Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 18(1): e1010192, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34995333

RESUMEN

Candida albicans is a major opportunistic pathogen of humans. It can grow as morphologically distinct yeast, pseudohyphae and hyphae, and the ability to switch reversibly among different forms is critical for its virulence. The relationship between morphogenesis and innate immune recognition is not quite clear. Dectin-1 is a major C-type lectin receptor that recognizes ß-glucan in the fungal cell wall. C. albicans ß-glucan is usually masked by the outer mannan layer of the cell wall. Whether and how ß-glucan masking is differentially regulated during hyphal morphogenesis is not fully understood. Here we show that the endo-1,3-glucanase Eng1 is differentially expressed in yeast, and together with Yeast Wall Protein 1 (Ywp1), regulates ß-glucan exposure and Dectin-1-dependent immune activation of macrophage by yeast cells. ENG1 deletion results in enhanced Dectin-1 binding at the septa of yeast cells; while eng1 ywp1 yeast cells show strong overall Dectin-1 binding similar to hyphae of wild-type and eng1 mutants. Correlatively, hyphae of wild-type and eng1 induced similar levels of cytokines in macrophage. ENG1 expression and Eng1-mediated ß-glucan trimming are also regulated by antifungal drugs, lactate and N-acetylglucosamine. Deletion of ENG1 modulates virulence in the mouse model of hematogenously disseminated candidiasis in a Dectin-1-dependent manner. The eng1 mutant exhibited attenuated lethality in male mice, but enhanced lethality in female mice, which was associated with a stronger renal immune response and lower fungal burden. Thus, Eng1-regulated ß-glucan exposure in yeast cells modulates the balance between immune protection and immunopathogenesis during disseminated candidiasis.


Asunto(s)
Candida albicans/patogenicidad , Candidiasis/inmunología , Glucano Endo-1,3-beta-D-Glucosidasa/metabolismo , Virulencia/fisiología , beta-Glucanos/inmunología , Animales , Candida albicans/inmunología , Candida albicans/metabolismo , Candidiasis/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , beta-Glucanos/metabolismo
2.
Cell Mol Biol Lett ; 29(1): 84, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38822246

RESUMEN

BACKGROUND: Canine mammary tumors (CMTs) in intact female dogs provide a natural model for investigating metastatic human cancers. Our prior research identified elevated expression of Anterior Gradient 2 (AGR2), a protein disulfide isomerase (PDI) primarily found in the endoplasmic reticulum (ER), in CMT tissues, highly associated with CMT progression. We further demonstrated that increased AGR2 expression actively influences the extracellular microenvironment, promoting chemotaxis in CMT cells. Unraveling the underlying mechanisms is crucial for assessing the potential of therapeutically targeting AGR2 as a strategy to inhibit a pro-metastatic microenvironment and impede tumor metastasis. METHODS: To identify the AGR2-modulated secretome, we employed proteomics analysis of the conditioned media (CM) from two CMT cell lines ectopically expressing AGR2, compared with corresponding vector-expressing controls. AGR2-regulated release of 14-3-3ε (gene: YWHAE) and α-actinin 4 (gene: ACTN4) was validated through ectopic expression, knockdown, and knockout of the AGR2 gene in CMT cells. Extracellular vesicles derived from CMT cells were isolated using either differential ultracentrifugation or size exclusion chromatography. The roles of 14-3-3ε and α-actinin 4 in the chemotaxis driven by the AGR2-modulated CM were investigated through gene knockdown, antibody-mediated interference, and recombinant protein supplement. Furthermore, the clinical relevance of the release of 14-3-3ε and α-actinin 4 was assessed using CMT tissue-immersed saline and sera from CMT-afflicted dogs. RESULTS: Proteomics analysis of the AGR2-modulated secretome revealed increased abundance in 14-3-3ε and α-actinin 4. Ectopic expression of AGR2 significantly increased the release of 14-3-3ε and α-actinin 4 in the CM. Conversely, knockdown or knockout of AGR2 expression remarkably reduced their release. Silencing 14-3-3ε or α-actinin 4 expression diminished the chemotaxis driven by AGR2-modulated CM. Furthermore, AGR2 controls the release of 14-3-3ε and α-actinin 4 primarily via non-vesicular routes, responding to the endoplasmic reticulum (ER) stress and autophagy activation. Knockout of AGR2 resulted in increased α-actinin 4 accumulation and impaired 14-3-3ε translocation in autophagosomes. Depletion of extracellular 14-3-3ε or α-actinin 4 reduced the chemotaxis driven by AGR2-modulated CM, whereas supplement with recombinant 14-3-3ε in the CM enhanced the CM-driven chemotaxis. Notably, elevated levels of 14-3-3ε or α-actinin 4 were observed in CMT tissue-immersed saline compared with paired non-tumor samples and in the sera of CMT dogs compared with healthy dogs. CONCLUSION: This study elucidates AGR2's pivotal role in orchestrating unconventional secretion of 14-3-3ε and α-actinin 4 from CMT cells, thereby contributing to paracrine-mediated chemotaxis. The insight into the intricate interplay between AGR2-involved ER stress, autophagy, and unconventional secretion provides a foundation for refining strategies aimed at impeding metastasis in both canine mammary tumors and potentially human cancers.


Asunto(s)
Proteínas 14-3-3 , Actinina , Autofagia , Quimiotaxis , Estrés del Retículo Endoplásmico , Neoplasias Mamarias Animales , Mucoproteínas , Animales , Perros , Proteínas 14-3-3/metabolismo , Proteínas 14-3-3/genética , Femenino , Actinina/metabolismo , Actinina/genética , Neoplasias Mamarias Animales/metabolismo , Neoplasias Mamarias Animales/genética , Neoplasias Mamarias Animales/patología , Línea Celular Tumoral , Quimiotaxis/genética , Autofagia/genética , Estrés del Retículo Endoplásmico/genética , Mucoproteínas/genética , Mucoproteínas/metabolismo , Proteínas Oncogénicas/metabolismo , Proteínas Oncogénicas/genética
3.
Proteomics ; 23(9): e2200321, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36625099

RESUMEN

Globally, oral cavity squamous cell carcinoma (OSCC) is one of the most common fatal illnesses. Its high mortality is ascribed to the fact that the disease is often diagnosed at a late stage, which indicates an urgent need for approaches for the early detection of OSCC. The use of salivary autoantibodies (autoAbs) as OSCC biomarkers has numerous advantages such as easy access to saliva samples and efficient detection of autoAbs using well-established secondary reagents. To improve OSCC screening, we identified OSCC-associated autoAbs with the enrichment of salivary autoAbs combined with affinity mass spectrometry (MS). The salivary IgA of healthy individuals and OSCC patients was purified with peptide M-conjugated beads and then applied to immunoprecipitated antigens (Ags) in OSCC cells. Using tandem MS analysis and spectral counting-based quantitation, the level of 10 Ags increased in the OSCC group compared with the control group. Moreover, salivary levels of autoAbs to the 10 Ags were determined by a multiplexed bead-based immunoassay. Among them, seven were significantly higher in early-stage OSCC patients than in healthy individuals. A marker panel consisting of autoAbs to LMAN2, PTGR1, RAB13, and UQCRC2 was further developed to improve the early diagnosis of OSCC.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de la Boca , Humanos , Biomarcadores de Tumor/análisis , Autoanticuerpos/análisis , Inmunoglobulina A/análisis , Saliva/química , Neoplasias de la Boca/diagnóstico , Neoplasias de la Boca/patología , Espectrometría de Masas en Tándem , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/patología , Proteínas de Unión al GTP rab/análisis
4.
J Gen Virol ; 104(11)2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37997889

RESUMEN

How coronaviruses evolve by altering the structures of their full-length genome and defective viral genome (DVG) under dynamic selection pressures has not been studied. In this study, we aimed to experimentally identify the dynamic evolutionary patterns of the S protein sequence in the full-length genome and DVG under diverse selection pressures, including persistence, innate immunity and antiviral drugs. The evolutionary features of the S protein sequence in the full-length genome and in the DVG under diverse selection pressures are as follows: (i) the number of nucleotide (nt) mutations does not necessarily increase with the number of selection pressures; (ii) certain types of selection pressure(s) can lead to specific nt mutations; (iii) the mutated nt sequence can be reverted to the wild-type nt sequence under the certain type of selection pressure(s); (iv) the DVG can also undergo mutations and evolve independently of the full-length genome; and (v) DVG species are regulated during evolution under diverse selection pressures. The various evolutionary patterns of the S protein sequence in the full-length genome and DVG identified in this study may contribute to coronaviral fitness under diverse selection pressures.


Asunto(s)
Infecciones por Coronavirus , Coronavirus , Humanos , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/química , Genoma Viral , Coronavirus/genética , Mutación
5.
PLoS Genet ; 16(6): e1008881, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32525871

RESUMEN

Iron is an essential nutrient required as a cofactor for many biological processes. As a fungal commensal-pathogen of humans, Candida albicans encounters a range of bioavailable iron levels in the human host and maintains homeostasis with a conserved regulatory circuit. How C. albicans senses and responds to iron availability is unknown. In model yeasts, regulation of the iron homeostasis circuit requires monothiol glutaredoxins (Grxs), but their functions beyond the regulatory circuit are unclear. Here, we show Grx3 is required for virulence and growth on low iron for C. albicans. To explore the global roles of Grx3, we applied a proteomic approach and performed in vivo cross-linked tandem affinity purification coupled with mass spectrometry. We identified a large number of Grx3 interacting proteins that function in diverse biological processes. This included Fra1 and Bol2/Fra2, which function with Grxs in intracellular iron trafficking in other organisms. Grx3 interacts with and regulates the activity of Sfu1 and Hap43, components of the C. albicans iron regulatory circuit. Unlike the regulatory circuit, which determines expression or repression of target genes in response to iron availability, Grx3 amplifies levels of gene expression or repression. Consistent with the proteomic data, the grx3 mutant is sensitive to heat shock, oxidative, nitrosative, and genotoxic stresses, and shows growth dependence on histidine, leucine, and tryptophan. We suggest Grx3 is a conserved global regulator of iron-dependent processes occurring within the cell.


Asunto(s)
Candida albicans/fisiología , Candidiasis Invasiva/microbiología , Proteínas Fúngicas/metabolismo , Glutarredoxinas/metabolismo , Hierro/metabolismo , Animales , Candida albicans/patogenicidad , Modelos Animales de Enfermedad , Proteínas Fúngicas/genética , Proteínas Fúngicas/aislamiento & purificación , Factores de Transcripción GATA/metabolismo , Regulación Fúngica de la Expresión Génica , Glutarredoxinas/genética , Glutarredoxinas/aislamiento & purificación , Homeostasis , Humanos , Hifa , Masculino , Ratones , Mutación , Mapeo de Interacción de Proteínas , Mapas de Interacción de Proteínas/genética , Proteómica , Virulencia/genética
6.
Mol Cell Proteomics ; 18(9): 1796-1806, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31253657

RESUMEN

Oral cavity squamous cell carcinoma (OSCC) is one of the most common cancers worldwide. In Taiwan, OSCC is the fifth leading cause of cancer-related mortality and leads to 2800 deaths per year. The poor outcome of OSCC patients is principally ascribed to the fact that this disease is often advanced at the time of diagnosis, suggesting that early detection of OSCC is urgently needed. Analysis of cancer-related body fluids is one promising approach to identify biomarker candidates of cancers. To identify OSCC biomarkers, salivary proteomes of OSCC patients, individuals with oral potentially malignant disorders (OPMDs), and healthy volunteers were comparatively profiled with isobaric tags for relative and absolute quantitation (iTRAQ)-based mass spectrometry (MS). The salivary levels of 67 and 18 proteins in the OSCC group are elevated and decreased compared with that in the noncancerous group (OPMD and healthy groups), respectively. The candidate biomarkers were further selected using the multiple reaction monitoring (MRM)-MS and validated with the immunoassays. More importantly, the higher salivary level of three proteins, complement factor H (CFH), fibrinogen alpha chain (FGA), and alpha-1-antitrypsin (SERPINA1) was correlated with advanced stages of OSCC. Our results indicate that analysis of salivary proteome is a feasible strategy for biomarker discovery, and the three proteins are potential salivary markers for OSCC diagnosis.


Asunto(s)
Biomarcadores de Tumor/análisis , Carcinoma de Células Escamosas/diagnóstico , Neoplasias de la Boca/diagnóstico , Saliva/química , Adulto , Anciano , Biomarcadores de Tumor/metabolismo , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/mortalidad , Estudios de Casos y Controles , Factor H de Complemento/análisis , Ensayo de Inmunoadsorción Enzimática , Femenino , Fibrinógeno/análisis , Humanos , Límite de Detección , Masculino , Espectrometría de Masas/métodos , Persona de Mediana Edad , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/mortalidad , Lesiones Precancerosas/metabolismo , Pronóstico , Proteómica/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , alfa 1-Antitripsina/análisis
7.
Mol Cell Proteomics ; 18(10): 1939-1949, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31315917

RESUMEN

Patients with oral cavity squamous cell carcinoma (OSCC) are frequently first diagnosed at an advanced stage, leading to poor prognosis and high mortality rates. Early detection of OSCC using body fluid-accessible biomarkers may improve the prognosis and survival rate of OSCC patients. As tumor interstitial fluid is a proximal fluid enriched with cancer-related proteins, it is a useful reservoir suitable for the discovery of cancer biomarkers and dysregulated biological pathways in tumor microenvironments. Thus, paired interstitial fluids of tumor (TIF) and adjacent noncancerous (NIF) tissues from 10 OSCC patients were harvested and analyzed using one-dimensional gel electrophoresis coupled with liquid chromatography-tandem mass spectrometry (GeLC-MS/MS). Using label-free spectral counting-based quantification, 113 proteins were found to be up-regulated in the TIFs compared with the NIFs. The gene set enrichment analysis (GSEA) revealed that the differentially expressed TIF proteins were highly associated with aminoacyl tRNA biosynthesis pathway. The elevated levels of 4 proteins (IARS, KARS, WARS, and YARS) involved in the aminoacyl tRNA biosynthesis were verified in the OSCC tissues with immunohistochemistry (IHC). In addition, nidogen-1 (NID1) was selected for verification as an OSCC biomarker. Salivary level of NID1 in OSCC patients (n = 48) was significantly higher than that in the healthy individuals (n = 51) and subjects with oral potentially malignant disorder (OPMD; n = 53). IHC analysis showed that NID1 level in OSCC tissues was increased compared with adjacent noncancerous epithelium (n = 222). Importantly, the elevated NID1 level was correlated with the advanced stages of OSCC, as well as the poor survival of OSCC patients. Collectively, the results suggested that TIF analysis facilitates understanding of the OSCC microenvironment and that salivary NID1 may be a useful biomarker for OSCC.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Carcinoma de Células Escamosas/patología , Líquido Extracelular/metabolismo , Neoplasias de la Boca/patología , Proteómica/métodos , Regulación hacia Arriba , Adulto , Anciano , Carcinoma de Células Escamosas/metabolismo , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Neoplasias de la Boca/metabolismo , Estadificación de Neoplasias , Pronóstico , Transducción de Señal , Análisis de Supervivencia
8.
PLoS Genet ; 14(1): e1007176, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29337983

RESUMEN

The pathogenic fungus Candida albicans can undergo phenotypic switching between two heritable states: white and opaque. This phenotypic plasticity facilitates its colonization in distinct host niches. The master regulator WOR1 is exclusively expressed in opaque phase cells. Positive feedback regulation by Wor1 on the WOR1 promoter is essential for opaque formation, however the underlying mechanism of how Wor1 functions is not clear. Here, we use tandem affinity purification coupled with mass spectrometry to identify Wor1-interacting proteins. Tup1 and its associated complex proteins are found as the major factors associated with Wor1. Tup1 occupies the same regions of the WOR1 promoter as Wor1 preferentially in opaque cells. Loss of Tup1 is sufficient to induce the opaque phase, even in the absence of Wor1. This is the first such report of a bypass of Wor1 in opaque formation. These genetic analyses suggest that Tup1 is a key repressor of the opaque state, and Wor1 functions via alleviating Tup1 repression at the WOR1 promoter. Opaque cells convert to white en masse at 37°C. We show that this conversion occurs only in the presence of glycolytic carbon sources. The opaque state is stabilized when cells are cultured on non-glycolytic carbon sources, even in a MTLa/α background. We further show that temperature and carbon source affect opaque stability by altering the levels of Wor1 and Tup1 at the WOR1 promoter. We propose that Wor1 and Tup1 form the core regulatory circuit controlling the opaque transcriptional program. This model provides molecular insights on how C. albicans adapts to different host signals to undergo phenotypic switching for colonization in distinct host niches.


Asunto(s)
Candida albicans , Diferenciación Celular/genética , Proteínas Co-Represoras/genética , Proteínas Fúngicas/fisiología , Genes de Cambio/fisiología , Factores de Transcripción/fisiología , Candida albicans/genética , Candida albicans/crecimiento & desarrollo , Candida albicans/fisiología , Regulación hacia Abajo/genética , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Genes del Tipo Sexual de los Hongos , Fenotipo , Regiones Promotoras Genéticas , Factores de Transcripción/genética
9.
J Virol ; 93(7)2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30651363

RESUMEN

Orf virus (ORFV) infects sheep and goats and is also an important zoonotic pathogen. The viral protein OV20.0 has been shown to suppress innate immunity by targeting the double-stranded RNA (dsRNA)-activated protein kinase (PKR) by multiple mechanisms. These mechanisms include a direct interaction with PKR and binding with two PKR activators, dsRNA and the cellular PKR activator (PACT), which ultimately leads to the inhibition of PKR activation. In the present study, we identified a novel association between OV20.0 and adenosine deaminase acting on RNA 1 (ADAR1). OV20.0 bound directly to the dsRNA binding domains (RBDs) of ADAR1 in the absence of dsRNA. Additionally, OV20.0 preferentially interacted with RBD1 of ADAR1, which was essential for its dsRNA binding ability and for the homodimerization that is critical for intact adenosine-to-inosine (A-to-I)-editing activity. Finally, the association with OV20.0 suppressed the A-to-I-editing ability of ADAR1, while ADAR1 played a proviral role during ORFV infection by inhibiting PKR phosphorylation. These observations revealed a new strategy used by OV20.0 to evade antiviral responses via PKR.IMPORTANCE Viruses evolve specific strategies to counteract host innate immunity. ORFV, an important zoonotic pathogen, encodes OV20.0 to suppress PKR activation via multiple mechanisms, including interactions with PKR and two PKR activators. In this study, we demonstrated that OV20.0 interacts with ADAR1, a cellular enzyme responsible for converting adenosine (A) to inosine (I) in RNA. The RNA binding domains, but not the catalytic domain, of ADAR1 are required for this interaction. The OV20.0-ADAR1 association affects the functions of both proteins; OV20.0 suppressed the A-to-I editing of ADAR1, while ADAR1 elevated OV20.0 expression. The proviral role of ADAR1 is likely due to the inhibition of PKR phosphorylation. As RNA editing by ADAR1 contributes to the stability of the genetic code and the structure of RNA, these observations suggest that in addition to serving as a PKR inhibitor, OV20.0 might modulate ADAR1-dependent gene expression to combat antiviral responses or achieve efficient viral infection.


Asunto(s)
Adenosina Desaminasa/genética , Virus del Orf/genética , ARN Viral/genética , Proteínas de Unión al ARN/genética , Proteínas Virales/genética , Replicación Viral/genética , Células A549 , Adenosina/genética , Animales , Línea Celular , Línea Celular Tumoral , Ectima Contagioso/genética , Proteínas Activadoras de GTPasa/genética , Células HEK293 , Humanos , Inmunidad Innata/genética , Inosina/genética , Fosforilación/genética , Edición de ARN/genética , ARN Bicatenario/genética , Ovinos
10.
J Proteome Res ; 17(4): 1474-1484, 2018 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-29558158

RESUMEN

Influenza A virus infections can result in severe respiratory diseases. The H7N9 subtype of avian influenza A virus has been transmitted to humans and caused severe disease and death. Nonstructural protein 1 (NS1) of influenza A virus is a virulence determinant during viral infection. To elucidate the functions of the NS1 encoded by influenza A H7N9 virus (H7N9 NS1), interaction partners of H7N9 NS1 in human cells were identified with immunoprecipitation followed by SDS-PAGE coupled with liquid chromatography-tandem mass spectrometry (GeLC-MS/MS). We identified 36 cellular proteins as the interacting partners of the H7N9 NS1, and they are involved in RNA processing, mRNA splicing via spliceosome, and the mRNA surveillance pathway. Two of the interacting partners, cleavage and polyadenylation specificity factor subunit 2 (CPSF2) and CPSF7, were confirmed to interact with H7N9 NS1 using coimmunoprecipitation and immunoblotting based on the previous finding that the two proteins are involved in pre-mRNA polyadenylation machinery. Furthermore, we illustrate that overexpression of H7N9 NS1, as well as infection by the influenza A H7N9 virus, interfered with pre-mRNA polyadenylation in host cells. This study comprehensively profiled the interactome of H7N9 NS1 in host cells, and the results demonstrate a novel endotype for H7N9 NS1 in inhibiting host mRNA maturation.


Asunto(s)
Subtipo H7N9 del Virus de la Influenza A/química , ARN Mensajero/antagonistas & inhibidores , Proteínas no Estructurales Virales/farmacología , Animales , Factor de Especificidad de Desdoblamiento y Poliadenilación , Interacciones Microbiota-Huesped , Humanos , Immunoblotting , Inmunoprecipitación , Subtipo H7N9 del Virus de la Influenza A/patogenicidad , Unión Proteica , Factores de Escisión y Poliadenilación de ARNm
11.
Arch Virol ; 163(11): 3113-3117, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30051342

RESUMEN

Porcine deltacoronavirus (PDCoV) was initially documented in Hong Kong and later in the United States, South Korea, and Thailand. To investigate if PDCoV is also present in Taiwan, three swine coronaviruses-PDCoV, porcine epidemic diarrhea virus (PEDV), and transmissible gastroenteritis coronavirus (TGEV)-were tested using real-time reverse transcription polymerase chain reaction (rRT-PCR) in 172 rectal swab samples from piglets exhibiting diarrhea between January 2016 and May 2017 on 68 pig farms in Taiwan. The rRT-PCR results were positive for PDCoV (29/172, 16.9%), PEDV (36/172, 20.9%), TGEV (2/172, 1.2%), and coinfections (16/172, 9.3%). After cloning and sequencing, PDCoV nucleocapsid genes were analyzed. Phylogeny results indicated that the nucleotide sequences of all isolates were like those reported in other countries. To further trace PDCoV in the period of 2011 to 2015, an enzyme-linked immunosorbent assay (ELISA) was used to detect antibodies against PDCoV. The results showed that 279 of 1,039 (26.9%) sera were positive for the PDCoV nucleocapsid protein, implying that PDCoV might have existed in Taiwan before 2011.


Asunto(s)
Anticuerpos Antivirales/sangre , Infecciones por Coronavirus/veterinaria , Coronavirus/genética , Coronavirus/aislamiento & purificación , Diarrea/veterinaria , Enfermedades de los Porcinos/virología , Animales , Coronavirus/clasificación , Coronavirus/inmunología , Infecciones por Coronavirus/sangre , Infecciones por Coronavirus/virología , Diarrea/sangre , Diarrea/virología , Ensayo de Inmunoadsorción Enzimática , Femenino , Masculino , Filogenia , Análisis de Secuencia de ADN , Porcinos , Enfermedades de los Porcinos/sangre , Taiwán
12.
J Immunol ; 194(9): 4577-87, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25847974

RESUMEN

Antivascular immunity may provide long-term protection by preventing neovascularization that precedes tumor progression. Although the tumorigenesis promoted by EBV-encoded oncogene latent membrane protein 1 derived from Taiwanese nasopharyngeal carcinoma (N-LMP1) has been demonstrated, the potential of N-LMP1 for inducing immune surveillance remains elusive. In this article, we describe the immunogenicity of N-LMP1 (1510) and its induction of antivascular immunity in a transplantable tumor model in immunocompetent BALB/c mice. The immunogenicity of N-LMP1 was evaluated on the basis of tumor rejection following immunization. The impact of the immunization on the dynamics of tumor angiogenesis was assessed by temporal noninvasive dynamic contrast-enhanced magnetic resonance imaging and was further confirmed by histologic study and vascular count. Through the experiments of in vivo depletion and adoptive transfer, CD4 T cells were identified as effectors that depend on IFN-γ for tumor prevention. The response was further verified by the identification of an MHC H-2 I-E(d)-restricted peptide derived from N-LMP1 and by the immunization of mice with N-LMP1 peptide-loaded dendritic cells. These studies provide insight into N-LMP1-specific immunity in vivo, which suggests that CD4 T cells may play an important role in angiogenic surveillance against LMP1-associated cancer via tumor stroma targeting.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Herpesvirus Humano 4/inmunología , Neoplasias/inmunología , Neoplasias/patología , Neovascularización Patológica/inmunología , Proteínas de la Matriz Viral/inmunología , Animales , Linfocitos T CD4-Positivos/virología , Línea Celular Tumoral , Células Dendríticas/inmunología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Epítopos de Linfocito T/química , Epítopos de Linfocito T/inmunología , Herpesvirus Humano 4/genética , Activación de Linfocitos/inmunología , Masculino , Ratones , Ratones Noqueados , Neoplasias/metabolismo , Neoplasias/virología , Fragmentos de Péptidos/química , Fragmentos de Péptidos/inmunología , Proteínas de la Matriz Viral/química , Proteínas de la Matriz Viral/genética
13.
Proc Natl Acad Sci U S A ; 111(5): 1975-80, 2014 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-24449897

RESUMEN

Candida albicans is the most common cause of invasive fungal infections in humans. Its ability to undergo the morphological transition from yeast to hyphal growth forms is critical for its pathogenesis. Hyphal initiation requires the activation of the cAMP-PKA pathway, which down-regulates the expression of NRG1, the major repressor of hyphal development. Hyphal initiation also requires inoculation of a small amount of C. albicans cells from overnight culture to fresh medium. This inoculation releases the inhibition from farnesol, a quorum-sensing molecule of C. albicans, that accumulated in the spent medium. Here, we show that farnesol inhibits hyphal initiation mainly through blocking the protein degradation of Nrg1. Through screening a kinase mutant library, we identified Sok1 as the kinase required for Nrg1 degradation during inoculation. SOK1 expression is transiently activated on inoculation during hyphal initiation, and overexpression of SOK1 overcomes the farnesol-mediated inhibition of hyphal initiation. Screening a collection of transcription factor mutants, the homeodomain-containing transcription repressor Cup9 is found to be responsible for the repression of SOK1 expression in response to farnesol inhibition. Interestingly, farnesol inhibits Cup9 degradation mediated by the N-end rule E3 ubiquitin ligase, Ubr1. Therefore, hyphal initiation requires both the cAMP-PKA pathway-dependent transcriptional down-regulation of NRG1 and Sok1-mediated degradation of Nrg1 protein. The latter is triggered by the release from farnesol inhibition of Cup9 degradation and consequently, derepression of SOK1 transcription. Neither pathway alone is sufficient for hyphal initiation.


Asunto(s)
Candida albicans/enzimología , Candida albicans/crecimiento & desarrollo , Proteínas Fúngicas/metabolismo , Hifa/crecimiento & desarrollo , Proteolisis , Percepción de Quorum , Candida albicans/efectos de los fármacos , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Farnesol/farmacología , Proteínas Fúngicas/genética , Hifa/efectos de los fármacos , Hifa/enzimología , Modelos Biológicos , Estabilidad Proteica/efectos de los fármacos , Proteolisis/efectos de los fármacos , Percepción de Quorum/efectos de los fármacos , Proteínas Represoras/metabolismo , Transducción de Señal/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Ubiquitina-Proteína Ligasas/metabolismo
14.
Proteomics ; 16(17): 2351-62, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27291656

RESUMEN

Enterovirus 71 (EV71), a single-stranded RNA virus, is one of the most serious neurotropic pathogens in the Asia-Pacific region. Through interactions with host proteins, the 5' untranslated region (5'UTR) of EV71 is important for viral replication. To gain a protein profile that interact with the EV71 5'UTR in neuronal cells, we performed a biotinylated RNA-protein pull-down assay in conjunction with LC-MS/MS analysis. A total of 109 proteins were detected and subjected to Database for Annotation, Visualization and Integrated Discovery (DAVID) analyses. These proteins were found to be highly correlated with biological processes including RNA processing/splicing, epidermal cell differentiation, and protein folding. A protein-protein interaction network was constructed using the STRING online database to illustrate the interactions of those proteins that are mainly involved in RNA processing/splicing or protein folding. Moreover, we confirmed that the far-upstream element binding protein 3 (FBP3) was able to bind to the EV71 5'UTR. The redistribution of FBP3 in subcellular compartments was observed after EV71 infection, and the decreased expression of FBP3 in host neuronal cells markedly inhibited viral replication. Our results reveal various host proteins that potentially interact with the EV71 5'UTR in neuronal cells, and we found that FBP3 could serve as a positive regulator in host cells.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Enterovirus Humano A/fisiología , Infecciones por Enterovirus/metabolismo , Neuronas/virología , ARN Viral/metabolismo , Factores de Transcripción/metabolismo , Replicación Viral , Regiones no Traducidas 5' , Línea Celular , Enterovirus Humano A/genética , Infecciones por Enterovirus/patología , Humanos , Neuronas/metabolismo , Neuronas/patología , ARN Viral/genética
15.
J Proteome Res ; 15(9): 2981-97, 2016 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-27432155

RESUMEN

The areca nut is a known carcinogen that causes oral cancer in individuals in Southeast Asia, but the molecular mechanism that leads to this malignancy is still unclear. To mimic the habit of areca nut chewing, our laboratory has established four oral cancer cell sublines (SAS, OECM1, K2, C9), which have been chronically exposed to areca nut extract (ANE). To elucidate the molecular basis of areca nut-induced oral carcinogenesis, the differential proteomes between oral cancer cells and the ANE-treated sublines were determined using isobaric mass tag (iTRAQ) labeling and multidimensional liquid chromatography-mass spectrometry (LC-MS/MS). Over 1000 proteins were identified in four sublines, and 196 proteins were found to be differentially expressed in at least two ANE-treated sublines. A bioinformatic analysis revealed that these proteins participate in several pathways, and one of the most prominent pathways was the regulation of epithelial to mesenchymal transition (EMT). In all, 24 proteins including Krt17 were confirmed to be differentially expressed in the ANE-treated sublines. To reveal additional information on the mechanism of ANE-induced carcinogenesis, Krt17 was further investigated. Krt17 knockdown significantly suppressed ANE-induced cell migration and invasion and modulated the EMT process. Furthermore, in a murine model of carcinogen-induced (arecoline cocktail, an active compound of ANE) oral cancer, Krt17 was significantly up-regulated in all hyperplastic tissues and in carcinoma tissues (p < 0.001). In conclusion, we have identified a proteome of oral cancer cells that is associated with chronic areca nut exposure. Krt17 was demonstrated to contribute to areca nut-induced oral malignancy. The results of this study contribute to risk assessment, disease prevention and other clinical applications associated with areca nut-induced oral cancer.


Asunto(s)
Areca/toxicidad , Queratina-17/metabolismo , Neoplasias de la Boca/etiología , Extractos Vegetales/farmacología , Proteómica/métodos , Animales , Areca/química , Línea Celular , Biología Computacional , Transición Epitelial-Mesenquimal , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Queratina-17/fisiología , Ratones , Células Tumorales Cultivadas
16.
J Proteome Res ; 15(5): 1639-48, 2016 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-27096427

RESUMEN

Influenza A virus, which can cause severe respiratory illnesses in infected individuals, is responsible for worldwide human pandemics. The NS1 protein encoded by this virus plays a crucial role in regulating the host antiviral response through various mechanisms. In addition, it has been reported that NS1 can modulate cellular pre-mRNA splicing events. To investigate the biological processes potentially affected by the NS1 protein in host cells, NS1-associated protein complexes in human cells were identified using coimmunoprecipitation combined with GeLC-MS/MS. By employing software to build biological process and protein-protein interaction networks, NS1-interacting cellular proteins were found to be related to RNA splicing/processing, cell cycle, and protein folding/targeting cellular processes. By monitoring spliced and unspliced RNAs of a reporter plasmid, we further validated that NS1 can interfere with cellular pre-mRNA splicing. One of the identified proteins, pre-mRNA-processing factor 19 (PRP19), was confirmed to interact with the NS1 protein in influenza A virus-infected cells. Importantly, depletion of PRP19 in host cells reduced replication of influenza A virus. In summary, the interactome of influenza A virus NS1 in host cells was comprehensively profiled, and our findings reveal a novel regulatory role for PRP19 in viral replication.


Asunto(s)
Enzimas Reparadoras del ADN/fisiología , Interacciones Huésped-Patógeno , Subtipo H1N1 del Virus de la Influenza A/química , Proteínas Nucleares/fisiología , Proteómica/métodos , Factores de Empalme de ARN/fisiología , Proteínas no Estructurales Virales/metabolismo , Replicación Viral , Cromatografía Liquida , Humanos , Inmunoprecipitación , Subtipo H1N1 del Virus de la Influenza A/fisiología , Espectrometría de Masas en Tándem , Proteínas no Estructurales Virales/análisis
17.
Mol Microbiol ; 97(1): 125-38, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25831958

RESUMEN

The human fungal pathogen Candida albicans undergoes white-opaque phenotypic switching, which enhances its adaptation to host niches. Switching is controlled by a transcriptional regulatory network of interlocking feedback loops acting on the transcription of WOR1, the master regulator of white-opaque switching, but regulation of the network on the translational level is not yet explored. Here, we show that the long 5' untranslated region of WOR1 regulates the white-opaque phenotype. Deletion of the WOR1 5' UTR promotes white-to-opaque switching and stabilizes the opaque state. The WOR1 5' UTR reduces translational efficiency and the association of the transcript with polysomes. Reduced polysome association was observed for additional key regulators of cell fate and morphology with long 5' UTR as well. Overall, we find a novel regulatory step of white-opaque switching at the translational level. This translational regulation is implicated for many key regulators of cell fate and morphology in C. albicans.


Asunto(s)
Regiones no Traducidas 5' , Candida albicans/genética , Candida albicans/metabolismo , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Proteínas Fúngicas/metabolismo , Genes del Tipo Sexual de los Hongos/genética , Genes de Cambio , Humanos , Fenotipo , Polirribosomas/genética , Polirribosomas/metabolismo , Factores de Transcripción/metabolismo
18.
Mol Microbiol ; 98(1): 69-89, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26112173

RESUMEN

Candida albicans is the most common human fungal pathogen, yet is a normal commensal resident of the human gut. CO(2) levels in the gut are much higher than in air, and it is known that elevated CO(2) concentration promotes C. albicans cells to undergo a phenotypic switch from white to opaque phase. Wor1, the master regulator of opaque cell formation, is required for both the white to opaque transition and opaque maintenance. To elucidate the regulatory mechanism of Wor1, we set out to identify Wor1-interacting proteins using a yeast two-hybrid screen. A SUMO E3 ligase named Wos1 (Wor1 SUMO-ligase 1) was identified to interact with Wor1 and regulate Wor1 SUMOylation. WOS1 expression is upregulated in response to high CO(2), and the induction by CO(2) is dependent on the transcription factor Flo8. Under high CO(2) conditions, Wos1 is required for the white to opaque switch and acts downstream of Flo8. At atmospheric CO(2) levels, overexpression of Wos1 enhances Wor1 SUMOylation and promotes the white to opaque switch. Wor1 is found to be SUMOylated at lysine 385, and loss of this mark by point mutation leads to a defect in CO(2) -mediated opaque cell induction. Together, our genetic and biological data show that Wos1-mediated Wor1 SUMOylation contributes to the regulation of CO(2) -induced white to opaque switching as well as heritable maintenance of the opaque cell type.


Asunto(s)
Candida albicans/metabolismo , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Ubiquitina-Proteína Ligasas/genética , Secuencia de Aminoácidos , Candida albicans/enzimología , Candida albicans/genética , Dióxido de Carbono/metabolismo , Proteínas Fúngicas/genética , Genes Fúngicos , Datos de Secuencia Molecular , Mutación , Fenotipo , Sumoilación , Técnicas del Sistema de Dos Híbridos , Ubiquitina-Proteína Ligasas/metabolismo
19.
Eukaryot Cell ; 14(6): 578-87, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25862154

RESUMEN

Nucleosome destabilization by histone variants and modifications has been implicated in the epigenetic regulation of gene expression, with the histone variant H2A.Z and acetylation of H3K56 (H3K56ac) being two examples. Here we find that deletion of SWR1, the major subunit of the SWR1 complex depositing H2A.Z into chromatin in exchange for H2A, promotes epigenetic white-opaque switching in Candida albicans. We demonstrate through nucleosome mapping that SWR1 is required for proper nucleosome positioning on the promoter of WOR1, the master regulator of switching, and that its effects differ in white and opaque cells. Furthermore, we find that H2A.Z is enriched adjacent to nucleosome-free regions at the WOR1 promoter in white cells, suggesting a role in the stabilization of a repressive chromatin state. Deletion of YNG2, a subunit of the NuA4 H4 histone acetyltransferase (HAT) that targets SWR1 activity through histone acetylation, produces a switching phenotype similar to that of swr1, and both may act downstream of the GlcNAc signaling pathway. We further uncovered a genetic interaction between swr1 and elevated H3K56ac with the discovery that the swr1 deletion mutant is highly sensitive to nicotinamide. Our results suggest that the interaction of H2A.Z and H3K56ac regulates epigenetic switching at the nucleosome level, as well as having global effects.


Asunto(s)
Candida albicans/metabolismo , Proteínas Fúngicas/metabolismo , Histonas/metabolismo , Procesamiento Proteico-Postraduccional , ARN Helicasas/metabolismo , Acetilación , Candida albicans/genética , Ensamble y Desensamble de Cromatina , Proteínas Fúngicas/genética , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Histonas/genética , Nucleosomas/genética , Nucleosomas/metabolismo , ARN Helicasas/genética
20.
Eukaryot Cell ; 14(11): 1114-26, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26342020

RESUMEN

Candida albicans is associated with humans as both a harmless commensal organism and a pathogen. Cph2 is a transcription factor whose DNA binding domain is similar to that of mammalian sterol response element binding proteins (SREBPs). SREBPs are master regulators of cellular cholesterol levels and are highly conserved from fungi to mammals. However, ergosterol biosynthesis is regulated by the zinc finger transcription factor Upc2 in C. albicans and several other yeasts. Cph2 is not necessary for ergosterol biosynthesis but is important for colonization in the murine gastrointestinal (GI) tract. Here we demonstrate that Cph2 is a membrane-associated transcription factor that is processed to release the N-terminal DNA binding domain like SREBPs, but its cleavage is not regulated by cellular levels of ergosterol or oxygen. Chromatin immunoprecipitation sequencing (ChIP-seq) shows that Cph2 binds to the promoters of HMS1 and other components of the regulatory circuit for GI tract colonization. In addition, 50% of Cph2 targets are also bound by Hms1 and other factors of the regulatory circuit. Several common targets function at the head of the glycolysis pathway. Thus, Cph2 is an integral part of the regulatory circuit for GI colonization that regulates glycolytic flux. Transcriptome sequencing (RNA-seq) shows a significant overlap in genes differentially regulated by Cph2 and hypoxia, and Cph2 is important for optimal expression of some hypoxia-responsive genes in glycolysis and the citric acid cycle. We suggest that Cph2 and Upc2 regulate hypoxia-responsive expression in different pathways, consistent with a synthetic lethal defect of the cph2 upc2 double mutant in hypoxia.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Candida albicans/genética , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Secuencia de Bases , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Candida albicans/metabolismo , Candida albicans/patogenicidad , Proteínas Fúngicas/metabolismo , Datos de Secuencia Molecular , Unión Proteica , Elementos de Respuesta , Transcriptoma , Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA