Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Genet Med ; 23(9): 1636-1647, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34145395

RESUMEN

PURPOSE: Much of the heredity of melanoma remains unexplained. We sought predisposing germline copy-number variants using a rare disease approach. METHODS: Whole-genome copy-number findings in patients with melanoma predisposition syndrome congenital melanocytic nevus were extrapolated to a sporadic melanoma cohort. Functional effects of duplications in PPP2R3B were investigated using immunohistochemistry, transcriptomics, and stable inducible cellular models, themselves characterized using RNAseq, quantitative real-time polymerase chain reaction (qRT-PCR), reverse phase protein arrays, immunoblotting, RNA interference, immunocytochemistry, proliferation, and migration assays. RESULTS: We identify here a previously unreported genetic susceptibility to melanoma and melanocytic nevi, familial duplications of gene PPP2R3B. This encodes PR70, a regulatory unit of critical phosphatase PP2A. Duplications increase expression of PR70 in human nevus, and increased expression in melanoma tissue correlates with survival via a nonimmunological mechanism. PPP2R3B overexpression induces pigment cell switching toward proliferation and away from migration. Importantly, this is independent of the known microphthalmia-associated transcription factor (MITF)-controlled switch, instead driven by C21orf91. Finally, C21orf91 is demonstrated to be downstream of MITF as well as PR70. CONCLUSION: This work confirms the power of a rare disease approach, identifying a previously unreported copy-number change predisposing to melanocytic neoplasia, and discovers C21orf91 as a potentially targetable hub in the control of phenotype switching.


Asunto(s)
Melanoma , Nevo , Neoplasias Cutáneas , Humanos , Inmunohistoquímica , Melanoma/genética , Fenotipo , Neoplasias Cutáneas/genética
2.
Am J Physiol Regul Integr Comp Physiol ; 312(4): R477-R484, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28077388

RESUMEN

The Na+-dependent taurocholate cotransporting polypeptide (NTCP/SLC10A1) is a hepatocyte-specific solute carrier, which plays an important role in maintaining bile salt homeostasis in mammals. The absence of a hepatic Na+-dependent bile salt transport system in marine skate and rainbow trout raises a question regarding the function of the Slc10a1 gene in these species. Here, we have characterized the Slc10a1 gene in the marine skate, Leucoraja erinacea The transcript of skate Slc10a1 (skSlc10a1) encodes 319 amino acids and shares 46% identity to human NTCP (hNTCP) with similar topology to mammalian NTCP. SkSlc10a1 mRNA was mostly confined to the brain and testes with minimal expression in the liver. An FXR-bile salt reporter assay indicated that skSlc10a1 transported taurocholic acid (TCA) and scymnol sulfate, but not as effectively as hNTCP. An [3H]TCA uptake assay revealed that skSlc10a1 functioned as a Na+-dependent transporter, but with low affinity for TCA (Km = 92.4 µM) and scymnol sulfate (Ki = 31 µM), compared with hNTCP (TCA, Km = 5.4 µM; Scymnol sulfate, Ki = 3.5 µM). In contrast, the bile salt concentration in skate plasma was 2 µM, similar to levels seen in mammals. Interestingly, skSlc10a1 demonstrated transport activity for the neurosteroids dehydroepiandrosterone sulfate and estrone-3-sulfate at physiological concentration, similar to hNTCP. Together, our findings indicate that skSlc10a1 is not a physiological bile salt transporter, providing a molecular explanation for the absence of a hepatic Na+-dependent bile salt uptake system in skate. We speculate that Slc10a1 is a neurosteroid transporter in skate that gained its substrate specificity for bile salts later in vertebrate evolution.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Transportadores de Anión Orgánico Sodio-Dependiente/química , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Rajidae/metabolismo , Sodio/metabolismo , Simportadores/química , Simportadores/metabolismo , Ácido Taurocólico/metabolismo , Animales , Ácidos y Sales Biliares/química , Sitios de Unión , Humanos , Hígado/metabolismo , Especificidad de Órganos , Transportadores de Anión Orgánico Sodio-Dependiente/sangre , Unión Proteica , Homología de Secuencia , Rajidae/clasificación , Sodio/química , Especificidad de la Especie , Relación Estructura-Actividad , Simportadores/sangre , Ácido Taurocólico/química , Distribución Tisular
3.
Hepatology ; 57(6): 2418-26, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23175353

RESUMEN

The sea lamprey (Petromyzon marinus) is a genetically programmed animal model for biliary atresia, as it loses its bile ducts and gallbladder during metamorphosis. However, in contrast to patients with biliary atresia or other forms of cholestasis who develop progressive disease, the postmetamorphosis lampreys grow normally to adult size. To understand how the adult lamprey thrives without the ability to secrete bile, we examined bile salt homeostasis in larval and adult lampreys. Adult livers were severely cholestatic, with levels of bile salts >1 mM, but no evidence of necrosis, fibrosis, or inflammation. Interestingly, both larvae and adults had normal plasma levels (∼10 µM) of bile salts. In larvae, petromyzonol sulfate (PZS) was the predominant bile salt, whereas the major bile salts in adult liver were sulfated C27 bile alcohols. Cytotoxicity assays revealed that PZS was highly toxic. Pharmacokinetic studies in free-swimming adults revealed that ∼35% of intravenously injected bromosulfophthalein (BSP) was eliminated over a 72-hour period. Collection of urine and feces demonstrated that both endogenous and exogenous organic anions, including biliverdin, bile salts, and BSP, were predominantly excreted by way of the kidney, with minor amounts also detected in feces. Gene expression analysis detected marked up-regulation of orthologs of known organic anion and bile salt transporters in the kidney, with lesser effects in the intestine and gills in adults compared to larvae. These findings indicate that adult lampreys tolerate cholestasis by altering hepatic bile salt composition, while maintaining normal plasma bile salt levels predominantly through renal excretion of bile products. Therefore, we conclude that strategies to accelerate renal excretion of bile salt and other toxins should be beneficial for patients with cholestasis. (HEPATOLOGY 2013;57:2418-2426).


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Atresia Biliar/metabolismo , Colestasis/metabolismo , Riñón/metabolismo , Petromyzon/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Homeostasis , Larva/metabolismo , Hígado/metabolismo , Masculino , Transportadores de Anión Orgánico/metabolismo
4.
Nat Commun ; 14(1): 2192, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37185332

RESUMEN

Outcomes for half of patients with melanoma remain poor despite standard-of-care checkpoint inhibitor therapies. The prevalence of the melanoma-associated antigen chondroitin sulfate proteoglycan 4 (CSPG4) expression is ~70%, therefore effective immunotherapies directed at CSPG4 could benefit many patients. Since IgE exerts potent immune-activating functions in tissues, we engineer a monoclonal IgE antibody with human constant domains recognizing CSPG4 to target melanoma. CSPG4 IgE binds to human melanomas including metastases, mediates tumoricidal antibody-dependent cellular cytotoxicity and stimulates human IgE Fc-receptor-expressing monocytes towards pro-inflammatory phenotypes. IgE demonstrates anti-tumor activity in human melanoma xenograft models engrafted with human effector cells and is associated with enhanced macrophage infiltration, enriched monocyte and macrophage gene signatures and pro-inflammatory signaling pathways in the tumor microenvironment. IgE prolongs the survival of patient-derived xenograft-bearing mice reconstituted with autologous immune cells. No ex vivo activation of basophils in patient blood is measured in the presence of CSPG4 IgE. Our findings support a promising IgE-based immunotherapy for melanoma.


Asunto(s)
Melanoma , Proteoglicanos , Humanos , Ratones , Animales , Proteoglicanos/metabolismo , Antígenos , Proteoglicanos Tipo Condroitín Sulfato , Melanoma/metabolismo , Anticuerpos Monoclonales/farmacología , Inmunoglobulina E , Microambiente Tumoral
5.
J Lipid Res ; 53(8): 1535-42, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22669917

RESUMEN

The apical Na(+)-dependent bile salt transporter (ASBT/SLC10A2) is essential for maintaining the enterohepatic circulation of bile salts. It is not known when Slc10a2 evolved as a bile salt transporter or how it adapted to substantial changes in bile salt structure during evolution. We characterized ASBT orthologs from two primitive vertebrates, the lamprey that utilizes early 5α-bile alcohols and the skate that utilizes structurally different 5ß-bile alcohols, and compared substrate specificity with ASBT from humans who utilize modern 5ß-bile acids. Everted gut sacs of skate but not the more primitive lamprey transported (3)H-taurocholic acid (TCA), a modern 5ß-bile acid. However, molecular cloning identified ASBT orthologs from both species. Cell-based assays using recombinant ASBT/Asbt's indicate that lamprey Asbt has high affinity for 5α-bile alcohols, low affinity for 5ß-bile alcohols, and lacks affinity for TCA, whereas skate Asbt showed high affinity for 5α- and 5ß-bile alcohols but low affinity for TCA. In contrast, human ASBT demonstrated high affinity for all three bile salt types. These findings suggest that ASBT evolved from the earliest vertebrates by gaining affinity for modern bile salts while retaining affinity for older bile salts. Also, our results indicate that the bile salt enterohepatic circulation is conserved throughout vertebrate evolution.


Asunto(s)
Evolución Molecular , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Simportadores/metabolismo , Animales , Células COS , Chlorocebus aethiops , Perros , Humanos , Mucosa Intestinal/metabolismo , Ratones , Transportadores de Anión Orgánico Sodio-Dependiente/química , Petromyzon/metabolismo , Filogenia , Homología de Secuencia de Aminoácido , Rajidae/metabolismo , Sodio/metabolismo , Especificidad por Sustrato , Simportadores/química , Ácido Taurocólico/metabolismo
6.
Cancer Cell ; 36(1): 68-83.e9, 2019 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-31257073

RESUMEN

RAC1 P29 is the third most commonly mutated codon in human cutaneous melanoma, after BRAF V600 and NRAS Q61. Here, we study the role of RAC1P29S in melanoma development and reveal that RAC1P29S activates PAK, AKT, and a gene expression program initiated by the SRF/MRTF transcriptional pathway, which results in a melanocytic to mesenchymal phenotypic switch. Mice with ubiquitous expression of RAC1P29S from the endogenous locus develop lymphoma. When expressed only in melanocytes, RAC1P29S cooperates with oncogenic BRAF or with NF1-loss to promote tumorigenesis. RAC1P29S also drives resistance to BRAF inhibitors, which is reversed by SRF/MRTF inhibitors. These findings establish RAC1P29S as a promoter of melanoma initiation and mediator of therapy resistance, while identifying SRF/MRTF as a potential therapeutic target.


Asunto(s)
Transformación Celular Neoplásica/genética , Resistencia a Antineoplásicos/genética , Transición Epitelial-Mesenquimal/genética , Melanoma/etiología , Melanoma/patología , Mutación , Proteína de Unión al GTP rac1/genética , Alelos , Sustitución de Aminoácidos , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Modelos Animales de Enfermedad , Femenino , Expresión Génica , Humanos , Masculino , Melanocitos/metabolismo , Melanoma/mortalidad , Melanoma/terapia , Ratones , Ratones Transgénicos , Modelos Biológicos , Pronóstico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas B-raf/genética , Factor de Respuesta Sérica , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Sci Rep ; 8(1): 16529, 2018 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-30409980

RESUMEN

Cholestasis impairs liver regeneration following partial liver resection (PHx). Bile acid receptor farnesoid X-receptor (FXR) is a key mediator of liver regeneration. The effects of FXR agonist obeticholic acid (OCA) on liver (re)growth were therefore studied in cholestatic rats. Animals underwent sham surgery or reversible bile duct ligation (rBDL). PHx with concurrent internal biliary drainage was performed 7 days after rBDL. Animals were untreated or received OCA (10 mg/kg/day) per oral gavage from rBDL until sacrifice. After 7 days of OCA treatment, dry liver weight increased in the rBDL + OCA group, indicating OCA-mediated liver growth. Enhanced proliferation in the rBDL + OCA group prior to PHx concurred with a rise in Ki67-positive hepatocytes, elevated hepatic Ccnd1 and Cdc25b expression, and an induction of intestinal fibroblast growth factor 15 expression. Liver regrowth after PHx was initially stagnant in the rBDL + OCA group, possibly due to hepatomegaly prior to PHx. OCA increased hepatobiliary injury markers during BDL, which was accompanied by upregulation of the bile salt export pump. There were no differences in histological liver injury. In conclusion, OCA induces liver growth in cholestatic rats prior to PHx but exacerbates biliary injury during cholestasis, likely by forced pumping of bile acids into an obstructed biliary tree.


Asunto(s)
Miembro 11 de la Subfamilia B de Transportador de Casetes de Unión al ATP/genética , Ácido Quenodesoxicólico/análogos & derivados , Colestasis/genética , Regeneración Hepática/efectos de los fármacos , Administración Oral , Animales , Ácido Quenodesoxicólico/administración & dosificación , Ácido Quenodesoxicólico/farmacología , Colestasis/etiología , Colestasis/patología , Ciclina D1/genética , Ciclina D1/metabolismo , Modelos Animales de Enfermedad , Factores de Crecimiento de Fibroblastos/genética , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Tamaño de los Órganos/efectos de los fármacos , Ratas , Fosfatasas cdc25/genética
8.
J Clin Transl Res ; 4(1): 1-46, 2018 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-30761355

RESUMEN

BACKGROUND: Liver regeneration following partial hepatectomy (PHx) is a complicated process involving multiple organs and several types of signaling networks. The bile acid-activated metabolic pathways occupy an auxiliary yet important chapter in the entire biochemical story. PHx is characterized by rapid but transient bile acid overload in the liver, which constitutes the first wave of proliferative signaling in the remnant hepatocytes. Bile acids trigger hepatocyte proliferation through activation of several nuclear receptors. Following biliary passage into the intestines, enterocytes reabsorb the bile acids, which results in the activation of farnesoid X receptor (FXR), the consequent excretion of fibroblast growth factor (FGF)19/FGF15, and its release into the enterohepatic circulation. FGF19/FGF15 subsequently binds to its cognate receptor, fibroblast growth factor receptor 4 (FGFR4) complexed with ß-klotho, on the hepatocyte membrane, which initiates the second wave of proliferative signaling. Because some bile acids are toxic, the remnant hepatocytes must resolve the potentially detrimental state of bile acid excess. Therefore, the hepatocytes orchestrate a bile acid detoxification and elimination response as a protective mechanism in concurrence with the proliferative signaling. The response in part results in the excretion of (biotransformed) bile acids into the canalicular system, causing the bile acids to end up in the intestines. RELEVANCE FOR PATIENTS: Recently, FXR agonists have been shown to promote regeneration via the gut-liver axis. This type of pharmacological intervention may prove beneficial for patients with hepatobiliary tumors undergoing PHx. In light of these developments, the review provides an in-depth account of the pathways that underlie post-PHx liver regeneration in the context of bile acid homeostasis in the liver and the gut-liver signaling axis.

9.
Sci Rep ; 6: 31829, 2016 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-27535001

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disorder. It is uncertain if simple steatosis, the initial and prevailing form of NAFLD, sensitizes the liver to cholestasis. Here, we compared the effects of obstructive cholestasis in rats with a normal liver versus rats with simple steatosis induced by a methionine/choline-deficient diet. We found that plasma liver enzymes were higher and hepatic neutrophil influx, inflammation, and fibrosis were more pronounced in animals with combined steatosis and cholestasis compared to cholestasis alone. Circulating bile salt levels were markedly increased and hepatic bile salt composition shifted from hydrophilic tauro-ß-muricholate to hydrophobic taurocholate. This shift was cytotoxic for HepG2 hepatoma cells. Gene expression analysis revealed induction of the rate-limiting enzyme in bile salt synthesis, cytochrome P450 7a1 (CYP7A1), and modulation of the hepatic bile salt transport system. In conclusion, simple steatosis sensitizes the liver to cholestatic injury, inflammation, and fibrosis in part due to a cytotoxic shift in bile salt composition. Plasma bile salt levels were elevated, linked to dysregulation of bile salt synthesis and enhanced trafficking of bile salts from the liver to the systemic circulation.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Hígado , Enfermedad del Hígado Graso no Alcohólico , Ácido Taurocólico/análogos & derivados , Animales , Transporte Biológico Activo , Colestasis/complicaciones , Colestasis/metabolismo , Colestasis/patología , Colesterol 7-alfa-Hidroxilasa/metabolismo , Células Hep G2 , Humanos , Hígado/lesiones , Hígado/metabolismo , Hígado/patología , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Ratas , Ácido Taurocólico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA