Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Genome Res ; 25(4): 459-66, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25770088

RESUMEN

It is commonly thought that human genetic diversity in non-African populations was shaped primarily by an out-of-Africa dispersal 50-100 thousand yr ago (kya). Here, we present a study of 456 geographically diverse high-coverage Y chromosome sequences, including 299 newly reported samples. Applying ancient DNA calibration, we date the Y-chromosomal most recent common ancestor (MRCA) in Africa at 254 (95% CI 192-307) kya and detect a cluster of major non-African founder haplogroups in a narrow time interval at 47-52 kya, consistent with a rapid initial colonization model of Eurasia and Oceania after the out-of-Africa bottleneck. In contrast to demographic reconstructions based on mtDNA, we infer a second strong bottleneck in Y-chromosome lineages dating to the last 10 ky. We hypothesize that this bottleneck is caused by cultural changes affecting variance of reproductive success among males.


Asunto(s)
Cromosomas Humanos Y/genética , Evolución Molecular , Grupos Raciales/genética , Secuencia de Bases , ADN Mitocondrial/genética , Variación Genética/genética , Genética de Población , Haplotipos/genética , Humanos , Masculino , Modelos Genéticos , Filogenia , Análisis de Secuencia de ADN
2.
PLoS Genet ; 11(4): e1005068, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25898006

RESUMEN

The Turkic peoples represent a diverse collection of ethnic groups defined by the Turkic languages. These groups have dispersed across a vast area, including Siberia, Northwest China, Central Asia, East Europe, the Caucasus, Anatolia, the Middle East, and Afghanistan. The origin and early dispersal history of the Turkic peoples is disputed, with candidates for their ancient homeland ranging from the Transcaspian steppe to Manchuria in Northeast Asia. Previous genetic studies have not identified a clear-cut unifying genetic signal for the Turkic peoples, which lends support for language replacement rather than demic diffusion as the model for the Turkic language's expansion. We addressed the genetic origin of 373 individuals from 22 Turkic-speaking populations, representing their current geographic range, by analyzing genome-wide high-density genotype data. In agreement with the elite dominance model of language expansion most of the Turkic peoples studied genetically resemble their geographic neighbors. However, western Turkic peoples sampled across West Eurasia shared an excess of long chromosomal tracts that are identical by descent (IBD) with populations from present-day South Siberia and Mongolia (SSM), an area where historians center a series of early Turkic and non-Turkic steppe polities. While SSM matching IBD tracts (> 1cM) are also observed in non-Turkic populations, Turkic peoples demonstrate a higher percentage of such tracts (p-values ≤ 0.01) compared to their non-Turkic neighbors. Finally, we used the ALDER method and inferred admixture dates (~9th-17th centuries) that overlap with the Turkic migrations of the 5th-16th centuries. Thus, our results indicate historical admixture among Turkic peoples, and the recent shared ancestry with modern populations in SSM supports one of the hypothesized homelands for their nomadic Turkic and related Mongolic ancestors.


Asunto(s)
Cromosomas/genética , Flujo Génico , Genética de Población , Migración Humana/historia , Asia , Pueblo Asiatico/genética , Pueblo Asiatico/historia , China , Cromosomas Humanos Y/genética , Etnicidad/genética , Etnicidad/historia , Europa (Continente) , Genotipo , Historia del Siglo XV , Historia del Siglo XVI , Historia del Siglo XVII , Historia Medieval , Humanos , Lenguaje , Medio Oriente , Mongolia , Polimorfismo de Nucleótido Simple/genética , Siberia
3.
Iran J Parasitol ; 13(3): 342-350, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30483324

RESUMEN

BACKGROUND: All types of the Old World's leishmaniasis were endemic on the territory of the South regions of ex-USSR. Epidemiological situation was well under control during the USSR era, due to implementation of complex anti-leismaniasis measures. These interventions were dramatically stopped as a result of the collapse of the USSR. METHODS: Most relevant publications on epidemiology and control of leishmaniases in the Republics of Central Asia and Transcaucasia of the ex-USSR were screened. RESULTS: Within the endemic area, the foci of different kinds of leishmaniasis are often overlapped thus calling for deployment of integrated measures. The anthroponotic cutaneous leishmaniasis (ACL) was reported in settlements and towns of Central Asia and Transcaucasia of the ex-USSR. The natural foci of cutaneous leishmaniasis were widespread in the desert of Turkmenistan, Uzbekistan, Kazakhstan and Tajikistan. The northern boundary of the zoonotic cutaneous leishmaniasis (ZCL) area coincided with the northern boundary of the distribution of great gerbils - the main reservoir of this infection in the ex-USSR. Visceral leishmaniasis (VL) occurred in the Central Asian Republics and in the republics of the Transcaucasia. Holistic approach was adopted by the programs targeting the source of infection, vector(s) and man. CONCLUSION: The presence rise in the number of cases of different types of leishmaniasis in the ex-USSR strongly necessitates that health authorities should consider these diseases as an important public health problem. The immediate task would be rebuilding a comprehensive surveillance system consisting of active and passive case detection mechanism along with immediate treatment of the patients.

4.
Sci Rep ; 7: 46044, 2017 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-28387361

RESUMEN

Human mitochondrial DNA haplogroup U is among the initial maternal founders in Southwest Asia and Europe and one that best indicates matrilineal genetic continuity between late Pleistocene hunter-gatherer groups and present-day populations of Europe. While most haplogroup U subclades are older than 30 thousand years, the comparatively recent coalescence time of the extant variation of haplogroup U7 (~16-19 thousand years ago) suggests that its current distribution is the consequence of more recent dispersal events, despite its wide geographical range across Europe, the Near East and South Asia. Here we report 267 new U7 mitogenomes that - analysed alongside 100 published ones - enable us to discern at least two distinct temporal phases of dispersal, both of which most likely emanated from the Near East. The earlier one began prior to the Holocene (~11.5 thousand years ago) towards South Asia, while the later dispersal took place more recently towards Mediterranean Europe during the Neolithic (~8 thousand years ago). These findings imply that the carriers of haplogroup U7 spread to South Asia and Europe before the suggested Bronze Age expansion of Indo-European languages from the Pontic-Caspian Steppe region.


Asunto(s)
ADN Mitocondrial/genética , Evolución Molecular , Haplotipos/genética , Teorema de Bayes , Geografía , Humanos , Mutación/genética , Filogenia
5.
Sci Rep ; 6: 30197, 2016 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-27453128

RESUMEN

Medieval era encounters of nomadic groups of the Eurasian Steppe and largely sedentary East Europeans had a variety of demographic and cultural consequences. Amongst these outcomes was the emergence of the Lipka Tatars-a Slavic-speaking Sunni-Muslim minority residing in modern Belarus, Lithuania and Poland, whose ancestors arrived in these territories via several migration waves, mainly from the Golden Horde. Our results show that Belarusian Lipka Tatars share a substantial part of their gene pool with Europeans as indicated by their Y-chromosomal, mitochondrial and autosomal DNA variation. Nevertheless, Belarusian Lipkas still retain a strong genetic signal of their nomadic ancestry, witnessed by the presence of common Y-chromosomal and mitochondrial DNA variants as well as autosomal segments identical by descent between Lipkas and East Eurasians from temperate and northern regions. Hence, we document Lipka Tatars as a unique example of former Medieval migrants into Central Europe, who became sedentary, changed language to Slavic, yet preserved their faith and retained, both uni- and bi-parentally, a clear genetic echo of a complex population interplay throughout the Eurasian Steppe Belt, extending from Central Europe to northern China.


Asunto(s)
Etnicidad/genética , Variación Genética/genética , Población Blanca/genética , China , Cromosomas Humanos Y/genética , ADN Mitocondrial/genética , Europa (Continente) , Genética de Población/métodos , Humanos , Filogenia , Polonia , Migrantes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA