Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Plant J ; 117(3): 873-891, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37950600

RESUMEN

The downy mildew of grapevine (Vitis vinifera L.) is caused by Plasmopara viticola and is a major production problem in most grape-growing regions. The vast majority of effectors act as virulence factors and sabotage plant immunity. Here, we describe in detail one of the putative P. viticola Crinkler (CRN) effector genes, PvCRN11, which is highly transcribed during the infection stages in the downy mildew-susceptible grapevine V. vinifera cv. 'Pinot Noir' and V. vinifera cv. 'Thompson Seedless'. Cell death-inducing activity analyses reveal that PvCRN11 was able to induce spot cell death in the leaves of Nicotiana benthamiana but did not induce cell death in the leaves of the downy mildew-resistant V. riparia accession 'Beaumont' or of the downy mildew-susceptible 'Thompson Seedless'. Unexpectedly, stable expression of PvCRN11 inhibited the colonization of P. viticola in grapevine and Phytophthora capsici in Arabidopsis. Both transgenic grapevine and Arabidopsis constitutively expressing PvCRN11 promoted plant immunity. PvCRN11 is localized in the nucleus and cytoplasm, whereas PvCRN11-induced plant immunity is nucleus-independent. The purified protein PvCRN11Opt initiated significant plant immunity extracellularly, leading to enhanced accumulations of reactive oxygen species, activation of MAPK and up-regulation of the defense-related genes PR1 and PR2. Furthermore, PvCRN11Opt induces BAK1-dependent immunity in the apoplast, whereas PvCRN11 overexpression in intracellular induces BAK1-independent immunity. In conclusion, the PvCRN11 protein triggers resistance against P. viticola in grapevine, suggesting a potential for the use of PvCRN11 in grape production as a protectant against downy mildew.


Asunto(s)
Arabidopsis , Oomicetos , Phytophthora , Vitis , Resistencia a la Enfermedad/genética , Proteínas/metabolismo , Inmunidad de la Planta , Enfermedades de las Plantas , Vitis/metabolismo
2.
New Phytol ; 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39091140

RESUMEN

Chloroplasts play a crucial role in plant defense against pathogens, making them primary targets for pathogen effectors that suppress host immunity. This study characterizes the Plasmopara viticola CRN-like effector, PvCRN20, which interacts with DEG5 in the cytoplasm but not with its interacting protein, DEG8, which is located in the chloroplast. By transiently overexpressing in tobacco leaves, we show that PvCRN20 could inhibit INF1- and Bax-triggered cell death. Constitutive expression of PvCRN20 suppresses the accumulation of reactive oxygen species (ROS) and promotes pathogen colonization. PvCRN20 reduces DEG5 entry into chloroplasts, thereby disrupting DEG5 and DEG8 interactions in chloroplasts. Overexpression of VvDEG5 and VvDEG8 induces ROS accumulation and enhances grapevine resistance to P. viticola, whereas knockout of VvDEG8 represses ROS production and promotes P. viticola colonization. Consistently, ectopic expression of VvDEG5 and VvDEG8 in tobacco promotes chloroplast-derived ROS accumulation, whereas co-expression of PvCRN20 counteracted this promotion by VvDEG5. Therefore, DEG5 is essential for the virulence function of PvCRN20. Although PvCRN20 is located in both the nucleus and cytoplasm, only cytoplasmic PvCRN20 suppresses plant immunity and promotes pathogen infection. Our results reveal that PvCRN20 dampens plant defenses by repressing the chloroplast import of DEG5, thus reducing host ROS accumulation and facilitating pathogen colonization.

3.
Plant J ; 112(1): 104-114, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35929367

RESUMEN

Grapevine downy mildew, caused by Plasmopara viticola, is one of the most devastating diseases in viticulture. Plasmopara viticola secretes RxLR effectors to modulate immune responses in grapevine. Here, we report an RxLR effector RxLR50253 from P. viticola that can interfere with plant immune response and thus promote pathogen colonization. RxLR50253 was induced at an early stage of P. viticola infection and could suppress elicitor (INF1 and Bax)-triggered cell death. RxLR50253 promote pathogen colonization in both tobacco and grapevine leaves. VpBPA1 was found to be the host target of RxLR50253 by yeast two-hybrid screening, and interaction between RxLR50253 and VpBPA1 was confirmed by multiple in vivo and in vitro assays. Further analysis revealed that VpBPA1 promoted pathogen colonization and decreased H2 O2 accumulation in transgenic tobacco and grapevine, while there was enhanced resistance and H2 O2 accumulation in NbBPA1-silenced Nicotiana benthamiana leaves. Moreover, transient expression of VpBPA1 in NbBPA1-silenced N. benthamiana leaves could reduce the accumulation of H2 O2 . Experiments in vivo demonstrated that RxLR50253 inhibits degradation of VpBPA1. Taken together, our findings showed that RxLR50253 targets and stabilizes VpBPA1 to attenuate plant immunity through decreasing H2 O2 accumulation during pathogen infection.


Asunto(s)
Oomicetos , Phytophthora infestans , Vitis , Enfermedades de las Plantas , Inmunidad de la Planta , Nicotiana/genética , Vitis/metabolismo , Proteína X Asociada a bcl-2/metabolismo
4.
J Exp Bot ; 74(6): 2047-2066, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36622787

RESUMEN

Grapevine downy mildew, caused by the oomycete Plasmopara viticola, is one of the most significant production challenges for the grape and wine industry. P. viticola injects a plethora of effectors into its host cells to disrupt immune processes, but the mechanisms by which these effectors act at the molecular level have not been well characterized. Herein, we show that a candidate P. viticola avirulence homolog (Avh) RxLR effector gene, designated PvAvh77, was strongly up-regulated during the initial stages of P. viticola infection in Vitis vinifera. Further experiments demonstrated that PvAvh77 could trigger non-specific cell death when expressed in the wild grapevine Vitis riparia and in tobacco (Nicotiana benthamiana and Nicotiana tabacum). In addition, a truncated form of PvAvh77, designated PvAvh77-M2, was more active in inducing cell death in N. benthamiana and V. riparia than full-length PvAvh77. Ectopic expression of PvAvh77 in V. vinifera 'Thompson Seedless' leaves neutralized host immunity and enhanced colonization by P. viticola, and the immune-inhibiting activity of PvAvh77 on susceptible Eurasian grapevine depended on its nuclear localization. Using a yeast signal sequence trap approach, we showed that the signal peptide of PvAvh77 is functional in yeast. Moreover, PvAvh77 with a signal peptide stimulated plant immune responses in the apoplast. Notably, application of exogenous purified PvAvh77-M2 effectively initiated defence responses in grapevine extracellularly, as evidenced by increased accumulation of salicylic acid and H2O2, and reduced infection of inoculated P. viticola. In summary, we identified a novel effector, PvAvh77, from P. viticola, which has the potential to serve as an inducer of plant immunity.


Asunto(s)
Oomicetos , Phytophthora infestans , Vitis , Saccharomyces cerevisiae , Peróxido de Hidrógeno/metabolismo , Enfermedades de las Plantas , Nicotiana/genética , Vitis/genética , Vitis/metabolismo , Muerte Celular , Señales de Clasificación de Proteína , Resistencia a la Enfermedad
5.
Plant J ; 106(6): 1557-1570, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33783031

RESUMEN

Pathogens secrete a large number of effectors that manipulate host processes to create an environment conducive to pathogen colonization. However, the underlying mechanisms by which Plasmopara viticola effectors manipulate host plant cells remain largely unclear. In this study, we reported that RXLR31154, a P. viticola RXLR effector, was highly expressed during the early stages of P. viticola infection. In our study, stable expression of RXLR31154 in grapevine (Vitis vinifera) and Nicotiana benthamiana promoted leaf colonization by P. viticola and Phytophthora capsici, respectively. By yeast two-hybrid screening, the 23-kDa oxygen-evolving enhancer 2 (VpOEE2 or VpPsbP), encoded by the PsbP gene, in Vitis piasezkii accession Liuba-8 was identified as a host target of RXLR31154. Overexpression of VpPsbP enhanced susceptibility to P. viticola in grapevine and P. capsici in N. benthamiana, and silencing of NbPsbPs, the homologs of PsbP in N. benthamiana, reduced P. capcisi colonization, indicating that PsbP is a susceptibility factor. RXLR31154 and VpPsbP protein were co-localized in the chloroplast. Moreover, VpPsbP reduced H2 O2 accumulation and activated the 1 O2 signaling pathway in grapevine. RXLR31154 could stabilize PsbP. Together, our data revealed that RXLR31154 reduces H2 O2 accumulation and activates the 1 O2 signaling pathway through stabilizing PsbP, thereby promoting disease.


Asunto(s)
Cloroplastos/parasitología , Oomicetos/metabolismo , Enfermedades de las Plantas/parasitología , Proteínas de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Vitis/parasitología , Clorofila/química , Clorofila/metabolismo , Fluorescencia , Peróxido de Hidrógeno , Nicotiana/parasitología
6.
Plant J ; 108(2): 394-410, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34318550

RESUMEN

Glyoxalase I (GLYI) is part of the glyoxalase system; its major function is the detoxification of α-ketoaldehydes, including the potent and cytotoxic methylglyoxal (MG). Methylglyoxal disrupts mitochondrial respiration and increases production of reactive oxygen species (ROS), which also increase during pathogen infection of plant tissues; however, there have been few studies relating the glyoxalase system to the plant pathogen response. We used the promoter of VvGLYI-4 to screen the upstream transcription factors and report a NAC (NAM/ATAF/CUC) domain-containing transcription factor VvNAC72 in grapevine, which is localized to the nucleus. Our results show that VvNAC72 expression is induced by downy mildew, Plasmopara viticola, while the transcript level of VvGLYI-4 decreases. Further analysis revealed that VvNAC72 can bind directly to the promoter region of VvGLYI-4 via the CACGTG element, leading to inhibition of VvGLYI-4 transcription. Stable overexpression of VvNAC72 in grapevine and tobacco showed a decreased expression level of VvGLYI-4 and increased content of MG and ROS, as well as stronger resistance to pathogen stress. Taken together, these results demonstrate that grapevine VvNAC72 negatively modulates detoxification of MG through repression of VvGLYI-4, and finally enhances resistance to downy mildew, at least in part, via the modulation of MG-associated ROS homeostasis through a salicylic acid-mediated defense pathway.


Asunto(s)
Lactoilglutatión Liasa/metabolismo , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Vitis/microbiología , Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Lactoilglutatión Liasa/genética , Oomicetos/patogenicidad , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Piruvaldehído/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ácido Salicílico/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/microbiología , Factores de Transcripción/genética , Vitis/genética , Vitis/metabolismo
7.
BMC Genomics ; 20(1): 362, 2019 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-31072302

RESUMEN

BACKGROUND: The glyoxalase system usually comprises two enzymes, glyoxalase I (GLYI) and glyoxalase II (GLYII). This system converts cytotoxic methylglyoxal (MG) into non-toxic D-lactate in the presence of reduced glutathione (GSH) in two enzymatic steps. Recently, a novel type of glyoxalase III (GLYIII) activity has observed in Escherichia coli that can detoxify MG into D-lactate directly, in one step, without a cofactor. Investigation of the glyoxalase enzymes of a number of plant species shows the importance of their roles in response both to abiotic and to biotic stresses. Until now, glyoxalase gene families have been identified in the genomes of four plants, Arabidopsis, Oryza sativa, Glycine max and Medicago truncatula but no similar study has been done with the grapevine Vitis vinifera L. RESULTS: In this study, four GLYI-like, two GLYII-like and three GLYIII-like genes are identified from the genome database of grape. All these genes were analysed in detail, including their chromosomal locations, phylogenetic relationships, exon-intron distributions, protein domain organisations and the presence of conserved binding sites. Using quantitative real-time PCR analysis (qRT-PCR), the expression profiles of these genes were analysed in different tissues of grape, and also when under infection stress from downy mildew (Plasmopara viticola). The study reveals that most VvGLY-like genes had higher expressions in stem, leaf, tendril and ovule but lower expressions in the flower. In addition, most of the VvGLY-like gene members were P. viticola responsive with high expressions 6-12 h and 96-120 h after inoculation. However, VvGLYI-like1 was highly expressed 48 h after inoculation, similar to VvPR1 and VvNPR1 which are involved in the defence response. CONCLUSIONS: This study identified the GLYI-like, GLYII-like and GLYIII-like full gene families of the grapevine. Based on a phylogenetic analysis and the presence of conserved binding sites, we speculate that these glyoxalase-like genes in grape encode active glyoxalases. Moreover, our study provides a basis for discussing the roles of VvGLYI-like, VvGLYII-like and VvGLYIII-like genes in grape's response to downy mildew infection. Our results shed light on the selection of candidate genes for downy mildew tolerance in grape and lay the foundation for further functional investigations of these glyoxalase genes.


Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Familia de Multigenes , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Vitis/genética , Aldehído Oxidorreductasas/genética , Resistencia a la Enfermedad , Lactoilglutatión Liasa/genética , Oomicetos/fisiología , Filogenia , Enfermedades de las Plantas/genética , Tioléster Hidrolasas/genética , Vitis/crecimiento & desarrollo , Vitis/microbiología
9.
Plant Physiol ; 173(2): 1502-1518, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28049741

RESUMEN

Heat stress is one of the primary abiotic stresses that limit crop production. Grape (Vitis vinifera) is a cultivated fruit with high economic value throughout the world, with its growth and development often influenced by high temperature. Alternative splicing (AS) is a widespread phenomenon increasing transcriptome and proteome diversity. We conducted high-temperature treatments (35°C, 40°C, and 45°C) on grapevines and assessed transcriptomic (especially AS) and proteomic changes in leaves. We found that nearly 70% of the genes were alternatively spliced under high temperature. Intron retention (IR), exon skipping, and alternative donor/acceptor sites were markedly induced under different high temperatures. Among all differential AS events, IR was the most abundant up- and down-regulated event. Moreover, the occurrence frequency of IR events at 40°C and 45°C was far higher than at 35°C. These results indicated that AS, especially IR, is an important posttranscriptional regulatory event during grape leaf responses to high temperature. Proteomic analysis showed that protein levels of the RNA-binding proteins SR45, SR30, and SR34 and the nuclear ribonucleic protein U1A gradually rose as ambient temperature increased, which revealed a reason why AS events occurred more frequently under high temperature. After integrating transcriptomic and proteomic data, we found that heat shock proteins and some important transcription factors such as MULTIPROTEIN BRIDGING FACTOR1c and HEAT SHOCK TRANSCRIPTION FACTOR A2 were involved mainly in heat tolerance in grape through up-regulating transcriptional (especially modulated by AS) and translational levels. To our knowledge, these results provide the first evidence for grape leaf responses to high temperature at simultaneous transcriptional, posttranscriptional, and translational levels.


Asunto(s)
Empalme Alternativo , Regulación de la Expresión Génica de las Plantas , Vitis/fisiología , Perfilación de la Expresión Génica/métodos , Anotación de Secuencia Molecular , Hojas de la Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteómica/métodos , Temperatura , Vitis/genética
10.
Plant Cell Rep ; 37(5): 819-832, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29511799

RESUMEN

KEY MESSAGE: Putrescine and spermidine increase the transformation efficiency of Vitis vinifera L. cv. Thompson seedless. Accumulation of VpPR10.1 in transgenic V. vinifera Thompson seedless, likely increases its resistance to downy mildew. A more efficient method is described for facilitating Agrobacterium-mediated transformation of Vitis vinifera L. cv. Thompson Seedless somatic embryogenesis using polyamines (PAs). The efficacies of putrescine, spermidine and spermine are identified at a range of concentrations (10 µM, 100 µM and 1 mM) added to the culture medium during somatic embryo growth. Putrescine (PUT) and spermidine (SPD) promote the recovery of proembryonic masses (PEM) and the development of somatic embryos (SE) after co-cultivation. Judging from the importance of the time-frame in genetic transformation, PAs added at the co-cultivation stage have a stronger effect than delayed selection treatments, which are superior to antibiotic treatments in the selection stage. Best embryogenic responses are with 1 mM PUT and 100 µM SPD added to the co-culture medium. Using the above method, a pathogenesis-related gene (VpPR10.1) from Chinese wild Vitis pseudoreticulata was transferred into Thompson Seedless for functional evaluation. The transgenic line, confirmed by western blot analysis, was inoculated with Plasmopara viticola to test for downy mildew resistance. Based on observed restrictions of hyphal growth and increases in H2O2 accumulation in the transgenic plants, the accumulation of VpPR10.1 likely enhanced the transgenic plants resistance to downy mildew.


Asunto(s)
Resistencia a la Enfermedad , Peronospora/fisiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Transformación Genética , Vitis/genética , Vitis/microbiología , Resistencia a la Enfermedad/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Peróxido de Hidrógeno/metabolismo , Peronospora/efectos de los fármacos , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Poliaminas/farmacología , Transformación Genética/efectos de los fármacos , Vitis/efectos de los fármacos , Vitis/inmunología
11.
J Res Med Sci ; 21: 81, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28163727

RESUMEN

BACKGROUND: This study aimed to explore the cellular morphology of respiratory epithelium in Mycoplasma pneumonia (MpP) patients. MATERIALS AND METHODS: The cast-off cell morphological findings from bronchoscopic brushings in MpP and community-acquired pneumonia (CAP) caused by typical pathogens were reviewed. RESULTS: Compared with the CAP group, cellular dysplasia in respiratory tract epithelial brushings was significantly greater in MpP patients (P = 0.033). CONCLUSION: Unique biological characteristics and mechanisms of pathogenesis of Mycoplasma pneumoniae (Mp) may result in dyskaryotic changes in respiratory epithelium in adult MpP.

12.
BMC Plant Biol ; 14: 156, 2014 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-24898786

RESUMEN

BACKGROUND: In the context of global climate change, heat stress is becoming an increasingly important constraint on grapevine growth and berry quality. There is a need to breed new grape cultivars with heat tolerance and to design effective physiological defenses against heat stress. The investigation of heat injury to plants or tissues under high temperature is an important step in achieving these goals. At present, evaluation methods for heat injury include the gas exchange parameters of photosynthesis, membrane thermostability, chlorophyll content etc.; however, these methods have obvious disadvantages, such as insensitivity, inconvenience and delayed information. An effective and convenient method for investigating the heat injury of grapevine must be developed. RESULTS: In this study, an investigation protocol for a critical temperature (47°C) and heat treatment time (40 min) was developed in detached grape leaves. Based on the results, we found that the OJIP test was superior to measuring electrolyte leakage or photosynthetic O2 evolution for investigating the heat injury of three cultivars of grapevine. Heat tolerance of 47 grape species and cultivars was evaluated through investigating heat injury using the OJIP test. Moreover, the electron transport chain (donor side, acceptor side and reaction center) of PSII in photosynthesis was further investigated. CONCLUSIONS: The OJIP test was a rapid, sensitive and convenient method for investigating heat injury in grapevine. An analysis of PSII function using this method indicated that the acceptor side was less sensitive to heat than was the donor side or the reaction center in grape leaves. Among the 47 taxa evaluated (cultivars, hybrids, and wild species), heat tolerance varied largely in each genotype group: most wild species and hybrids between V. labrusca and V. vinifera had relatively strong heat tolerance, but most cultivars from V. vinifera had relatively weak heat tolerance.


Asunto(s)
Calor , Fotosíntesis/fisiología , Estrés Fisiológico , Vitis/fisiología , Clorofila/análisis , Clorofila A , Electrólitos/metabolismo , Fluorescencia , Oxígeno/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Vitis/clasificación
13.
BMC Plant Biol ; 14: 110, 2014 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-24774513

RESUMEN

BACKGROUND: High temperature is a major environmental factor limiting grape yield and affecting berry quality. Thermotolerance includes the direct response to heat stress and the ability to recover from heat stress. To better understand the mechanism of the thermotolerance of Vitis, we combined a physiological analysis with iTRAQ-based proteomics of Vitis vinifera cv Cabernet Sauvignon, subjected to 43°C for 6 h, and then followed by recovery at 25/18°C. RESULTS: High temperature increased the concentrations of TBARS and inhibited electronic transport in photosynthesis apparatus, indicating that grape leaves were damaged by heat stress. However, these physiological changes rapidly returned to control levels during the subsequent recovery phase from heat stress. One hundred and seventy-four proteins were differentially expressed under heat stress and/or during the recovery phase, in comparison to unstressed controls, respectively. Stress and recovery conditions shared 42 proteins, while 113 and 103 proteins were respectively identified under heat stress and recovery conditions alone. Based on MapMan ontology, functional categories for these dysregulated proteins included mainly photosynthesis (about 20%), proteins (13%), and stress (8%). The subcellular localization using TargetP showed most proteins were located in the chloroplasts (34%), secretory pathways (8%) and mitochondrion (3%). CONCLUSION: On the basis of these findings, we proposed that some proteins related to electron transport chain of photosynthesis, antioxidant enzymes, HSPs and other stress response proteins, and glycolysis may play key roles in enhancing grapevine adaptation to and recovery capacity from heat stress. These results provide a better understanding of the proteins involved in, and mechanisms of thermotolerance in grapevines.


Asunto(s)
Respuesta al Choque Térmico , Marcaje Isotópico/métodos , Hojas de la Planta/metabolismo , Proteómica/métodos , Estrés Fisiológico , Vitis/fisiología , Membrana Celular/metabolismo , Transporte de Electrón , Ontología de Genes , Fotosíntesis , Complejo de Proteína del Fotosistema II/metabolismo , Proteínas de Plantas/clasificación , Proteínas de Plantas/metabolismo , Transporte de Proteínas , Homología de Secuencia de Aminoácido , Fracciones Subcelulares/metabolismo , Temperatura , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo , Vitis/metabolismo
14.
Curr Biol ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39094571

RESUMEN

Seedlessness is a crucial quality trait in table grape (Vitis vinifera L.) breeding. However, the development of seeds involved intricate regulations, and the polygenic basis of seed abortion remains unclear. Here, we combine comparative genomics, population genetics, quantitative genetics, and integrative genomics to unravel the evolution and polygenic basis of seedlessness in grapes. We generated the haplotype-resolved genomes for two seedless grape cultivars, "Thompson Seedless" (TS, syn. "Sultania") and "Black Monukka" (BM). Comparative genomics identified a ∼4.25 Mb hemizygous inversion on Chr10 specific in seedless cultivars, with seedless-associated genes VvTT16 and VvSUS2 located at breakpoints. Population genomic analyses of 548 grapevine accessions revealed two distinct clusters of seedless cultivars, and the identity-by-descent (IBD) results indicated that the origin of the seedlessness trait could be traced back to "Sultania." Introgression, rather than convergent selection, shaped the evolutionary history of seedlessness in grape improvement. Genome-wide association study (GWAS) analysis identified 110 quantitative trait loci (QTLs) associated with 634 candidate genes, including previously unidentified candidate genes, such as three 11S GLOBULIN SEED STORAGE PROTEIN and two CYTOCHROME P450 genes, and well-known genes like VviAGL11. Integrative genomic analyses resulted in 339 core candidate genes categorized into 13 functional categories related to seed development. Machine learning-based genomic selection achieved a remarkable prediction accuracy of 97% for seedlessness in grapevines. Our findings highlight the polygenic nature of seedlessness and provide candidate genes for molecular genetics and an effective prediction for seedlessness in grape genomic breeding.

15.
BMC Plant Biol ; 12: 174, 2012 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-23016701

RESUMEN

BACKGROUND: Grapes are a major fruit crop around the world. Heat stress can significantly reduce grape yield and quality. Changes at the molecular level in response to heat stress and subsequent recovery are poorly understood. To elucidate the effect of heat stress and subsequent recovery on expression of genes by grape leaves representing the classic heat stress response and thermotolerance mechanisms, transcript abundance of grape (Vitis vinifera L.) leaves was quantified using the Affymetrix Grape Genome oligonucleotide microarray (15,700 transcripts), followed by quantitative Real-Time PCR validation for some transcript profiles. RESULTS: We found that about 8% of the total probe sets were responsive to heat stress and/or to subsequent recovery in grape leaves. The heat stress and recovery responses were characterized by different transcriptional changes. The number of heat stress-regulated genes was almost twice the number of recovery-regulated genes. The responsive genes identified in this study belong to a large number of important traits and biological pathways, including cell rescue (i.e., antioxidant enzymes), protein fate (i.e., HSPs), primary and secondary metabolism, transcription factors, signal transduction, and development. We have identified some common genes and heat shock factors (HSFs) that were modulated differentially by heat stress and recovery. Most HSP genes were upregulated by heat stress but were downregulated by the recovery. On the other hand, some specific HSP genes or HSFs were uniquely responsive to heat stress or recovery. CONCLUSION: The effect of heat stress and recovery on grape appears to be associated with multiple processes and mechanisms including stress-related genes, transcription factors, and metabolism. Heat stress and recovery elicited common up- or downregulated genes as well as unique sets of responsive genes. Moreover, some genes were regulated in opposite directions by heat stress and recovery. The results indicated HSPs, especially small HSPs, antioxidant enzymes (i.e., ascorbate peroxidase), and galactinol synthase may be important to thermotolerance of grape. HSF30 may be a key regulator for heat stress and recovery, while HSF7 and HSF1 may only be specific to recovery. The identification of heat stress or recovery responsive genes in this study provides novel insights into the molecular basis for heat tolerance in grape leaves.


Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Respuesta al Choque Térmico/genética , Hojas de la Planta/genética , Vitis/genética , Análisis por Conglomerados , Sondas de ADN/metabolismo , Regulación hacia Abajo/genética , Genes de Plantas/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Regulación hacia Arriba/genética
16.
Mol Plant Pathol ; 23(12): 1792-1806, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36071584

RESUMEN

Grapevine downy mildew is one of the most devastating diseases in grape production worldwide, but its pathogenesis remains largely unknown. A thorough understanding of the interaction between grapevine and the causal agent, Plasmopara viticola, is helpful to develop alternative disease control measures. Effector proteins that could be secreted to the interaction interface by pathogens are responsible for the susceptibility of host plants. In this study, a Crinkler effector, named PvCRN17, which is from P. viticola and showed virulent effects towards Nicotiana benthamiana previously, was further investigated. Consistently, PvCRN17 showed a virulent effect on grapevine plants. Protein-protein interaction experiments identified grapevine VAE7L1 (Vitis protein ASYMMETRIC LEAVES 1/2 ENHANCER 7-Like 1) as one target of PvCRN17. VAE7L1 was found to interact with VvCIA1 and VvAE7, thus it may function in the cytosolic iron-sulphur cluster assembly (CIA) pathway. Transient expression of VAE7L1 in Vitis riparia and N. benthamiana leaves enhanced the host resistance to oomycete pathogens. Downstream of the CIA pathway in grapevine, three iron-sulphur (Fe-S) proteins showed an enhancing effect on the disease resistance of N. benthamiana. Competitive co-immunoprecipitation assay showed PvCRN17 could compete with VvCIA1 to bind with VAE7L1 and VvAE7. Moreover, PvCRN17 and VAE7L1 were colocalized at the plasma membrane of the plant cell. To conclude, after intruding into the grapevine cell, PvCRN17 would compete with VCIA1 to bind with VAE7L1 and VAE7, demolishing the CIA Fe-S cluster transfer complex, interrupting the maturation of Fe-S proteins, to suppress Fe-S proteins-mediated defence responses.


Asunto(s)
Proteínas Hierro-Azufre , Oomicetos , Vitis , Enfermedades de las Plantas , Regulación de la Expresión Génica de las Plantas , Resistencia a la Enfermedad , Vitis/genética , Vitis/metabolismo , Proteínas Hierro-Azufre/metabolismo
17.
Hortic Res ; 9: uhac055, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35664240

RESUMEN

In viticulture, grafting has been practiced widely and influences grape development as well as berry and wine quality. However, there is limited understanding of the effects of rootstocks on grape phenolic compounds, which are located primarily in the berry skin and contribute to certain sensory attributes of wine. In this study, scion-rootstock interactions were investigated at the green-berry stage and the veraison stage when grapevines were hetero-grafted with three commonly used rootstock genotypes (5BB, 101-14MG, and SO4). Physiological investigations showed that hetero-grafts, especially CS/5BB, contained higher concentrations of total proanthocyanidins (PAs) and various PA components in berry skins compared with the auto-grafted grapevines. Further metabolomics analysis identified 105 differentially accumulated flavonoid compounds, the majority of which, including anthocyanins, PAs, and flavonols, were significantly increased in the berry skins of hetero-grafted grapevines compared with auto-grafted controls. In addition, transcriptomic analysis of the same samples identified several thousand differentially expressed genes between hetero-grafted and auto-grafted vines. The three rootstocks not only increased the transcript levels of stilbene, anthocyanin, PA, and flavonol synthesis genes but also affected the expression of numerous transcription factor genes. Taken together, our results suggest that hetero-grafting can promote phenolic compound accumulation in grape berry skin during development. These findings provide new insights for improving the application value of grafting by enhancing the accumulation of nutritious phenolic components in grape.

18.
Micromachines (Basel) ; 12(8)2021 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-34442498

RESUMEN

Ultrasonic particle manipulation (UPM), a non-contact and label-free method that uses ultrasonic waves to manipulate micro- or nano-scale particles, has recently gained significant attention in the microfluidics community. Moreover, glass is optically transparent and has dimensional stability, distinct acoustic impedance to water and a high acoustic quality factor, making it an excellent material for constructing chambers for ultrasonic resonators. Over the past several decades, glass capillaries are increasingly designed for a variety of UPMs, e.g., patterning, focusing, trapping and transporting of micron or submicron particles. Herein, we review established and emerging glass capillary-transducer devices, describing their underlying mechanisms of operation, with special emphasis on the application of glass capillaries with fluid channels of various cross-sections (i.e., rectangular, square and circular) on UPM. We believe that this review will provide a superior guidance for the design of glass capillary-based UPM devices for acoustic tweezers-based research.

19.
Front Microbiol ; 12: 632047, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33868192

RESUMEN

Grapevine downy mildew is an insurmountable disease that endangers grapevine production and the wine industry worldwide. The causal agent of the disease is the obligate biotrophic oomycete Plasmopara viticola, for which the pathogenic mechanism remains largely unknown. Crinkling and necrosis proteins (CRN) are an ancient class of effectors utilized by pathogens, including oomycetes, that interfere with host plant defense reactions. In this study, 27 CRN-like genes were cloned from the P. viticola isolate YL genome, hereafter referred to as PvCRN genes, and characterized in silico and in planta. PvCRN genes in 'YL' share high sequence identities with their ortholog genes in the other three previously sequenced P. viticola isolates. Sequence divergence among the genes in the PvCRN family indicates that different PvCRN genes have different roles. Phylogenetic analysis of the PvCRN and the CRN proteins encoded by genes in the P. halstedii genome suggests that various functions might have been acquired by the CRN superfamily through independent evolution of Plasmopara species. When transiently expressed in plant cells, the PvCRN protein family shows multiple subcellular localizations. None of the cloned PvCRN proteins induced hypersensitive response (HR)-like cell death on the downy mildew-resistant grapevine Vitis riparia. This was in accordance with the result that most PvCRN proteins, except PvCRN11, failed to induce necrosis in Nicotiana benthamiana. Pattern-triggered immunity (PTI) induced by INF1 was hampered by several PvCRN proteins. In addition, 15 PvCRN proteins prevented Bax-induced plant programmed cell death. Among the cell death-suppressing members, PvCRN17, PvCRN20, and PvCRN23 were found to promote the susceptibility of N. benthamiana to Phytophthora capsici, which is a semi-biotrophic oomycete. Moreover, the nucleus-targeting member, PvCRN19, promoted the susceptibility of N. benthamiana to P. capsici. Therefore, these PvCRN proteins were estimated to be virulent effectors involved in the pathogenicity of P. viticola YL. Collectively, this study provides comprehensive insight into the CRN effector repertoire of P. viticola YL, which will help further elucidate the molecular mechanisms of the pathogenesis of grapevine downy mildew.

20.
Hortic Res ; 8(1): 100, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33931609

RESUMEN

Wild grapevines can show strong resistance to the downy mildew pathogen P. viticola, but the associated mechanisms are poorly described, especially at early stages of infection. Here, we performed comparative proteomic analyses of grapevine leaves from the resistant genotype V. davidii "LiuBa-8" (LB) and susceptible V. vinifera "Pinot Noir" (PN) 12 h after inoculation with P. viticola. By employing the iTRAQ technique, a total of 444 and 349 differentially expressed proteins (DEPs) were identified in LB and PN, respectively. The majority of these DEPs were related to photosynthesis, respiration, cell wall modification, protein metabolism, stress, and redox homeostasis. Compared with PN, LB showed fewer downregulated proteins associated with photosynthesis and more upregulated proteins associated with metabolism. At least a subset of PR proteins (PR10.2 and PR10.3) was upregulated upon inoculation in both genotypes, whereas HSP (HSP70.2 and HSP90.6) and cell wall-related XTH and BXL1 proteins were specifically upregulated in LB and PN, respectively. In the incompatible interaction, ROS signaling was evident by the accumulation of H2O2, and multiple APX and GST proteins were upregulated. These DEPs may play crucial roles in the grapevine response to downy mildew. Our results provide new insights into molecular events associated with downy mildew resistance in grapevine, which may be exploited to develop novel protection strategies against this disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA