ; 11(2)2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38355299

RESUMEN

A current hypothesis to explain the limited recovery following brain and spinal cord trauma stems from the dogma that neurons in the mammalian central nervous system lack the ability to regenerate their axons after injury. Serotonin (5-HT) neurons in the adult brain are a notable exception in that they can slowly regrow their axons following chemical or mechanical lesions. This process of regrowth occurs without intervention over several months and results in anatomical recovery that approximates the preinjured state. During development, serotonin is a trophic factor, playing a role in both cell survival and axon growth. Additionally, some studies have shown that stroke patients treated after injury with serotonin selective reuptake inhibitors (SSRIs) appeared to have improved recovery. To test the hypothesis that serotonin can influence the regrowth of 5-HT axons, mice received a high dose of para-chloroamphetamine (PCA) to induce widespread retrograde degeneration of 5-HT axons. Then, after a short rest period to avoid any interaction with the acute injury phase, SSRIs were administered daily for 6 or 10 weeks. Using immunohistochemistry in 5-HT transporter-GFP BAC transgenic mice, we determined that while PCA led to a rapid initial decrease in total 5-HT axon length in the somatosensory cortex, visual cortex, or area CA1 of the hippocampus, treatment with either fluoxetine or sertraline (two different SSRIs) did not affect the recovery of axon length. These results suggest that chronic SSRI treatment does not affect the regrowth of 5-HT axons and argue against SSRIs as a potential therapy following brain injury.


Asunto(s)
Inhibidores Selectivos de la Recaptación de Serotonina , Serotonina , Humanos , Adulto , Ratones , Animales , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Anfetamina , Fluoxetina/farmacología , Axones/fisiología , Prosencéfalo , Ratones Transgénicos , Mamíferos
13.
bioRxiv ; 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38405910

RESUMEN

Mammalian parenting is an unusually demanding commitment. How did evolution co-opt the reward system to ensure parental care? Previous work has implicated the lateral habenula (LHb), an epithalamic nucleus, as a potential intersection of parenting behavior and reward. Here, we examine the role of the LHb in the maternal behavior of naturally parturient mouse dams. We show that kainic acid lesions of the LHb induced a severe maternal neglect phenotype in dams towards their biological pups. Next, we demonstrate that through chronic chemogenetic inactivation of the LHb using DREADDs impaired acquisition and performance of various maternal behaviors, such as pup retrieval and nesting. We present a random intercepts model suggesting LHb-inactivation prevents the acquisition of the novel pup retrieval maternal behavior and decreases nest building performance, an already-established behavior, in primiparous mouse dams. Lastly, we examine the spatial histology of kainic-acid treated dams with a random intercepts model, which suggests that the role of LHb in maternal behavior may be preferentially localized at the posterior aspect of this structure. Together, these findings serve to establish the LHb as required for maternal behavior in the mouse dam, thereby complementing previous findings implicating the LHb in parental behavior using pup-sensitized virgin female mice.

14.
J Neurophysiol ; 109(4): 1174-81, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23197456

RESUMEN

Brief strong depolarization of cerebellar Purkinje cells produces a slow inward cation current [depolarization-induced slow current (DISC)]. Previous work has shown that DISC is triggered by voltage-sensitive Ca influx in the Purkinje cell and is attenuated by blockers of vesicular loading and fusion. Here, we have sought to characterize the ion channel(s) underlying the DISC conductance. While the brief depolarizing steps that triggered DISC were associated with a large Ca transient, the onset of DISC current corresponded only with the Ca transient decay phase. Furthermore, substitution of external Na with the impermeant cation N-methyl-d-glucamine produced a complete and reversible block of DISC, suggesting that the DISC conductance was not Ca permeant. Transient receptor potential cation channel, subfamily M, members 4 (TRPM4) and 5 (TRPM5) are nonselective cation channels that are opened by Ca transients but do not flux Ca. They are expressed in Purkinje cells of the posterior cerebellum, where DISC is large, and, in these cells, DISC is strongly attenuated by nonselective blockers of TRPM4/5. However, measurement of DISC currents in Purkinje cells derived from TRPM4 null, TRPM5 null, and double null mice as well as wild-type mice with TRPM4 short hairpin RNA knockdown showed a partial attenuation with 35-46% of current remaining. Thus, while the DISC conductance is Ca triggered, Na permeant, and Ca impermeant, suggesting a role for TRPM4 and TRPM5, these ion channels are not absolutely required for DISC.


Asunto(s)
Potenciales de Acción/fisiología , Células de Purkinje/fisiología , Potenciales de Acción/efectos de los fármacos , Animales , Calcio/metabolismo , Meglumina/análogos & derivados , Meglumina/farmacología , Ratones , Ratones Endogámicos C57BL , Células de Purkinje/metabolismo , ARN Interferente Pequeño , Sodio/metabolismo , Canales Catiónicos TRPM/antagonistas & inhibidores , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPM/metabolismo
15.
J Neurophysiol ; 107(1): 448-54, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22049330

RESUMEN

Long-term synaptic depression (LTD) of cerebellar parallel fiber-Purkinje cell synapses is a form of use-dependent synaptic plasticity that may be studied in cell culture. One form of LTD is induced postsynaptically through an mGlu1/Ca influx/protein kinase Cα (PKCα) cascade, and its initial expression requires phosphorylation of ser-880 in the COOH-terminal PDZ-ligand region of GluA2 and consequent binding of PICK1. This triggers postsynaptic clathrin/dynamin-mediated endocytosis of GluA2-containing surface AMPA receptors. Cerebellar LTD also has a late phase beginning 45-60 min after induction that is blocked by transcription or translation inhibitors. Here, I have sought to determine the expression mechanism of this late phase of LTD by applying various drugs and peptides after the late phase has been established. Neither bath application of mGluR1 antagonists (JNJ-16259685, LY-456236) nor the PKC inhibitor GF-109203X starting 60-70 min after LTD induction attenuated the late phase. Similarly, achieving the whole cell configuration with a second pipette loaded with the peptide PKC inhibitor PKC(19-36) starting 60 min postinduction also failed to alter the late phase. Late internal perfusion with peptides designed to disrupt PICK1-GLUA2 interaction or PICK1 dimerization failed to impact late phase LTD expression. However, late internal perfusion with two different blockers of dynamin, the drug dynasore and a dynamin inhibitory peptide (QVPSRPNRAP), produced rapid and complete reversal of cerebellar LTD expression. These findings suggest that the protein synthesis-dependent late phase of LTD requires persistent dynamin-mediated endocytosis, but not persistent PICK1-GluA2 binding nor persistent activation of the upstream mGluR1/PKCα signaling cascade.


Asunto(s)
Potenciales de Acción/fisiología , Dinaminas/metabolismo , Endocitosis/fisiología , Depresión Sináptica a Largo Plazo/fisiología , Células de Purkinje/fisiología , Animales , Línea Celular , Células Cultivadas , Ratones
17.
Cerebellum ; 11(1): 121-31, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20049574

RESUMEN

Action potential-evoked calcium influx into presynaptic boutons is a key determinant of synaptic strength and function. Here, we have examined the calcium dynamics at individual presynaptic boutons of the cerebellar granule cells in the molecular layer of cerebellar slices and investigated whether different subpopulations of granule cell boutons exhibit different calcium dynamics. We found that a population of boutons with low basal calcium clearance rates may activate a second clearance mechanism and exhibit biphasic calcium decay on high calcium influx induced by bursts of action potentials. We also found that boutons on ascending axons and parallel fibers show similar calcium influx amplitudes and calcium clearance rates in response to action potentials. Lastly, we found that parallel fiber boutons located in the inner molecular layer have a higher calcium clearance rate than boutons located in the outer molecular layer. These results suggest that cerebellar granule cell boutons should not be regarded as a homogeneous population, but rather that different subpopulations of boutons may exhibit different properties. The heterogeneity of presynaptic boutons may allow different learned behaviors to be encoded in the same circuit without mutual interference and may be a general mechanism for increasing the computational capacity of the brain.


Asunto(s)
Axones/fisiología , Señalización del Calcio/fisiología , Corteza Cerebelosa/fisiología , Gránulos Citoplasmáticos/fisiología , Fibras Nerviosas/fisiología , Neuronas/fisiología , Terminales Presinápticos/fisiología , Potenciales de Acción/fisiología , Animales , Corteza Cerebelosa/química , Gránulos Citoplasmáticos/química , Vías Nerviosas/fisiología , Neurobiología/métodos , Plasticidad Neuronal/fisiología , Neuronas/química , Neuronas/citología , Neurofisiología/métodos , Técnicas de Cultivo de Órganos , Células de Purkinje/fisiología , Ratas , Ratas Sprague-Dawley , Transmisión Sináptica/fisiología
18.
Neuron ; 110(18): 2899-2901, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36137520

RESUMEN

A diagnosis of terminal cancer has caused me to think about my life in science and the delight and surprise it has brought me and the experiments I would pursue if I had just a bit more time.

19.
Neuron ; 56(4): 582-92, 2007 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-18031678

RESUMEN

To date, most hypotheses of memory storage in the mammalian brain have focused upon long-term synaptic potentiation and depression (LTP and LTD) of fast glutamatergic excitatory postsynaptic currents (EPSCs). In recent years, it has become clear that many additional electrophysiological components of neurons, from electrical synapses to glutamate transporters to voltage-sensitive ion channels, can also undergo use-dependent long-term plasticity. Models of memory storage that incorporate this full range of demonstrated electrophysiological plasticity are better able to account for both the storage of memory in neuronal networks and the complexities of memory storage, indexing, and recall as measured behaviorally.


Asunto(s)
Encéfalo/fisiología , Memoria/fisiología , Plasticidad Neuronal/fisiología , Receptores de Glutamato/fisiología , Transmisión Sináptica/fisiología , Animales , Encéfalo/ultraestructura , Potenciales Postsinápticos Excitadores/fisiología , Humanos , Potenciación a Largo Plazo/fisiología , Depresión Sináptica a Largo Plazo/fisiología , Transducción de Señal/fisiología
20.
Neuron ; 56(3): 472-87, 2007 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-17988631

RESUMEN

We performed two-photon in vivo imaging of cerebellar climbing fibers (CFs; the terminal arbor of olivocerebellar axons) in adult mice. CF ascending branches innervate Purkinje cells while CF transverse branches show a near complete failure to form conventional synapses. Time-lapse imaging over hours or days revealed that ascending branches were very stable. However, transverse branches were highly dynamic, exhibiting rapid elongation and retraction and varicosity turnover. Thus, different branches of the same axon, with different innervation patterns, display branch type-specific motility in the adult cerebellum. Furthermore, dynamic changes in transverse branch length were almost completely suppressed by pharmacological stimulation of olivary firing.


Asunto(s)
Axones/ultraestructura , Movimiento Celular/fisiología , Corteza Cerebelosa/citología , Vías Nerviosas/citología , Núcleo Olivar/citología , Transmisión Sináptica/fisiología , Potenciales de Acción/fisiología , Animales , Axones/fisiología , Forma de la Célula/fisiología , Corteza Cerebelosa/fisiología , Colorantes Fluorescentes , Conos de Crecimiento/fisiología , Conos de Crecimiento/ultraestructura , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Vías Nerviosas/fisiología , Plasticidad Neuronal/fisiología , Núcleo Olivar/fisiología , Técnicas de Cultivo de Órganos , Compuestos Orgánicos , Terminales Presinápticos/fisiología , Terminales Presinápticos/ultraestructura , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA