Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 306
Filtrar
Más filtros

Intervalo de año de publicación
1.
Plant Cell ; 34(3): 1117-1143, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-34919703

RESUMEN

Plant lipoxygenases (LOXs) oxygenate linoleic and linolenic acids, creating hydroperoxy derivatives, and from these, jasmonates and other oxylipins are derived. Despite the importance of oxylipin signaling, its activation mechanism remains largely unknown. Here, we show that soybean ACYL-COA-BINDING PROTEIN3 (ACBP3) and ACBP4, two Class II acyl-CoA-binding proteins, suppressed activity of the vegetative LOX homolog VLXB by sequestering it at the endoplasmic reticulum. The ACBP4-VLXB interaction was facilitated by linoleoyl-CoA and linolenoyl-CoA, which competed with phosphatidic acid (PA) for ACBP4 binding. In salt-stressed roots, alternative splicing produced ACBP variants incapable of VLXB interaction. Overexpression of the variants enhanced LOX activity and salt tolerance in Arabidopsis and soybean hairy roots, whereas overexpressors of the native forms exhibited reciprocal phenotypes. Consistently, the differential alternative splicing pattern in two soybean genotypes coincided with their difference in salt-induced lipid peroxidation. Salt-treated soybean roots were enriched in C32:0-PA species that showed high affinity to Class II ACBPs. We conclude that PA signaling and alternative splicing suppress ligand-dependent interaction of Class II ACBPs with VLXB, thereby triggering lipid peroxidation during salt stress. Hence, our findings unveil a dual mechanism that initiates the onset of oxylipin signaling in the salinity response.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas Portadoras/metabolismo , Inhibidor de la Unión a Diazepam/metabolismo , Ligandos , Lipooxigenasa/genética , Oxilipinas/metabolismo , Ácidos Fosfatidicos/metabolismo , Estrés Salino , Glycine max/genética , Glycine max/metabolismo
2.
Anal Chem ; 96(33): 13379-13388, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39105793

RESUMEN

Highly sensitive detection of low-frequency EGFR-L858R mutation is particularly important in guiding targeted therapy of nonsmall-cell lung carcinoma (NSCLC). To this end, a ligase chain reaction (LCR)-based electrochemical biosensor (e-LCR) with an inverted sandwich-type architecture was provided by combining a cooperation of lambda exonuclease-RecJf exonuclease (λ-RecJf exo). In this work, by designing a knife-like DNA substrate (an overhang ssDNA part referred to the "knife arm") and introducing the λ-RecJf exo, the unreacted DNA probes in the LCR were specially degraded while only the ligated products were preserved, after which the ligated knife-like DNA products were hybridized with capture probes on the gold electrode surface through the "knife arms", forming the inverted sandwich-type DNA structure and bringing the methylene blue-label close to the electrode surface to engender the electrical signal. Finally, the sensitivity of the e-LCR could be improved by 3 orders of magnitude with the help of the λ-RecJf exo, and due to the mutation recognizing in the ligation site of the employed ligase, this method could detect EGFR-L858R mutation down to 0.01%, along with a linear range of 1 fM-10 pM and a limit detection of 0.8 fM. Further, the developed method could distinguish between L858R positive and negative mutations in cultured cell samples, tumor tissue samples, and plasma samples, whose accuracy was verified by the droplet digital PCR, holding a huge potential in liquid biopsy for precisely guiding individualized-treatment of NSCLC patients with advantages of high sensitivity, low cost, and adaptability to point-of-care testing.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Técnicas Electroquímicas , Receptores ErbB , Exodesoxirribonucleasas , Neoplasias Pulmonares , Mutación , Receptores ErbB/genética , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/genética , Exodesoxirribonucleasas/química , Exodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/genética , Técnicas Biosensibles , Reacción en Cadena de la Ligasa , Límite de Detección , Proteínas Virales
3.
Small ; : e2407388, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39359043

RESUMEN

Cancer immunotherapy offers significant clinical benefits for patients with advanced or metastatic tumors. However, immunotherapeutic efficacy is often hindered by the tumor microenvironment's high redox levels, leading to variable patient outcomes. Herein, a therapeutic liposomal gold nanocage (MGL) is innovatively developed based on photo-triggered hyperthermia and a releasable strategy by combining a glutathione (GSH) depletion to remodel the tumor immune microenvironment, fostering a more robust anti-tumor immune response. MGL comprises a thermosensitive liposome shell and a gold nanocage core loaded with maleimide. The flexible shell promotes efficient uptake by cancer cells, enabling targeted destruction through photothermal therapy while triggering immunogenic cell death and the maturation of antigen-presenting cells. The photoactivated release of maleimide depletes intracellular GSH, increasing tumor cell sensitivity to oxidative stress and thermal damage. Conversely, GSH reduction also diminishes immunosuppressive cell activity, enhances antigen presentation, and activates T cells. Moreover, photothermal immunotherapy decreases elevated levels of heat shock proteins in tumor cells, further increasing their sensitivity to hyperthermia. In summary, MGL elicited a robust systemic antitumor immune response through GSH depletion, facilitating an effective photothermal immunotherapeutic strategy that reprograms the tumor microenvironment and significantly inhibits primary and metastatic tumors. This approach demonstrates considerable translational potential and clinical applicability.

4.
Plant Cell Environ ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39292176

RESUMEN

Isoflavones, secondary metabolites with numerous health benefits, are predominantly found in legume seeds, especially soybean; however, their contents in domesticated soybean seeds are highly variable. Wild soybeans are known for higher seed isoflavone contents than cultivars. Here we used experimental and modelling approaches on wild soybean (W05) and cultivated soybean (C08) to delineate factors influencing isoflavone accumulation. We found imported nutrients were converted into storage compounds, with isoflavone accumulation in W05 seeds being faster than in C08 ones. The isoflavone accumulation during seed development was simulated using context-specific cotyledon metabolic models of four developmental stages on cultivar C08, and the metabolic burden imposed by increasing biomass was evaluated. Trade-off analyses between biomass and isoflavone suggest that high biomass requirement in cultivars could limit the reallocation of resources for secondary metabolite production. Isoflavone production in mature seeds was also influenced by biomass compositions. Seeds with higher carbohydrate contents favour isoflavone production, while those with highest protein and oil contents had lowest isoflavone contents. Although seeds could synthesize isoflavones on their own, the predicted fluxes from biosynthesis alone were lower than the empirical levels. Shadow price analyses indicated that isoflavone accumulation depended on both intrinsic biosynthesis and direct contribution from the plant.

5.
BMC Cardiovasc Disord ; 24(1): 67, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38262934

RESUMEN

BACKGROUND: Predicting the prognosis of primary percutaneous coronary intervention(PPCI) in ST-segment elevation myocardial infarction (STEMI) patients in the perioperative period is of great clinical significance. The inflammatory response during the perioperative period is also an important factor. This study aimed to investigate the dynamic changes in the systemic immune inflammatory index (SII) during the perioperative period of PPCI and evaluate its predictive value for in-hospital and out-of-hospital outcomes in patients with STEMI. METHODS: This retrospective study included 324 consecutive patients with STEMI who were admitted to the cardiac care unit. Blood samples were collected before PPCI, 12 h (T1), 24 h, 48 h after PPCI, the last time before hospital discharge (T2), and 1 month after hospital discharge. The SII was calculated as (neutrophils×platelets)/lymphocytes. Based on whether the primary endpoint occurred, we divided the patients into event and non-event groups. Univariate and multivariate logistic regression analyses were performed to identify independent risk factors that might influence the occurrence of the primary endpoint. Dynamic curves of SII were plotted, and receiver operating characteristic (ROC) curves were drawn for each node to calculate the optimal critical value, sensitivity, and specificity to assess their predictive ability for in-hospital and out-of-hospital courses. Kaplan-Meier curves were used to analyze the differences in survival rates at different SII inflammation levels. RESULTS: High levels of SII were individually related to the occurrence of the in-hospital period and long-term outcomes during the post-operative follow-up of STEMI patients (in-hospital SII: T1:OR 1.001,95%CI 1.001-1.001, P < 0.001; SII following hospital discharge: T1M: OR 1.008,95%CI 1.006-1.010, P < 0.001). Patients with high SII levels had lower survival rates than those with low SII levels. The analysis showed that the SII 12 h after (T1) and SII 1 month (T1M) had excellent predictive values for the occurrence of in-hospital and out-of-hospital outcomes, respectively (AUC:0.896, P < 0.001; AUC:0.892, P < 0.001). CONCLUSION: There is a significant relationship between the dynamic status of SII and prognosis in patients with STEMI. This study found that the 12 h and SII 1 month affected in-hospital and out-of-hospital outcomes, respectively. Consequently, we focused on the dynamic changes in the SII.


Asunto(s)
Infarto del Miocardio con Elevación del ST , Humanos , Pronóstico , Estudios Retrospectivos , Plaquetas , Unidades de Cuidados Coronarios
6.
Phytother Res ; 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39351804

RESUMEN

Alzheimer's disease (AD) is a complex neurodegenerative disease without any effective preventive or therapeutic drugs. Natural products with stable structures and pharmacological characteristics are valuable sources for the development of novel drugs for many complex diseases. This study aimed to discover potential natural compounds for the treatment of AD using new technologies and methods and explore the efficacy and mechanism of candidate compounds. AD-related large-scale genetic datasets were collated to construct disease-PPIs and natural products were collected from six databases to construct compound-protein interactions (CPIs). Potential relationships between natural compounds and AD were predicted via network proximity and gene enrichment analyses. Then, five AD-related cell models and d-galactose-induced aging rat model were established to evaluate the neuroprotective effects of candidate compounds in vitro and in vivo. We identified that 267 natural compounds were predicted to have close connections with AD and 19 compounds could exert protective effect in at least one cell model. Notably, purpurin exerted protective effect in three cell models and significantly improved the cognitive learning and memory functions, reduced the oxidative stress injuries and neuroinflammation, and enhanced the synaptic plasticity and neurotrophic effect in the brain of d-galactose-treated rats. In this study, AD-related natural compounds were identified via network proximity and gene enrichment analyses. In vivo and in vitro experiments revealed the therapeutic potential of purpurin for AD treatment, laying the foundation for further in-depth research and providing valuable information for the development of novel anti-AD drugs.

7.
Mikrochim Acta ; 191(3): 170, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38427110

RESUMEN

Gold nanostructures and a Nafion modified screen-printed carbon electrode (Nafion/AuNS/SPCE) were developed to assess the cell viability of Parkinson's disease (PD) cell models. The electrochemical measurement of cell viability was reflected by catecholamine neurotransmitter (represented by dopamine) secretion capacity, followed by a traditional tetrazolium-based colorimetric assay for confirmation. Due to the  capacity to synthesize, store, and release catecholamines as well as their unlimited homogeneous proliferation, and ease of manipulation, pheochromocytoma (PC12) cells were used for PD cell modeling. Commercial low-differentiated and highly-differentiated PC12 cells, and home-made nerve growth factor (NGF) induced low-differentiated PC12 cells (NGF-differentiated PC12 cells) were included in the modeling. This approach achieved sensitive and rapid determination of cellular modeling and intervention states. Notably, among the three cell lines, NGF-differentiated PC12 cells displayed the enhanced neurotransmitter secretion level accompanied with attenuated growth rate, incremental dendrites in number and length that were highly resemble with neurons. Therefore, it was selected as the PD-tailorable modeling cell line. In short, the electrochemical sensor can be used to sensitively determine the biological function of neuron-like PC12 cells with negligible destruction and to explore the protective and regenerative impact of various substances on nerve cell model.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales , Polímeros de Fluorocarbono , Enfermedad de Parkinson , Ratas , Animales , Catecolaminas/metabolismo , Células PC12 , Factor de Crecimiento Nervioso , Evaluación Preclínica de Medicamentos , Neurotransmisores
8.
Plant J ; 109(6): 1575-1590, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34961994

RESUMEN

Plants that have experienced certain abiotic stress may gain tolerance to a similar stress in subsequent exposure. This phenomenon, called priming, was observed here in soybean (Glycine max) seedlings exposed to salt stress. Time-course transcriptomic profiles revealed distinctively different transcriptional responses in the primed seedlings from those in the non-primed seedlings under high salinity stress, indicating a stress response strategy of repressing unhelpful biotic stress responses and focusing on the promotion of those responses important for salt tolerance. To identify histone marks altered by the priming salinity treatment, a genome-wide profiling of histone 3 lysine 4 dimethylation (H3K4me2), H3K4me3, and histone 3 lysine 9 acetylation (H3K9ac) was performed. Our integrative analyses revealed that priming induced drastic alterations in these histone marks, which coordinately modified the stress response, ion homeostasis, and cell wall modification. Furthermore, transcriptional network analyses unveiled epigenetically modified networks which mediate the strategic downregulation of defense responses. Altering the histone acetylation status using a chemical inhibitor could elicit the priming-like transcriptional responses in non-primed seedlings, confirming the importance of histone marks in forming the priming response.


Asunto(s)
Glycine max , Código de Histonas , Regulación de la Expresión Génica de las Plantas , Estrés Salino/genética , Tolerancia a la Sal , Plantones/genética , Glycine max/genética , Estrés Fisiológico
9.
Small ; 19(47): e2303256, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37501313

RESUMEN

High-capacity Li-rich layered oxides (LLOs) suffer from severe structure degradation due to the utilization of hybrid anion- and cation-redox activity. The native post-cycled structure, composed of progressively densified defective spinel layer (DSL) and intrinsic cations mixing, is deemed as the hindrance of the rapid and reversible de/intercalation of Li+ . Herein, the artificial post-cycled structure consisting of artificial DSL and inner cations mixing is in situ constructed, which would act as a shield against the irreversible oxygen emission and undesirable transition metal migration by suppressing anion redox activity and modulating cation mixing. Eventually, the modified DSL-2% Li-rich cathode demonstrates remarkable electrochemical properties with a high discharge capacity of 187 mAh g-1 after 500 cycles at 2 C, and improved voltage stability. Even under harsh operating conditions of 50 °C, DSL-2% can provide a high discharge capacity of 168 mAh g-1 after 250 cycles at 2 C, which is much higher than that of pristine LLO (92 mAh g-1 ). Furthermore, the artificial post-cycled structure provides a novel perspective on the role of native post-cycled structure in sustaining the lattice structure of the lithium-depleted region and also provides an insightful universal design principle for highly stable intercalated materials with anionic redox activity.

10.
BMC Cardiovasc Disord ; 23(1): 35, 2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36658476

RESUMEN

BACKGROUND: In recent years, heart failure with preserved ejection fraction (HFpEF) has received increasing clinical attention. To investigate the diagnostic value of diastolic function parameters derived from planar gated blood-pool imaging (MUGA) for detecting HFpEF in coronary atherosclerotic heart disease (coronary artery disease, CAD) patients. METHODS: Ninety-seven CAD patients with left ventricular ejection fraction ≥ 50% were included in the study. Based on the left ventricular end-diastolic pressure (LVEDP), the patients were divided into the HFpEF group (LVEDP ≥ 16 mmHg, 47 cases) and the normal LV diastolic function group (LVEDP < 16 mmHg, 50 cases). Diastolic function parameters obtained by planar MUGA include peak filling rate (PFR), filling fraction during the first third of diastole (1/3FF), filling rate during the first third of diastole (1/3FR), mean filling rate during diastole (MFR), and peak filling time (TPF). Echocardiographic parameters include left atrial volume index (LAVI), peak tricuspid regurgitation velocity (peak TR velocity), transmitral diastolic early peak inflow velocity (E), average early diastolic velocities of mitral annulars (average e'), average E/e' ratio. The diastolic function parameters obtained by planar MUGA were compared with those obtained by echocardiography to explore the clinical value of planar MUGA for detecting HFpEF. RESULTS: The Receiver-operating characteristic curve analysis of diastolic function parameters obtained from planar MUGA and echocardiography to detect HFpEF showed that: among the parameters examined by planar MUGA, the area under the curve (AUC) of PFR, 1/3FF, 1/3FR, MFR and TPF were 0.827, 0.662, 0.653, 0.663 and 0.809, respectively. Among the echocardiographic parameters, the AUCs for average e', average E/e' ratio, peak TR velocity, and LAVI values were 0.747, 0.706, 0.735, and 0.633. The combination of PFR and TPF showed an AUC of 0.856. PFR combined with TPF value demonstrated better predictive value than average e' (Z = 2.020, P = 0.043). CONCLUSION: Diastolic function parameters obtained by planar MUGA can be used to diagnose HFpEF in CAD patients. PFR combined with TPF was superior to the parameters obtained by echocardiography and showed good sensitivity and predictive power for detecting HFpEF.


Asunto(s)
Enfermedad de la Arteria Coronaria , Insuficiencia Cardíaca , Disfunción Ventricular Izquierda , Humanos , Volumen Sistólico , Insuficiencia Cardíaca/diagnóstico por imagen , Insuficiencia Cardíaca/etiología , Función Ventricular Izquierda , Enfermedad de la Arteria Coronaria/diagnóstico , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Imagen de Acumulación Sanguínea de Compuerta , Diástole
11.
J Nanobiotechnology ; 21(1): 378, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37848956

RESUMEN

BACKGROUND: The combination of drug delivery with immune checkpoint targeting has been extensively studied in cancer therapy. However, the clinical benefit for patients from this strategy is still limited. B7 homolog 3 protein (B7-H3), also known as CD276 (B7-H3/CD276), is a promising therapeutic target for anti-cancer treatment. It is widely overexpressed on the surface of malignant cells and tumor vasculature, and its overexpression is associated with poor prognosis. Herein, we report B7H3 targeting doxorubicin (Dox)-conjugated gold nanocages (B7H3/Dox@GNCs) with pH-responsive drug release as a selective, precise, and synergistic chemotherapy-photothermal therapy agent against non-small-cell lung cancer (NSCLC). RESULTS: In vitro, B7H3/Dox@GNCs exhibited a responsive release of Dox in the tumor acidic microenvironment. We also demonstrated enhanced intracellular uptake, induced cell cycle arrest, and increased apoptosis in B7H3 overexpressing NSCLC cells. In xenograft tumor models, B7H3/Dox@GNCs exhibited tumor tissue targeting and sustained drug release in response to the acidic environment. Wherein they synchronously destroyed B7H3 positive tumor cells, tumor-associated vasculature, and stromal fibroblasts. CONCLUSION: This study presents a dual-compartment targeted B7H3 multifunctional gold conjugate system that can precisely control Dox exposure in a spatio-temporal manner without evident toxicity and suggests a general strategy for synergistic therapy against NSCLC.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Doxorrubicina , Neoplasias Pulmonares , Nanopartículas , Terapia Fototérmica , Humanos , Antígenos B7 , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Línea Celular Tumoral , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Liberación de Fármacos , Oro , Concentración de Iones de Hidrógeno , Hipertermia Inducida , Neoplasias Pulmonares/tratamiento farmacológico , Fototerapia , Terapia Fototérmica/métodos , Microambiente Tumoral , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Animales , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Mikrochim Acta ; 190(10): 415, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37750999

RESUMEN

In recent years, electrochemiluminescence resonance energy transfer (ECL-RET) with low background signal and high specificity has attracted much attention among researchers. Herein, we established a novel ECL-RET biosensor for PML/RARα fusion gene detection. In this ECL-RET system, carbon dots (CDs) with low toxicity and prominent electrochemical activity were used as donor and Au@Ag2S core-shell nanoparticles (Au@Ag2S NPs) were employed as ECL acceptor. The Au@Ag2S NPs possessed a wide ultraviolet-visible (UV-vis) absorption spectrum between 500 nm and 700 nm, which completely overlapped with the ECL spectrum of CDs. Furthermore, the CDs-decorated poly-amidoamine/reduced graphene oxide (CDs/PAMAM/rGO) nanocomposites were prepared to improve the ECL signals and served as a substrate to stably load capture probe deoxyribonucleic acid (DNA). Based on the ECL-RET biosensing strategy, the Au@Ag2S NPs-labeled assistant probes and target DNA could pair with capture probes to form the sandwich-type DNA structure and the distance between donor and accepter was closed, leading to quenching of the ECL signal of CDs. The ECL-RET biosensor represented eminent analytical performance for PML/RARα fusion gene detection with a wide linear relationship from 5 fM to 500 pM and a low detection limit of 0.72 fM, which provided a novel technical means and theoretical basis for detection and diagnosis of acute promyelocytic leukemia.


Asunto(s)
Nanocompuestos , Nanopartículas , Carbono , Transferencia de Energía , ADN
13.
Environ Monit Assess ; 195(6): 675, 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37188927

RESUMEN

Biological effect-based monitoring is essential for predicting or alerting to a possible deterioration in drinking water quality. In the present study, a reporter gene assay based on oxidative stress-mediated Pgst-4::GFP induction in the Caenorhabditis elegans strain VP596 (VP596 assay) was assessed for its applicability in evaluating drinking water safety and quality. This assay was used to measure the oxidative stress response in VP596 worms exposed to six ubiquitous components (As3+, Al3+, F-, NO3--N, CHCl3, and residual chlorine) in drinking water, eight mixtures of these six components designed through orthogonal design, ninety-six unconcentrated water samples from source to tap water in two supply systems, and organic extracts (OEs) of twenty-five selected water samples. Pgst-4::GFP fluorescence was not induced by Al3+, F-, NO3--N, and CHCl3, and was significantly enhanced by As3+ and residual chlorine only at concentrations higher than their respective drinking water guideline levels. Pgst-4::GFP induction was not detected in any of the six-component mixtures. Induction of Pgst-4::GFP was observed in 9.4% (3/32) of the source water samples but not in the drinking water samples. However, a notable induction effect was revealed in the three OEs of drinking water, with a relative enrichment factor of 200. These results suggest that the VP596 assay has limited utility for screening drinking water safety by testing unconcentrated water samples; however, it offers a supplemental in vivo tool for prioritizing water samples for an enhanced quality assessment, monitoring pollutant removal performance by drinking water treatment plants, and evaluating water quality in water supplies.


Asunto(s)
Agua Potable , Purificación del Agua , Animales , Calidad del Agua , Caenorhabditis elegans , Cloro , Monitoreo del Ambiente/métodos , Abastecimiento de Agua
14.
Theor Appl Genet ; 135(12): 4507-4522, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36422673

RESUMEN

KEY MESSAGE: The genetic basis of soybean root system architecture (RSA) and the genetic relationship between shoot and RSA were revealed by integrating data from recombinant inbred population grafting and QTL mapping. Variations in root system architecture (RSA) affect the functions of roots and thus play vital roles in plant adaptations and agricultural productivity. The aim of this study was to unravel the genetic relationship between RSA traits and shoot-related traits in soybean. This study characterized RSA variability at seedling stage in a recombinant inbred population, derived from a cross between cultivated soybean C08 and wild soybean W05, and performed high-resolution quantitative trait locus (QTL) mapping. In total, 34 and 41 QTLs were detected for RSA-related and shoot-related traits, respectively, constituting eight QTL clusters. Significant QTL correspondence was found between shoot biomass and RSA-related traits, consistent with significant correlations between these phenotypes. RSA-related QTLs also overlapped with selection regions in the genome, suggesting the cultivar RSA could be a partial consequence of domestication. Using reciprocal grafting, we confirmed that shoot-derived signals affected root development and the effects were controlled by multiple loci. Meanwhile, RSA-related QTLs were found to co-localize with four soybean flowering-time loci. Consistent with the phenotypes of the parental lines of our RI population, diminishing the function of flowering controlling E1 family through RNA interference (RNAi) led to reduced root growth. This implies that the flowering time-related genes within the RSA-related QTLs are actually contributing to RSA. To conclude, this study identified the QTLs that determine RSA through controlling root growth indirectly via regulating shoot functions, and discovered superior alleles from wild soybean that could be used to improve the root structure in existing soybean cultivars.


Asunto(s)
Glycine max , Sitios de Carácter Cuantitativo , Glycine max/genética , Raíces de Plantas/genética , Mapeo Cromosómico , Fenotipo
15.
Nutr Metab Cardiovasc Dis ; 32(1): 134-141, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34802852

RESUMEN

BACKGROUND AND AIM: We aimed to explore the relationship between total BMD and prevalent fractures and the risk of CVD in a female population in the United States (US). METHODS AND RESULTS: We undertook cross-sectional analyses of a female population participating in the US National Health and Nutrition Examination Survey (NHANES). Generalized linear models and restricted cubic spline curves were used to examine the association between total BMD and CVD. Subgroup analyses were also undertaken. A total of 13,707 women were enrolled. The restricted cubic spline curve revealed a linear and negative association between total BMD and CVD. The inflection point for the curve was identified at total BMD = 1.085 g/cm2. A negative relationship between total BMD and the prevalence of individual CVDs (angina and stroke) was noted (P < 0.05). In subgroup analyses stratified by race/ethnicity, hypertension, diabetes mellitus, and physical activity, a negative association existed in women who were non-Hispanic White, without hypertension, without diabetes mellitus, and who never participated in physical activity, respectively. In subgroup analyses stratified by age, this association also differed based on age. In addition, participants without history of fracture had significant lower probability of experiencing individual CVDs (angina pectoris, heart attack, and stroke) compared with those with history of fracture. CONCLUSIONS: We revealed a reduced prevalence of CVD associated with increased total BMD in a female population in the US. CVD risk decreased significantly if total BMD >1.085 g/cm2. Additionally, fracture-free individuals had much reduced odds of developing CVD.


Asunto(s)
Densidad Ósea , Enfermedades Cardiovasculares , Absorciometría de Fotón/métodos , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/epidemiología , Estudios Transversales , Femenino , Humanos , Encuestas Nutricionales , Prevalencia , Estados Unidos/epidemiología
16.
Molecules ; 27(3)2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35164167

RESUMEN

Alzheimer's disease (AD) is a progressive, neurodegenerative disorder that currently has reached epidemic proportions among elderly populations around the world. In China, available traditional Chinese medicines (TCMs) that organically combine functional foods with medicinal values are named "Medicine Food Homology (MFH)". In this review, we focused on MFH varieties for their traditional functional features, substance bases, clinical uses, and mechanisms of action (MOAs) for AD prevention and treatment. We consider the antiAD active constituents from MFH species, their effects on in vitro/in vivo AD models, and their drug targets and signal pathways by summing up the literature via a systematic electronic search (SciFinder, PubMed, and Web of Science). In this paper, several MFH plant sources are discussed in detail from in vitro/in vivo models and methods, to MOAs. We found that most of the MFH varieties exert neuroprotective effects and ameliorate cognitive impairments by inhibiting neuropathological signs (Aß-induced toxicity, amyloid precursor protein, and phosphorylated Tau immunoreactivity), including anti-inflammation, antioxidative stress, antiautophagy, and antiapoptosis, etc. Indeed, some MFH substances and their related phytochemicals have a broad spectrum of activities, so they are superior to simple single-target drugs in treating chronic diseases. This review can provide significant guidance for people's healthy lifestyles and drug development for AD prevention and treatment.


Asunto(s)
Enfermedad de Alzheimer/terapia , Medicamentos Herbarios Chinos/uso terapéutico , Alimentos Funcionales , Fármacos Neuroprotectores/uso terapéutico , Plantas Medicinales , Enfermedad de Alzheimer/prevención & control , Animales , Alimentos Funcionales/análisis , Humanos , Fármacos Neuroprotectores/análisis , Extractos Vegetales/análisis , Extractos Vegetales/uso terapéutico , Plantas Medicinales/química
17.
Plant Foods Hum Nutr ; 77(2): 279-285, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35633414

RESUMEN

Epigallocatechin-3-gallate (EGCG) and caffeine, two phytochemicals found in a wide range of natural dietary sources, have been reported to have protective effects against hyperlipidemia, a major risk factor for cardiovascular disease. However, their relative efficacy and synergy in lowering lipid level are unclear. This study intended to compare lipid-lowering activity of EGCG and caffeine and to elucidate their joint action using Caenorhabditis elegans (C. elegans) as a model organism. The worms were exposed to EGCG, caffeine or both agents, and lipid accumulation determined by levels of total lipids, triglycerides and cholesterol was monitored. A 3 × 3 factorial design combined with response surface methodology was used to characterize the nature of interactive effects. Total lipids, triglycerides and cholesterol in C. elegans were reduced by either EGCG or caffeine in a dose-dependent manner, with EGCG displaying a stronger lipid-lowering efficacy than caffeine. Overall, the EGCG/caffeine combination for lowering lipids was more effective than either substance alone. Factorial regression models revealed that the combination was antagonistic for total lipid reduction, perhaps due to a "ceiling" effect, and was synergistic for triglyceride-lowering and additive for cholesterol-lowering. Taken together, our work proposes the use of a combination of EGCG and caffeine as an alternative dietary intervention for the prevention of hyperlipidemia, and additionally highlights the suitability of C. elegans model for evaluating lipid-lowering capacity of natural products.


Asunto(s)
Caenorhabditis elegans , Catequina , Animales , Cafeína/farmacología , Catequina/análogos & derivados , Catequina/farmacología , Colesterol , Triglicéridos
18.
Biochem Biophys Res Commun ; 549: 14-20, 2021 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-33652205

RESUMEN

Ametropia is one of the most common ocular disorders worldwide, to which almost half of visual impairments are attributed. Growing evidence has linked the development of ametropia with ambient light, including blue light, which is ubiquitous in our surroundings and has the highest photonic energy among the visible spectrum. However, the underlying mechanism of blue light-mediated ametropia remains controversial and unclear. In the present study, our data demonstrated that exposure of the retinal pigment epithelium (RPE) to blue light elevated the levels of the vital ametropia-related factor type Ⅰ collagen (COL1) via ß-catenin inhibition in scleral fibroblasts, leading to axial ametropia (hyperopic shift). Herein, our study provides evidence for the vital role of blue light-induced RPE dysfunction in the process of blue light-mediated ametropia, providing intriguing insights into ametropic aetiology and pathology by proposing a link among blue light, RPE dysfunction and ametropia.


Asunto(s)
Luz , Errores de Refracción/patología , Epitelio Pigmentado de la Retina/patología , Epitelio Pigmentado de la Retina/efectos de la radiación , Animales , Línea Celular , Supervivencia Celular/efectos de la radiación , Colágeno Tipo I/metabolismo , Fibroblastos/patología , Fibroblastos/efectos de la radiación , Regulación de la Expresión Génica/efectos de la radiación , Humanos , Masculino , Ratones Endogámicos C57BL , Errores de Refracción/genética , Refractometría , Esclerótica/patología , Regulación hacia Arriba/efectos de la radiación , beta Catenina/metabolismo
19.
J Chem Inf Model ; 61(12): 5763-5773, 2021 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-34797660

RESUMEN

COVID-19 caused by a novel coronavirus (SARS-CoV-2) has been spreading all over the world since the end of 2019, and no specific drug has been developed yet. 3C-like protease (3CLpro) acts as an important part of the replication of novel coronavirus and is a promising target for the development of anticoronavirus drugs. In this paper, eight machine learning models were constructed using naïve Bayesian (NB) and recursive partitioning (RP) algorithms for 3CLpro on the basis of optimized two-dimensional (2D) molecular descriptors (MDs) combined with ECFP_4, ECFP_6, and MACCS molecular fingerprints. The optimal models were selected according to the results of 5-fold cross verification, test set verification, and external test set verification. A total of 5766 natural compounds from the internal natural product database were predicted, among which 369 chemical components were predicted to be active compounds by the optimal models and the EstPGood values were more than 0.6, as predicted by the NB (MD + ECFP_6) model. Through ADMET analysis, 31 compounds were selected for further biological activity determination by the fluorescence resonance energy transfer (FRET) method and cytopathic effect (CPE) detection. The results indicated that (+)-shikonin, shikonin, scutellarein, and 5,3',4'-trihydroxyflavone showed certain activity in inhibiting SARS-CoV-2 3CLpro with the half-maximal inhibitory concentration (IC50) values ranging from 4.38 to 87.76 µM. In the CPE assay, 5,3',4'-trihydroxyflavone showed a certain antiviral effect with an IC50 value of 8.22 µM. The binding mechanism of 5,3',4'-trihydroxyflavone with SARS-CoV-2 3CLpro was further revealed through CDOCKER analysis. In this study, 3CLpro prediction models were constructed based on machine learning algorithms for the prediction of active compounds, and the activity of potential inhibitors was determined by the FRET method and CPE assay, which provide important information for further discovery and development of antinovel coronavirus drugs.


Asunto(s)
COVID-19 , SARS-CoV-2 , Antivirales/farmacología , Teorema de Bayes , Transferencia Resonante de Energía de Fluorescencia , Humanos , Inhibidores de Proteasas/farmacología
20.
Anal Bioanal Chem ; 413(6): 1605-1614, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33515273

RESUMEN

Effective and simultaneous monitoring of the abnormal expression of certain microRNAs (miRNAs), especially for miRNA-21 and miRNA-155, can indicate drug resistance in lung cancer. In this work, T7 exonuclease (T7 Exo)-assisted target recycling amplification coupled with the extensive fluorescence quenching of graphene oxide (GO) was designed for the simultaneous detection of miRNA-21 and miRNA-155 using FAM- and ROX-labeled single-strand DNA probes. Through this method, the variable emission intensities of FAM and ROX caused by the introduction of miRNA-21 and miRNA-155, respectively, were obtained with high sensitivity. The method exhibited excellent analytical performance for simultaneous detection of miRNA-21 and miRNA-155 without cross-interference. The linear range was from 0.005 nM to 5 nM over three orders of magnitude, with detection limits as low as 3.2 pM and 4.5 pM for miRNA-21 and miRNA-155, respectively. Furthermore, the recovery (92.49-103.67%) and relative standard deviation (RSD < 4.8%) of the standard addition test of miRNA-21 and miRNA-155 in human plasma suggested the potential for drug resistance warning in clinical practice via this simple strategy. A homogeneous T7 Exo-assisted signal amplification combined with GO quenching platform was developed for accurate, sensitive and simultaneous analysis of miRNA-21 and miRNA-155 for drug resistance warning in lung cancer. This simple method exhibited a wide linear range and low LODs for miR-21 and miR-155.


Asunto(s)
Técnicas Biosensibles , Exodesoxirribonucleasas/metabolismo , Neoplasias Pulmonares/sangre , MicroARNs/análisis , Sondas de ADN/química , Polarización de Fluorescencia , Grafito/química , Humanos , Límite de Detección , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Técnicas de Amplificación de Ácido Nucleico/métodos , Plasma/metabolismo , Reproducibilidad de los Resultados , Espectrometría de Fluorescencia/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA