Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Chem ; 76(16): 4690-6, 2004 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-15307778

RESUMEN

A cellobiose dehydrogenase (CDH)-modified graphite electrode was designed for amperometric detection of catecholamines in the flow injection mode, by their recycling between the graphite electrode (+300 mV vs Ag|AgCl) and the reduced FAD cofactor of adsorbed CDH, resulting in an amplified response signal. The high efficiency of the enzyme-catecholamine reaction leads to a detection limit below 1 nM and a sensitivity of 15.8 A.M(-1) x cm(-2) (approximately 1150 nA/microM) for noradrenaline, with a coverage of less than 2.5 microg of CDH adsorbed on the electrode surface (0.073 cm(2)). Working parameters such as pH, cellobiose concentration, carrier buffer, and applied potential were optimized, using hydroquinone as a model analyte. The sensitivity, linear range, and amplification factor can be modulated by the steady-state concentration of cellobiose in the flow buffer. The response of the sensor decreases only 2% when run continuously for 4 h in the flow injection mode. The response peak maximum is obtained within 6 s at a flow rate of 0.5 mL/min, representing the time of the entire sample segment to pass the electrode. CDH enzymes from Phanerochaete chrysosporium and Sclerotium rolfsii were investigated, providing different characteristics of the sensor, with sensors made with CDH from P. chrysosporium being the better ones.


Asunto(s)
Técnicas Biosensibles , Deshidrogenasas de Carbohidratos/metabolismo , Catecolaminas/análisis , Flavina-Adenina Dinucleótido , Indicadores y Reactivos , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA