Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Cell ; 139(2): 366-79, 2009 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-19837037

RESUMEN

Current opinion holds that pigment cells, melanocytes, are derived from neural crest cells produced at the dorsal neural tube and that migrate under the epidermis to populate all parts of the skin. Here, we identify growing nerves projecting throughout the body as a stem/progenitor niche containing Schwann cell precursors (SCPs) from which large numbers of skin melanocytes originate. SCPs arise as a result of lack of neuronal specification by Hmx1 homeobox gene function in the neural crest ventral migratory pathway. Schwann cell and melanocyte development share signaling molecules with both the glial and melanocyte cell fates intimately linked to nerve contact and regulated in an opposing manner by Neuregulin and soluble signals including insulin-like growth factor and platelet-derived growth factor. These results reveal SCPs as a cellular origin of melanocytes, and have broad implications on the molecular mechanisms regulating skin pigmentation during development, in health and pigmentation disorders.


Asunto(s)
Melanocitos/citología , Células de Schwann/citología , Piel/inervación , Animales , Diferenciación Celular , Movimiento Celular , Proteínas de Homeodominio , Ratones , Neuroglía , Receptor ErbB-3/metabolismo , Células Madre/citología , Factores de Transcripción/metabolismo
2.
Cell Mol Life Sci ; 80(6): 141, 2023 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-37149819

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is a progressive, chronic, and neurodegenerative disease, and the most common cause of dementia worldwide. Currently, the mechanisms underlying the disease are far from being elucidated. Thus, the study of proteins involved in its pathogenesis would allow getting further insights into the disease and identifying new markers for AD diagnosis. METHODS: We aimed here to analyze protein dysregulation in AD brain by quantitative proteomics to identify novel proteins associated with the disease. 10-plex TMT (tandem mass tags)-based quantitative proteomics experiments were performed using frozen tissue samples from the left prefrontal cortex of AD patients and healthy individuals and vascular dementia (VD) and frontotemporal dementia (FTD) patients as controls (CT). LC-MS/MS analyses were performed using a Q Exactive mass spectrometer. RESULTS: In total, 3281 proteins were identified and quantified using MaxQuant. Among them, after statistical analysis with Perseus (p value < 0.05), 16 and 155 proteins were defined as upregulated and downregulated, respectively, in AD compared to CT (Healthy, FTD and VD) with an expression ratio ≥ 1.5 (upregulated) or ≤ 0.67 (downregulated). After bioinformatics analysis, ten dysregulated proteins were selected as more prone to be associated with AD, and their dysregulation in the disease was verified by qPCR, WB, immunohistochemistry (IHC), immunofluorescence (IF), pull-down, and/or ELISA, using tissue and plasma samples of AD patients, patients with other dementias, and healthy individuals. CONCLUSIONS: We identified and validated novel AD-associated proteins in brain tissue that should be of further interest for the study of the disease. Remarkably, PMP2 and SCRN3 were found to bind to amyloid-ß (Aß) fibers in vitro, and PMP2 to associate with Aß plaques by IF, whereas HECTD1 and SLC12A5 were identified as new potential blood-based biomarkers of the disease.


Asunto(s)
Enfermedad de Alzheimer , Demencia Frontotemporal , Enfermedades Neurodegenerativas , Humanos , Enfermedad de Alzheimer/metabolismo , Demencia Frontotemporal/genética , Proteómica , Cromatografía Liquida , Espectrometría de Masas en Tándem , Péptidos beta-Amiloides/metabolismo , Corteza Prefrontal/metabolismo , Biomarcadores , Proteínas tau/metabolismo
3.
Development ; 147(24)2020 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-33168583

RESUMEN

The endocannabinoid (eCB) system, via the cannabinoid CB1 receptor, regulates neurodevelopment by controlling neural progenitor proliferation and neurogenesis. CB1 receptor signalling in vivo drives corticofugal deep layer projection neuron development through the regulation of BCL11B and SATB2 transcription factors. Here, we investigated the role of eCB signalling in mouse pluripotent embryonic stem cell-derived neuronal differentiation. Characterization of the eCB system revealed increased expression of eCB-metabolizing enzymes, eCB ligands and CB1 receptors during neuronal differentiation. CB1 receptor knockdown inhibited neuronal differentiation of deep layer neurons and increased upper layer neuron generation, and this phenotype was rescued by CB1 re-expression. Pharmacological regulation with CB1 receptor agonists or elevation of eCB tone with a monoacylglycerol lipase inhibitor promoted neuronal differentiation of deep layer neurons at the expense of upper layer neurons. Patch-clamp analyses revealed that enhancing cannabinoid signalling facilitated neuronal differentiation and functionality. Noteworthy, incubation with CB1 receptor agonists during human iPSC-derived cerebral organoid formation also promoted the expansion of BCL11B+ neurons. These findings unveil a cell-autonomous role of eCB signalling that, via the CB1 receptor, promotes mouse and human deep layer cortical neuron development.


Asunto(s)
Diferenciación Celular/genética , Proteínas de Unión a la Región de Fijación a la Matriz/genética , Neuronas/metabolismo , Receptor Cannabinoide CB1/genética , Proteínas Represoras/genética , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética , Animales , Proliferación Celular/efectos de los fármacos , Cerebelo/crecimiento & desarrollo , Desarrollo Embrionario/genética , Endocannabinoides/agonistas , Endocannabinoides/genética , Endocannabinoides/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Ratones , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neurogénesis/efectos de los fármacos , Organoides/crecimiento & desarrollo , Transducción de Señal/genética
4.
Int J Mol Sci ; 24(19)2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37834082

RESUMEN

Amyloid precursor protein (APP) has been widely studied due to its association with Alzheimer's disease (AD). However, the physiological functions of APP are still largely unexplored. APP is a transmembrane glycoprotein whose expression in humans is abundant in the central nervous system. Specifically, several studies have revealed the high expression of APP during brain development. Previous studies in our laboratory revealed that a transient increase in APP expression induces early cell cycle exit of human neural stem cells (hNSCs) and directs their differentiation towards glial cells (gliogenesis) while decreasing their differentiation towards neurons (neurogenesis). In the present study, we have evaluated the intrinsic cellular effects of APP down-expression (using siRNA) on cell death, cell proliferation, and cell fate specification of hNSCs. Our data indicate that APP silencing causes cellular effects opposite to those obtained in previous APP overexpression assays, inducing cell proliferation in hNS1 cells (a model line of hNSCs) and favoring neurogenesis instead of gliogenesis in these cells. In addition, we have analyzed the gene and protein expression levels of ß-Catenin as a possible molecule involved in these cellular effects. These data could help to understand the biological role of APP, which is necessary to deepen the knowledge of AD.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Neurogénesis , Humanos , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Células-Madre Neurales/metabolismo , Neuroglía/metabolismo , Neuronas/metabolismo
5.
Int J Mol Sci ; 24(16)2023 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-37629148

RESUMEN

Numerous studies have focused on the pathophysiological role of amyloid precursor protein (APP) because the proteolytic processing of APP to ß-amyloid (Aß) peptide is a central event in Alzheimer's disease (AD). However, many authors consider that alterations in the physiological functions of APP are likely to play a key role in AD. Previous studies in our laboratory revealed that APP plays an important role in the differentiation of human neural stem cells (hNSCs), favoring glial differentiation (gliogenesis) and preventing their differentiation toward a neuronal phenotype (neurogenesis). In the present study, we have evaluated the effects of APP overexpression in hNSCs at a global gene level by a transcriptomic analysis using the massive RNA sequencing (RNA-seq) technology. Specifically, we have focused on differentially expressed genes that are related to neuronal and glial differentiation processes, as well as on groups of differentially expressed genes associated with different signaling pathways, in order to find a possible interaction between them and APP. Our data indicate a differential expression in genes related to Notch, Wnt, PI3K-AKT, and JAK-STAT signaling, among others. Knowledge of APP biological functions, as well as the possible signaling pathways that could be related to this protein, are essential to advance our understanding of AD.


Asunto(s)
Enfermedad de Alzheimer , Células-Madre Neurales , Humanos , Precursor de Proteína beta-Amiloide/genética , Fosfatidilinositol 3-Quinasas , Neurogénesis/genética , Enfermedad de Alzheimer/genética , Transducción de Señal
6.
Int J Mol Sci ; 23(10)2022 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-35628629

RESUMEN

Amyloid-ß 40 peptides [Aß1-40 (Aß40)] are present within amyloid plaques in the brains of patients with Alzheimer's disease (AD). Even though Aß peptides are considered neurotoxic, they can mediate many biological processes, both in adult brains and throughout brain development. However, the physiological function of these Aß peptides remains poorly understood, and the existing data are sometimes controversial. Here, we analyze and compare the effects of monomeric Aß40 on the biology of differentiating human neural stem cells (human NSCs). For that purpose, we used a model of human NSCs called hNS1. Our data demonstrated that Aß40 at high concentrations provokes apoptotic cellular death and the damage of DNA in human NSCs while also increasing the proliferation and favors neurogenesis by raising the percentage of proliferating neuronal precursors. These effects can be mediated, at least in part, by ß-catenin. These results provide evidence of how Aß modulate/regulate human NSC proliferation and differentiation, suggesting Aß40 may be a pro-neurogenic factor. Our data could contribute to a better understanding of the molecular mechanisms involved in AD pathology and to the development of human NSC-based therapies for AD treatment, since these results could then be used in diagnosing the disease at early stages and be applied to the development of new treatment options.


Asunto(s)
Enfermedad de Alzheimer , Células-Madre Neurales , Adulto , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/química , Humanos , Neurogénesis , Placa Amiloide/patología
7.
J Neuroinflammation ; 18(1): 75, 2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-33736657

RESUMEN

BACKGROUND: Aging and age-related diseases are strong risk factors for the development of neurodegenerative diseases. Neuroinflammation (NIF), as the brain's immune response, plays an important role in aged associated degeneration of central nervous system (CNS). There is a need for well characterized animal models that will allow the scientific community to understand and modulate this process. METHODS: We have analyzed aging-phenotypical and inflammatory changes of brain myeloid cells (bMyC) in a senescent accelerated prone aged (SAMP8) mouse model, and compared with their senescence resistant control mice (SAMR1). We have performed morphometric methods to evaluate the architecture of cellular prolongations and determined the appearance of Iba1+ clustered cells with aging. To analyze specific constant brain areas, we have performed stereology measurements of Iba1+ cells in the hippocampal formation. We have isolated bMyC from brain parenchyma (BP) and choroid plexus plus meningeal membranes (m/Ch), and analyzed their response to systemic lipopolysaccharide (LPS)-driven inflammation. RESULTS: Aged 10 months old SAMP8 mice present many of the hallmarks of aging-dependent neuroinflammation when compared with their SAMR1 control, i.e., increase of protein aggregates, presence of Iba1+ clusters, but not an increase in the number of Iba1+ cells. We have further observed an increase of main inflammatory mediator IL-1ß, and an augment of border MHCII+Iba1+ cells. Isolated CD45+ bMyC from brain parenchyma (BP) and choroid plexus plus meningeal membranes (m/Ch) have been analyzed, showing that there is not a significant increase of CD45+ cells from the periphery. Our data support that aged-driven pro-inflammatory cytokine interleukin 1 beta (IL-1ß) transcription is enhanced in CD45+BP cells. Furthermore, LPS-driven systemic inflammation produces inflammatory cytokines mainly in border bMyC, sensed to a lesser extent by the BP bMyC, showing that IL-1ß expression is further augmented in aged SAMP8 compared to control SAMR1. CONCLUSION: Our data validate the SAMP8 model to study age-associated neuroinflammatory events, but careful controls for age and strain are required. These animals show morphological changes in their bMyC cell repertoires associated to age, corresponding to an increase in the production of pro-inflammatory cytokines such as IL-1ß, which predispose the brain to an enhanced inflammatory response after LPS-systemic challenge.


Asunto(s)
Envejecimiento Prematuro/genética , Envejecimiento/patología , Encefalitis/genética , Encefalitis/patología , Animales , Encéfalo/patología , Proteínas de Unión al Calcio/metabolismo , Plexo Coroideo/metabolismo , Plexo Coroideo/patología , Modelos Animales de Enfermedad , Encefalitis/inducido químicamente , Hipocampo/metabolismo , Interleucina-1beta/metabolismo , Lipopolisacáridos , Meninges/metabolismo , Meninges/patología , Ratones , Proteínas de Microfilamentos/metabolismo
8.
Int J Mol Sci ; 22(17)2021 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-34502444

RESUMEN

Amyloid-ß 42 peptide (Aß1-42 (Aß42)) is well-known for its involvement in the development of Alzheimer's disease (AD). Aß42 accumulates and aggregates in fibers that precipitate in the form of plaques in the brain causing toxicity; however, like other forms of Aß peptide, the role of these peptides remains unclear. Here we analyze and compare the effects of oligomeric and fibrillary Aß42 peptide on the biology (cell death, proliferative rate, and cell fate specification) of differentiating human neural stem cells (hNS1 cell line). By using the hNS1 cells we found that, at high concentrations, oligomeric and fibrillary Aß42 peptides provoke apoptotic cellular death and damage of DNA in these cells, but Aß42 fibrils have the strongest effect. The data also show that both oligomeric and fibrillar Aß42 peptides decrease cellular proliferation but Aß42 oligomers have the greatest effect. Finally, both, oligomers and fibrils favor gliogenesis and neurogenesis in hNS1 cells, although, in this case, the effect is more prominent in oligomers. All together the findings of this study may contribute to a better understanding of the molecular mechanisms involved in the pathology of AD and to the development of human neural stem cell-based therapies for AD treatment.


Asunto(s)
Péptidos beta-Amiloides/fisiología , Células-Madre Neurales/fisiología , Fragmentos de Péptidos/fisiología , Humanos , Cultivo Primario de Células
9.
Mol Med ; 24(1): 64, 2018 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-30567504

RESUMEN

BACKGROUND: The multiple biological effects of vitamin D and its novel activities on inflammation and redox homeostasis have raised high expectations on its use as a therapeutic agent for multiple fibrogenic conditions. We have assessed the therapeutic effects of 1α,25-Dihydroxyvitamin D3, the biologically active form of vitamin D, in the context of lung fibrosis. METHODS: We have used representative cellular models for alveolar type II cells and human myofibroblasts. The extension of DNA damage and cellular senescence have been assessed by immunofluorescence, western-blot and senescence-associated ß-galactosidase activity. We have also set up a murine model for lung fibrosis by intraperitoneal injections of bleomycin. RESULTS: Vitamin D induces cellular senescence in bleomycin-treated alveolar epithelial type II cells and aggravates the lung pathology induced by bleomycin. These effects are probably due to an alteration of the cellular DNA double-strand breaks repair in bleomycin-treated cells. CONCLUSIONS: The detrimental effects of vitamin D in the presence of a DNA damaging agent might preclude its use as an antifibrogenic agent for pulmonary fibrosis characterized by DNA damage occurrence and cellular senescence.


Asunto(s)
Senescencia Celular/efectos de los fármacos , Daño del ADN , Células Epiteliales/efectos de los fármacos , Fibrosis Pulmonar/patología , Vitamina D/análogos & derivados , Células A549 , Animales , Bleomicina , Células Epiteliales/metabolismo , Femenino , Humanos , Pulmón/efectos de los fármacos , Pulmón/patología , Ratones Endogámicos C57BL , Miofibroblastos/efectos de los fármacos , Miofibroblastos/metabolismo , Fibrosis Pulmonar/inducido químicamente , Vitamina D/toxicidad
10.
Proc Natl Acad Sci U S A ; 110(16): E1524-32, 2013 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-23576737

RESUMEN

Coherent network activity among assemblies of interconnected cells is essential for diverse functions in the adult brain. However, cellular networks before formations of chemical synapses are poorly understood. Here, embryonic stem cell-derived neural progenitors were found to form networks exhibiting synchronous calcium ion (Ca(2+)) activity that stimulated cell proliferation. Immature neural cells established circuits that propagated electrical signals between neighboring cells, thereby activating voltage-gated Ca(2+) channels that triggered Ca(2+) oscillations. These network circuits were dependent on gap junctions, because blocking prevented electrotonic transmission both in vitro and in vivo. Inhibiting connexin 43 gap junctions abolished network activity, suppressed proliferation, and affected embryonic cortical layer formation. Cross-correlation analysis revealed highly correlated Ca(2+) activities in small-world networks that followed a scale-free topology. Graph theory predicts that such network designs are effective for biological systems. Taken together, these results demonstrate that immature cells in the developing brain organize in small-world networks that critically regulate neural progenitor proliferation.


Asunto(s)
Encéfalo/embriología , Proliferación Celular , Red Nerviosa , Células-Madre Neurales/fisiología , Animales , Calcio/metabolismo , Canales de Calcio Tipo L/metabolismo , Conexina 43/metabolismo , Sinapsis Eléctricas/fisiología , Ratones , Ratones Endogámicos C57BL , Microscopía de Interferencia , Modelos Neurológicos , Células-Madre Neurales/citología , Plásmidos/genética , ARN Interferente Pequeño/genética
11.
Glia ; 63(12): 2231-48, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26184558

RESUMEN

The role and different origin of brain myeloid cells in the brain is central to understanding how the central nervous system (CNS) responds to injury. C-type lectin receptor family 9, member A (DNGR-1/CLEC9A) is a marker of specific DC subsets that share functional similarities, such as CD8α(+) DCs in lymphoid tissues and CD103(+) CD11b(low) DCs in peripheral tissues. Here, we analyzed the presence of DNGR-1 in DCs present in the mouse brain (bDCs). Dngr-1/Clec9a mRNA is expressed mainly in the meningeal membranes and choroid plexus (m/Ch), and its expression is enhanced by fms-like tyrosine kinase 3 ligand (Flt3L), a cytokine involved in DC homeostasis. Using Clec9a(egfp/egfp) mice, we show that Flt3L induces accumulation of DNGR-1-EGFP(+) cells in the brain m/Ch. Most of these cells also express major histocompatibility complex class II (MHCII) molecules. We also observed an increase in specific markers of cDC CD8α+ cells such as Batf-3 and Irf-8, but not of costimulatory molecules such as Cd80 and Cd86, indicating an immature phenotype for these bDCs in the noninjured brain. The presence of DNGR-1 in the brain provides a potential marker for the study of this specific brain cell subset. Knowledge and targeting of brain antigen presenting cells (APCs) has implications for the fight against brain diseases such as neuroinflammation-based neurodegenerative diseases, microbe-induced encephalitis, and brain tumors such as gliomas.


Asunto(s)
Plexo Coroideo/citología , Células Dendríticas/citología , Lectinas Tipo C/metabolismo , Meninges/citología , Receptores Inmunológicos/metabolismo , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Plexo Coroideo/metabolismo , Células Dendríticas/metabolismo , Genes MHC Clase II/fisiología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Factores Reguladores del Interferón/metabolismo , Lectinas Tipo C/genética , Antígenos Comunes de Leucocito/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Meninges/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , ARN Mensajero/metabolismo , Receptores Inmunológicos/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
12.
Sci Total Environ ; 915: 169475, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38199355

RESUMEN

Telecommunications industries are rapidly deploying the fifth generation (5G) spectrum and there is public concern about the safety and health impacts of this type of Radio Frequency Radiation (RFR), in part because of the lack of comparable scientific evidence. In this study we have used a validated commercially available setting producing a uniform field to expose zebrafish embryos (ZFe) to unmodulated 700 and 3500 MHz frequencies. We have combined a battery of toxicity, developmental and behavioral assays to further explore potential RFR effects. Our neurobehavioral profiles include a tail coiling assay, a light/dark activity assay, two thigmotaxis anxiety assays (auditory and visual stimuli), and a startle response - habituation assay in response to auditory stimuli. ZFe were exposed for 1 and 4 h during the blastula period of development and endpoints evaluated up to 120 hours post fertilization (hpf). Our results show no effects on mortality, hatching or body length. However, we have demonstrated specific organ morphological effects, and behavioral effects in activity, anxiety-like behavior, and habituation that lasted in larvae exposed during the early embryonic period. A decrease in acetylcholinesterase activity was also observed and could explain some of the observed behavioral alterations. Interestingly, effects were more pronounced in ZFe exposed to the 700 MHz frequency, and especially for the 4 h exposure period. In addition, we have demonstrated that our exposure setup is robust, flexible with regard to frequency and power testing, and highly comparable. Future work will include exposure of ZFe to 5G modulated signals for different time periods to better understand the potential health effects of novel 5G RFR.


Asunto(s)
Acetilcolinesterasa , Pez Cebra , Animales , Conducta Animal , Larva , Embrión no Mamífero
13.
Food Chem Toxicol ; 188: 114684, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38663761

RESUMEN

Exposure to mercury and its organic form methylmercury (MeHg), is of great concern for the developing nervous system. Despite available literature on MeHg neurotoxicity, there is still uncertainty about its mechanisms of action and the doses that trigger developmental effects. Our study combines two alternative methodologies, the human neural stem cells (NSC) and the zebrafish (ZF) embryo, to address the neurotoxic effects of early exposure to nanomolar concentrations of MeHg. Our results show linear or nonmonotonic (hormetic) responses depending on studied parameters. In ZF, we observed a hormetic response in locomotion and larval rotation, but a concentration-dependent response for sensory organ size and habituation. We also observed a possible delayed response as MeHg had greater effects on larval activity at 5 days than at 24 h. In NSC cells, some parameters show a clear dose dependence, such as increased apoptosis and differentiation to glial cells or decreased neuronal precursors; while others show a hormetic response: neuronal differentiation or cell proliferation. This study shows that the ZF model was more susceptible than NSC to MeHg neurotoxicity. The combination of different models has improved the understanding of the underlying mechanisms of toxicity and possible compensatory mechanisms at the cellular and organismal level.


Asunto(s)
Embrión no Mamífero , Compuestos de Metilmercurio , Células-Madre Neurales , Pez Cebra , Compuestos de Metilmercurio/toxicidad , Pez Cebra/embriología , Animales , Células-Madre Neurales/efectos de los fármacos , Humanos , Embrión no Mamífero/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos
14.
Front Cell Neurosci ; 18: 1406839, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38933177

RESUMEN

Introduction: Human cerebral organoids (hCOs) derived from pluripotent stem cells are very promising for the study of neurodevelopment and the investigation of the healthy or diseased brain. To help establish hCOs as a powerful research model, it is essential to perform the morphological characterization of their cellular components in depth. Methods: In this study, we analyzed the cell types consisting of hCOs after culturing for 45 days using immunofluorescence and reverse transcriptase qualitative polymerase chain reaction (RT-qPCR) assays. We also analyzed their subcellular morphological characteristics by transmission electron microscopy (TEM). Results: Our results show the development of proliferative zones to be remarkably similar to those found in human brain development with cells having a polarized structure surrounding a central cavity with tight junctions and cilia. In addition, we describe the presence of immature and mature migrating neurons, astrocytes, oligodendrocyte precursor cells, and microglia-like cells. Discussion: The ultrastructural characterization presented in this study provides valuable information on the structural development and morphology of the hCO, and this information is of general interest for future research on the mechanisms that alter the cell structure or function of hCOs.

15.
Front Cell Neurosci ; 18: 1403734, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38978706

RESUMEN

Mitochondrial diseases are a group of severe pathologies that cause complex neurodegenerative disorders for which, in most cases, no therapy or treatment is available. These organelles are critical regulators of both neurogenesis and homeostasis of the neurological system. Consequently, mitochondrial damage or dysfunction can occur as a cause or consequence of neurodevelopmental or neurodegenerative diseases. As genetic knowledge of neurodevelopmental disorders advances, associations have been identified between genes that encode mitochondrial proteins and neurological symptoms, such as neuropathy, encephalomyopathy, ataxia, seizures, and developmental delays, among others. Understanding how mitochondrial dysfunction can alter these processes is essential in researching rare diseases. Three-dimensional (3D) cell cultures, which self-assemble to form specialized structures composed of different cell types, represent an accessible manner to model organogenesis and neurodevelopmental disorders. In particular, brain organoids are revolutionizing the study of mitochondrial-based neurological diseases since they are organ-specific and model-generated from a patient's cell, thereby overcoming some of the limitations of traditional animal and cell models. In this review, we have collected which neurological structures and functions recapitulate in the different types of reported brain organoids, focusing on those generated as models of mitochondrial diseases. In addition to advancements in the generation of brain organoids, techniques, and approaches for studying neuronal structures and physiology, drug screening and drug repositioning studies performed in brain organoids with mitochondrial damage and neurodevelopmental disorders have also been reviewed. This scope review will summarize the evidence on limitations in studying the function and dynamics of mitochondria in brain organoids.

16.
PLoS One ; 19(1): e0295816, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38170698

RESUMEN

Nanoplastics (NPs) have been found in many ecological environments (aquatic, terrestrial, air). Currently, there is great concern about the exposition and impact on animal health, including humans, because of the effects of ingestion and accumulation of these nanomaterials (NMs) in aquatic organisms and their incorporation into the food chain. NPs´ mechanisms of action on humans are currently unknown. In this study, we evaluated the altered molecular mechanisms on human neural stem cell line (hNS1) after 4 days of exposure to 30 nm polystyrene (PS) NPs (0.5, 2.5 and 10 µg/mL). Our results showed that NPs can induce oxidative stress, cellular stress, DNA damage, alterations in inflammatory response, and apoptosis, which could lead to tissue damage and neurodevelopmental diseases.


Asunto(s)
Nanopartículas , Células-Madre Neurales , Contaminantes Químicos del Agua , Animales , Humanos , Microplásticos/toxicidad , Poliestirenos , Apoptosis , Cadena Alimentaria
17.
J Tissue Eng ; 15: 20417314231226027, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38343770

RESUMEN

Human cerebral organoids (hCOs) offer the possibility of deepening the knowledge of human brain development, as well as the pathologies that affect it. The method developed here describes the efficient generation of hCOs by going directly from two-dimensional (2D) pluripotent stem cell (PSC) cultures to three-dimensional (3D) neuroepithelial tissue, avoiding dissociation and aggregation steps. This has been achieved by subjecting 2D cultures, from the beginning of the neural induction step, to dual-SMAD inhibition in combination with CHIR99021. This is a simple and reproducible protocol in which the hCOs generated develop properly presenting proliferative ventricular zones (VZs) formed by neural precursor and radial glia (RG) that differentiate to give rise to mature neurons and glial cells. The hCOs present additional cell types such as oligodendrocyte precursors, astrocytes, microglia-like cells, and endothelial-like cells. This new approach could help to overcome some of the existing limitations in the field of organoid biotechnology, facilitating its execution in any laboratory setting.

18.
Chemosphere ; 355: 141815, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38556182

RESUMEN

Global plastic production has increased exponentially in recent decades, and a significant part of it persists in the environment, where it degrades into microplastics and nanoplastics (MPs and NPs). These can enter in humans by ingestion, inhalation, and dermal routes, and there is scientific evidence that they are able to reach the systemic circulation and penetrate and accumulate in various tissues and organs. Neurodevelopmental toxicity of NPs is one of the most worrying effects, as they can cross the blood-brain barrier. In the following study, we analyzed, by transmission electron microscopy, the in vitro uptake of 30-nm polystyrene nanoplastics (PS-NPs) into human neural stem cells (NSCs), their accumulation and subcellular localization within the cell. Furthermore, we studied the effects of different concentrations of PS-NPs on cell death, proliferation, and cell differentiation using immunocytochemistry and quantitative real time PCR for specific markers. This study demonstrated that PS-NPs were able to enter the cell, probably by endocytosis, accumulate, and aggregated in human NSCs, without being detected in the nucleus, causing cell death by apoptosis and decreased cell proliferation. This study provides new insights into the interaction and effects of PS-NPs in human NSC and supports the scientific evidence for the involvement of nanoplastic in neurodevelopmental disorders.


Asunto(s)
Nanopartículas , Células-Madre Neurales , Contaminantes Químicos del Agua , Humanos , Microplásticos , Poliestirenos/toxicidad , Plásticos , Apoptosis
19.
J Biol Chem ; 285(13): 9881-9897, 2010 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-20106970

RESUMEN

Human neural stem cells derived from the ventral mesencephalon (VM) are powerful research tools and candidates for cell therapies in Parkinson disease. Previous studies with VM dopaminergic neuron (DAn) precursors indicated poor growth potential and unstable phenotypical properties. Using the model cell line hVM1 (human ventral mesencephalic neural stem cell line 1; a new human fetal VM stem cell line), we have found that Bcl-X(L) enhances the generation of DAn from VM human neural stem cells. Mechanistically, Bcl-X(L) not only exerts the expected antiapoptotic effect but also induces proneural (NGN2 and NEUROD1) and dopamine-related transcription factors, resulting in a high yield of DAn with the correct phenotype of substantia nigra pars compacta (SNpc). The expression of key genes directly involved in VM/SNpc dopaminergic patterning, differentiation, and maturation (EN1, LMX1B, PITX3, NURR1, VMAT2, GIRK2, and dopamine transporter) is thus enhanced by Bcl-X(L). These effects on neurogenesis occur in parallel to a decrease in glia generation. These in vitro Bcl-X(L) effects are paralleled in vivo, after transplantation in hemiparkinsonian rats, where hVM1-Bcl-X(L) cells survive, integrate, and differentiate into DAn, alleviating behavioral motor asymmetry. Bcl-X(L) then allows for human fetal VM stem cells to stably generate mature SNpc DAn both in vitro and in vivo and is thus proposed as a helpful factor for the development of cell therapies for neurodegenerative conditions, Parkinson disease in particular.


Asunto(s)
Dopamina/metabolismo , Neuronas/metabolismo , Células Madre/citología , Proteína bcl-X/metabolismo , Animales , Apoptosis , Conducta Animal , Diferenciación Celular , Línea Celular , Modelos Animales de Enfermedad , Femenino , Humanos , Técnicas In Vitro , Potenciales de la Membrana , Enfermedad de Parkinson , Fenotipo , Ratas , Ratas Sprague-Dawley , Sustancia Negra/metabolismo
20.
Stem Cells ; 27(12): 2917-27, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19725118

RESUMEN

Embryonic stem cells (ESCs) represent not only a promising source of cells for cell replacement therapy, but also a tool to study the molecular mechanisms underlying cellular signaling and dopaminergic (DA) neuron development. One of the main regulators of DA neuron development is Wnt signaling. Here we used mouse ESCs (mESCs) lacking Wnt1 or the low-density lipoprotein receptor-related protein 6 (LRP6) to decipher the action of Wnt/beta-catenin signaling on DA neuron development in mESCs. We provide evidence that the absence of LRP6 abrogates responsiveness of mESCs to Wnt ligand stimulation. Using two differentiation protocols, we show that the loss of Wnt1 or LRP6 increases neuroectodermal differentiation and the number of mESC-derived DA neurons. These effects were similar to those observed following treatment of mESCs with the Wnt/beta-catenin pathway inhibitor Dickkopf1 (Dkk1). Combined, our results show that decreases in Wnt/beta-catenin signaling enhance neuronal and DA differentiation of mESCs. These findings suggest that: 1) Wnt1 or LRP6 are not strictly required for the DA differentiation of mESCs in vitro, 2) the levels of morphogens and their activity in ESC cultures need to be optimized to improve DA differentiation, and 3) by enhancing the differentiation and number of ESC-derived DA neurons with Dkk1, the application of ESCs for cell replacement therapy in Parkinson's disease may be improved.


Asunto(s)
Diferenciación Celular , Células Madre Embrionarias/metabolismo , Neuronas/metabolismo , Transducción de Señal , Proteína Wnt1/metabolismo , beta Catenina/metabolismo , Animales , Línea Celular , Dopamina/metabolismo , Células Madre Embrionarias/citología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas Relacionadas con Receptor de LDL/deficiencia , Proteínas Relacionadas con Receptor de LDL/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad , Ratones , Ratones Noqueados , Neuronas/citología , Proteína Wnt1/deficiencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA