RESUMEN
Plants have evolved a sophisticated immune system to defend against invasion by pathogens. In response, pathogens deploy copious effectors to evade the immune responses. However, the molecular mechanisms used by pathogen effectors to suppress plant immunity remain unclear. Herein, we report that an effector secreted by Ralstonia solanacearum, RipAK, modulates the transcriptional activity of the ethylene-responsive factor ERF098 to suppress immunity and dehydration tolerance, which causes bacterial wilt in pepper (Capsicum annuum L.) plants. Silencing ERF098 enhances the resistance of pepper plants to R. solanacearum infection not only by inhibiting the host colonization of R. solanacearum but also by increasing the immunity and tolerance of pepper plants to dehydration and including the closure of stomata to reduce the loss of water in an abscisic acid signal-dependent manner. In contrast, the ectopic expression of ERF098 in Nicotiana benthamiana enhances wilt disease. We also show that RipAK targets and inhibits the ERF098 homodimerization to repress the expression of salicylic acid-dependent PR1 and dehydration tolerance-related OSR1 and OSM1 by cis-elements in their promoters. Taken together, our study reveals a regulatory mechanism used by the R. solanacearum effector RipAK to increase virulence by specifically inhibiting the homodimerization of ERF098 and reprogramming the transcription of PR1, OSR1, and OSM1 to boost susceptibility and dehydration sensitivity. Thus, our study sheds light on a previously unidentified strategy by which a pathogen simultaneously suppresses plant immunity and tolerance to dehydration by secreting an effector to interfere with the activity of a transcription factor and manipulate plant transcriptional programs.
Asunto(s)
Capsicum , Ralstonia solanacearum , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ralstonia solanacearum/fisiología , Deshidratación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Inmunidad de la Planta/genética , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/microbiología , Capsicum/metabolismo , Resistencia a la Enfermedad/genéticaRESUMEN
Protection of the stalled replication fork is crucial for responding to replication stress and minimizing its impact on chromosome instability, thus preventing diseases, including cancer. We found a new component, Abro1, in the protection of stalled replication fork integrity. Abro1 deficiency results in increased chromosome instability, and Abro1-null mice are tumor-prone. We show that Abro1 protects stalled replication fork stability by inhibiting DNA2 nuclease/WRN helicase-mediated degradation of stalled forks. Depletion of RAD51 prevents the DNA2/WRN-dependent degradation of stalled forks in Abro1-deficient cells. This mechanism is distinct from the BRCA2-dependent fork protection pathway, in which stable RAD51 filament formation prevents MRE11-dependent degradation of the newly synthesized DNA at stalled forks. Thus, our data reveal a new aspect of regulated protection of stalled replication forks that involves Abro1.
Asunto(s)
Replicación del ADN , Inestabilidad Genómica , Proteínas Asociadas a Matriz Nuclear/fisiología , Proteasas Ubiquitina-Específicas/fisiología , Animales , Proteína BRCA2/genética , Línea Celular , Células Cultivadas , ADN/biosíntesis , ADN Helicasas/fisiología , Endodesoxirribonucleasas/fisiología , Proteína Homóloga de MRE11/fisiología , Ratones Noqueados , Enzimas Multifuncionales/fisiología , Neoplasias Experimentales/genética , Proteínas Asociadas a Matriz Nuclear/genética , Recombinasa Rad51/genética , Estrés Fisiológico , Proteasas Ubiquitina-Específicas/genéticaRESUMEN
BACKGROUND AND AIMS: The recurrence of papillary thyroid carcinoma (PTC) is not unusual and associated with risk of death. This study is aimed to construct a nomogram that combines clinicopathological characteristics and ultrasound radiomics signatures to predict the recurrence in PTC. METHODS: A total of 554 patients with PTC who underwent ultrasound imaging before total thyroidectomy were included. Among them, 79 experienced at least one recurrence. Then 388 were divided into the training cohort and 166 into the validation cohort. The radiomics features were extracted from the region of interest (ROI) we manually drew on the tumor image. The feature selection was conducted using Cox regression and least absolute shrinkage and selection operator (LASSO) analysis. And multivariate Cox regression analysis was used to build the combined nomogram using radiomics signatures and significant clinicopathological characteristics. The efficiency of the nomogram was evaluated by receiver operating characteristic (ROC) curves, calibration curves and decision curve analysis (DCA). Kaplan-Meier analysis was used to analyze the recurrence-free survival (RFS) in different radiomics scores (Rad-scores) and risk scores. RESULTS: The combined nomogram demonstrated the best performance and achieved an area under the curve (AUC) of 0.851 (95% CI: 0.788 to 0.913) in comparison to that of the radiomics signature and the clinical model in the training cohort at 3 years. In the validation cohort, the combined nomogram (AUC = 0.885, 95% CI: 0.805 to 0.930) also performed better. The calibration curves and DCA verified the clinical usefulness of combined nomogram. And the Kaplan-Meier analysis showed that in the training cohort, the cumulative RFS in patients with higher Rad-score was significantly lower than that in patients with lower Rad-score (92.0% vs. 71.9%, log rank P < 0.001), and the cumulative RFS in patients with higher risk score was significantly lower than that in patients with lower risk score (97.5% vs. 73.5%, log rank P < 0.001). In the validation cohort, patients with a higher Rad-score and a higher risk score also had a significantly lower RFS. CONCLUSION: We proposed a nomogram combining clinicopathological variables and ultrasound radiomics signatures with excellent performance for recurrence prediction in PTC patients.
Asunto(s)
Aprendizaje Automático , Recurrencia Local de Neoplasia , Nomogramas , Cáncer Papilar Tiroideo , Neoplasias de la Tiroides , Ultrasonografía , Humanos , Cáncer Papilar Tiroideo/diagnóstico por imagen , Cáncer Papilar Tiroideo/patología , Cáncer Papilar Tiroideo/cirugía , Masculino , Femenino , Recurrencia Local de Neoplasia/diagnóstico por imagen , Recurrencia Local de Neoplasia/patología , Persona de Mediana Edad , Neoplasias de la Tiroides/diagnóstico por imagen , Neoplasias de la Tiroides/patología , Neoplasias de la Tiroides/mortalidad , Ultrasonografía/métodos , Adulto , Tiroidectomía , Estudios Retrospectivos , Curva ROC , Anciano , Estimación de Kaplan-MeierRESUMEN
Membrane separation technology is used to treat environmental wastewater, but during the treatment process, the occurrence of membrane fouling greatly affects the treatment efficiency. To address this phenomenon, improve membrane antipollution capabilities, and treat organic wastewater, photocatalysis and membrane separation technology have been coupled, forming a suitable and promising treatment method. Here, we propose a simple strategy to prepare a polyvinylidene fluoride/polyvinyl pyrrolidone nitrogen-doped titanium dioxide fibrous membrane (PVDF/PVP N-doped TiO2 fibrous membrane). The experimental results showed that PVDF and PVP mixed spinning made the fibrous membrane have a unique microstructure, and the superhydrophobic PVDF fibrous membrane was changed into superhydrophilic. In addition, electrospraying technology was used to attach TiO2 nanoparticles (NPs) to the fiber, and nitrogen (N) was doped in this process to improve the photocatalytic activity of the fibrous membrane. Finally, methyl blue solution was used as the target organic pollutant. Under the irradiation of a xenon lamp, 90.05% of methyl blue was removed within 90 min, indicating that the membrane had good photocatalytic performance. In a water contact angle test, the PVDF/PVP N-doped TiO2 fibrous membrane showed superhydrophilicity. The design of a fibrous membrane with high photocatalytic activity and superhydrophilicity properties has great potential for practical application in the purification of industrial wastewater.
RESUMEN
AIM: Diabetic cognitive impairment (DCI), considered one of the most severe and commonly overlooked complications of diabetes, has shown inconsistent findings regarding the metabolic profiles in DCI patients. This systematic review and meta-analysis aimed to identify dysregulated metabolites as potential biomarkers for early DCI, providing valuable insights into the underlying pathophysiological mechanisms. MATERIALS AND METHODS: A systematic search of four databases, namely PubMed, Embase, Web of Science and Cochrane, was conducted up to March 2024. Subsequently, a qualitative review of clinical studies was performed followed by a meta-analysis of metabolite markers. Finally, the sources of heterogeneity were explored through subgroup and sensitivity analyses. RESULTS: A total of 774 unique publications involving 4357 participants and the identification of multiple metabolites were retrieved. Of these, 13 clinical studies reported metabolite differences between the DCI and control groups. Meta-analysis was conducted for six brain metabolites and two metabolite ratios. The results revealed a significant increase in myo-inositol (MI) concentration and decreases in glutamate (Glu), Glx (glutamate and glutamine) and N-acetylaspartate/creatine (NAA/Cr) ratios in DCI, which have been identified as the most sensitive metabolic biomarkers for evaluating DCI progression. Notably, brain metabolic changes associated with cognitive impairment are more pronounced in type 2 diabetes mellitus than in type 1 diabetes mellitus, and the hippocampus emerged as the most sensitive brain region regarding metabolic changes associated with DCI. CONCLUSIONS: Our results suggest that MI, Glu, and Glx concentrations and NAA/Cr ratios within the hippocampus may serve as metabolic biomarkers for patients with early-stage DCI.
RESUMEN
The electrochemical NH3 synthesis on TiNO is proposed to follow the Mars-van Krevelen (MvK) mechanism, offering more favorable N2 adsorption and activation on the N vacancy (Nv) site, compared to the conventional associative mechanism. The regeneration cycle of Nv represents the rate-determining step in this process. This study investigates a series of TM (Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, and Pt)-TiNO to explore the *H migration (from TM to TiNO)-promoted Nv cycle. The screening results indicate that Ni-TiNO exhibits strong H2O decomposition for *H production with 0.242 eV and low *H migration resistance with 0.913 eV. Notably, *H migration from Ni to TiNO significantly reduces the Nv formation energy to 0.811 eV, compared to 1.387 eV on pure TiNO. Meanwhile, in the presence of *H, Nv formation takes precedence over Tiv and Ov. Lastly, electronic performance calculations reveal that the collaborative function provided by Ni and Nv enables highly stable and efficient NH3 synthesis. The *H migration-assisted MvK mechanism demonstrates effective catalytic cycle performance in electrochemical N2 fixation and may have potential applicability to other hydrogenation reactions utilizing water as a proton source.
RESUMEN
The Volmer step in alkaline hydrogen evolution reactions (HERs), which supplies H* to the following steps by cleaving H-O-H bonds, is considered the rate-determining step of the overall reaction. The Volmer step involves water dissociation and adsorbed hydroxyl (*OH) desorption; Ru-based catalysts display a compelling water dissociation process in an alkaline HER. Unfortunately, the strong affinity of Ru for *OH blocks the active sites, resulting in unsatisfactory performance during HER processes. Hence, this study investigates a series of key descriptors (ΔG*H2O, ΔG*H-OH, ΔG*H, and ΔG*OH) of TM (Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, or Pt)-Ru/Mo2Ti2C3O2 to systematically explore the effects of bimetallic site interactions on the kinetics of the Volmer step. The results indicate that bimetallic catalysts effectively reduced the strong adsorption of *OH on Ru sites; especially, the NiRu diatomic state shows the highest electron-donating ability, which promoted the smooth migration of *OH from Ru sites to Ni sites. Therefore, Ru, Ni and MXenes are suitable to serve as water adsorption and dissociation sites, *OH desorption sites, and H2 release sites, respectively. Ultimately, NiRu/Mo2Ti2C3O2 promotes Volmer kinetics and has the potential to improve alkaline HERs. This work provides theoretical support for the construction of synergistic MXene-based diatomic catalysts and their wide application in the field of alkaline HERs.
RESUMEN
The transition period in dairy cows is a critical stage and peripartum oxidative status, negative energy balance (NEB), and inflammation are highly prevalent. Fecal microbial metabolism is closely associated with blood oxidative status and nonesterified fatty acids (NEFA) levels. Here, we investigated dynamic changes in total oxidative status markers and NEFA in blood, fecal microbiome, and metabolome of 30 dairy cows during transition (-21, -7, +7, +21 d relative to calving). Then the Bayesian network and 9 machine-learning algorithms were applied to dismantle their relationship. Our results show that the oxidative status indicator (OSI) of -21, -7, +7 d was higher than +21 d. The plasma concentration of NEFA peaked on +7 d. For fecal microenvironment, a decline in bacterial α diversity was observed at postpartum and in bacterial interactions at +7 d. Conversely, microbial metabolites involved in carbohydrate, lipid, and energy metabolism increased on +7 d. A correlation analysis revealed that 11 and 10 microbial metabolites contributed to OSI and NEFA variations, respectively (arc strength >0.5). The support vector machine (SVM) radial model showed the highest average predictive accuracy (100% and 88.9% in the test and external data sets) for OSI using 1 metabolite and 3 microbiota. The SVM radial model also showed the highest average diagnostic accuracy (100% and 91% in the test and external data sets) for NEFA with 2 metabolites and 3 microbiota. Our results reveal a relationship between variation in the fecal microenvironment and indicators of oxidative status, NEB, and inflammation, which provide a theoretical basis for the prevention and precise regulation of peripartum oxidative status and NEB.
Asunto(s)
Ácidos Grasos no Esterificados , Periodo Periparto , Femenino , Bovinos , Animales , Teorema de Bayes , Periodo Posparto , Inflamación/veterinaria , Estrés Oxidativo , Lactancia/fisiología , Ácido 3-HidroxibutíricoRESUMEN
Low-resistivity objects produce eddy currents when excited with electromagnetic waves of a certain frequency and then generate an eddy electromagnetic field. A portable frequency-domain electromagnetic exploration system can be used to identify this eddy electromagnetic field, and then the low-resistivity objects can be positioned. At present, portable frequency-domain electromagnetic method (FEM) exploration systems use analog signal compensation, and the sounding depth is generally calculated using empirical formulas. In order to improve the rationality of signal compensation, this paper puts forward a digital signal compensation technology, including a device design, an information extraction method, and a primary field calibration method, and makes an exploration prototype based on the digital signal compensation technology. Using 10 nV as the minimum potential detection capability, the sounding depth of the portable FEM was analyzed, and it was found that when investigating a target with the same depth, a lower frequency required a larger emission current. If this could not be met, the sounding depth became smaller, and a phenomenon appeared in which the lower the operating frequency, the smaller the sounding depth. Through the detection of known underground garages, the apparent conductivity and normalized secondary field anomalies with higher sensitivity were obtained, which indicates that the detection system based on the digital signal compensation technology is effective in practical exploration. Via long-distance detection experiments on cars, it was confirmed that the sounding depth of the portable multi-frequency FEM in practical work indeed decreases with a decrease in the operating frequency.
RESUMEN
Understanding and mitigating land subsidence (LS) is critical for sustainable urban planning and infrastructure management. We introduce a comprehensive analysis of LS forecasting utilizing two advanced machine learning models: the eXtreme Gradient Boosting Regressor (XGBR) and Long Short-Term Memory (LSTM). Our findings highlight groundwater level (GWL) and building concentration (BC) as pivotal factors influencing LS. Through the use of Taylor diagram, we demonstrate a strong correlation between both XGBR and LSTM models and the subsidence data, affirming their predictive accuracy. Notably, we applied delta-rate (Δr) calculus to simulate a scenario with an 80% reduction in GWL and BC impact, revealing a potential substantial decrease in LS by 2040. This projection emphasizes the effectiveness of strategic urban and environmental policy interventions. The model performances, indicated by coefficients of determination R2 (0.90 for XGBR, 0.84 for LSTM), root-mean-squared error RMSE (0.37 for XGBR, 0.50 for LSTM), and mean-absolute-error MAE (0.34 for XGBR, 0.67 for LSTM), confirm their reliability. This research sets a precedent for incorporating dynamic environmental factors and adapting to real-time data in future studies. Our approach facilitates proactive LS management through data-driven strategies, offering valuable insights for policymakers and laying the foundation for sustainable urban development and resource management practices.
Asunto(s)
Planificación de Ciudades , Política Ambiental , Reproducibilidad de los Resultados , Simulación por Computador , Aprendizaje AutomáticoRESUMEN
A talented endophytic Streptomyces sp. PH9030 is derived from the medicinal plant Kadsura coccinea (Lem.) A.C. Smith. The undescribed naphthoquinone naphthgeranine G (5) and seven previously identified compounds, 6-12, were obtained from Streptomyces sp. PH9030. The structure of 5 was identified by comprehensive examination of its HRESIMS, 1D NMR, 2D NMR and ECD data. The inhibitory activities of all the compounds toward α-glucosidase and their antibacterial properties were investigated. The α-glucosidase inhibitory activities of 5, 6, 7 and 9 were reported for the first time, with IC50 values ranging from 66.4 ± 6.7 to 185.9 ± 0.2 µM, as compared with acarbose (IC50 = 671.5 ± 0.2 µM). The molecular docking and molecular dynamics analysis of 5 with α-glucosidase further indicated that it may have a good binding ability with α-glucosidase. Both 9 and 12 exhibited moderate antibacterial activity against methicillin-resistant Staphylococcus aureus, with minimum inhibitory concentration (MIC) values of 16 µg/mL. These results indicate that 5, together with the naphthoquinone scaffold, has the potential to be further developed as a possible inhibitor of α-glucosidase.
Asunto(s)
Antibacterianos , Inhibidores de Glicósido Hidrolasas , Simulación del Acoplamiento Molecular , Naftoquinonas , Fenazinas , Streptomyces , alfa-Glucosidasas , Streptomyces/química , Naftoquinonas/química , Naftoquinonas/farmacología , Naftoquinonas/aislamiento & purificación , Inhibidores de Glicósido Hidrolasas/química , Inhibidores de Glicósido Hidrolasas/farmacología , Inhibidores de Glicósido Hidrolasas/aislamiento & purificación , Antibacterianos/farmacología , Antibacterianos/química , alfa-Glucosidasas/metabolismo , alfa-Glucosidasas/química , Fenazinas/química , Fenazinas/farmacología , Fenazinas/aislamiento & purificación , Pruebas de Sensibilidad Microbiana , Endófitos/química , Estructura Molecular , Simulación de Dinámica Molecular , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacosRESUMEN
BACKGROUND: The pathogenesis of Alzheimer's disease (AD) is complex. Recent research suggests that AD patients have early disorders in brain cholesterol metabolism. Cholesterol and its derivatives accumulate in neurons, leading to p-Tau overproduction and synaptic dysfunction, initiating AD progression. Calycosin-7-O-ß-D-glucoside (CG), a distinctive constituent of Astragali Radix, holds a representative position. Many clinical trials have demonstrated that CG can attenuate cerebral ischemia/reperfusion injury and preserve the structural integrity of the blood-brain barrier. However, whether CG alleviates tau-mediated neurodegeneration by increasing cholesterol efflux after lipid accumulation remains unexplored. METHODS: Ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS) and multivariate data analysis were employed to investigate metabolic changes in HT22 cells induced by sodium palmitate following 24 hours of CG treatment. The potential therapeutic mechanisms of CG on AD were further examined through Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. RESULTS: Metabolomic analysis characterized 24 potential biomarkers, revealing that CG could ameliorate cholesterol metabolic pathways. The results of cell experiments revealed that CG can increase the expression of enzyme cholesterol 24-hydroxylase (CYP46A1) (p < 0.05) and the level of 24 hydroxycholesterol (24-OHC) (p < 0.05), reduce the expression of p-Tau (Thr231)/Tau (p < 0.01), inhibit the formation of lipid droplets. CONCLUSION: CG may inhibit the accumulation of cholesterol and its derivatives in neurons by affecting the CYP46A1-CE-Tau axis, offering a potential therapeutic strategy for AD.
Asunto(s)
Glucósidos , Isoflavonas , Metabolismo de los Lípidos , Isoflavonas/farmacología , Glucósidos/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Palmitatos/farmacología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Ratones , Células Cultivadas , AnimalesRESUMEN
Sprouting of mossy fibers, one of the most consistent findings in tissue from patients with mesial temporal lobe epilepsy, exhibits several uncommon axonal growth features and has been considered a paradigmatic example of circuit plasticity that occurs in the adult brain. Clarifying the mechanisms responsible may provide new insight into epileptogenesis as well as axon misguidance in the central nervous system. Methyl-CpG-binding protein 2 (MeCP2) binds to methylated genomic DNA to regulate a range of physiological functions implicated in neuronal development and adult synaptic plasticity. However, exploring the potential role of MeCP2 in the documented misguidance of axons in the dentate gyrus has not yet been attempted. In this study, a status epilepticus-induced decrease of neuronal MeCP2 was observed in the dentate gyrus (DG). An essential regulatory role of MeCP2 in the development of functional mossy fiber sprouting (MFS) was confirmed through stereotaxic injection of a recombinant adeno-associated virus (AAV) to up- or down-regulate MeCP2 in the dentate neurons. Chromatin immunoprecipitation sequencing (ChIP-seq) was performed to identify the binding profile of native MeCP2 using micro-dissected dentate tissues. In both dentate tissues and HT22 cell lines, we demonstrated that MeCP2 could act as a transcription repressor on miR-682 with the involvement of the DNA methylation mechanism. Further, we found that miR-682 could bind to mRNA of phosphatase and tensin homolog (PTEN) in a sequence specific manner, thus leading to the suppression of PTEN and excessive activation of mTOR. This study therefore presents a novel epigenetic mechanism by identifying MeCP2/miR-682/PTEN/mTOR as an essential signal pathway in regulating the formation of MFS in the temporal lobe epileptic (TLE) mice. SIGNIFICANCE STATEMENT: Understanding the mechanisms that regulate axon guidance is important for a better comprehension of neural disorders. Sprouting of mossy fibers, one of the most consistent findings in patients with mesial temporal lobe epilepsy, has been considered a paradigmatic example of circuit plasticity in the adult brain. Although abnormal regulation of DNA methylation has been observed in both experimental rodents and humans with epilepsy, the potential role of DNA methylation in this well-documented example of sprouting of dentate axon remains elusive. This study demonstrates an essential role of methyl-CpG-binding protein 2 in the formation of mossy fiber sprouting. The underlying signal pathway has been also identified. The data hence provide new insight into epileptogenesis as well as axon misguidance in the central nervous system.
Asunto(s)
Epilepsia del Lóbulo Temporal , Epilepsia , MicroARNs , Animales , Humanos , Ratones , Giro Dentado/metabolismo , Epilepsia del Lóbulo Temporal/metabolismo , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , MicroARNs/metabolismo , Fibras Musgosas del Hipocampo , Serina-Treonina Quinasas TOR/metabolismoRESUMEN
Bleeding is as particularly a serious phenomenon in Actinidia arguta and has important effects on this plant's growth and development. Here we used A. arguta to study the effects of bleeding on the growth and development of leaves and fruits after a bleeding episode. We detect and analyze physiological indices of leaves and fruit after bleeding. The result revealed that the relative electrical conductivity and malondialdehyde (MDA) of leaves increased in treatment. Nitro blue tetrazolium chloride (NBT) and 3,3-diaminobenzidine (DAB) staining revealed the accumulation of reactive oxygen species (ROS) in leaves after bleeding. The chlorophyll content and photosynthetic parameter of plants were also decreased. In fruits, pulp and seed water content decreased after the damage, as did fruit vitamin C (Vc), soluble sugar content, and soluble solids content (SSC); the titratable acid content did not change significantly. We therefore conclude that bleeding affects the physiological indices of A. arguta. Our study provides a theoretical basis for understanding the physiological changes of A. arguta after bleeding episodes and laying a timely foundation for advancing research on A. arguta bleeding and long-term field studies should be executed in order to gain insights into underlying mechanisms.
Asunto(s)
Actinidia , Frutas , Semillas , Ácido AscórbicoRESUMEN
Regulating electronic structures of the active site by manipulating the local coordination is one of the advantageous means to improve photocatalytic hydrogen evolution (PHE) kinetics. Herein, the ZnIn2 S4 /Mo2 TiC2 Schottky junctions are designed to be constructed through the interfacial local coordination of In3+ with the electronegative O terminal group on Mo2 TiC2 based on the different work functions. Kelvin probe force microscopy and charge density difference reveal that an electronic unidirectional transport channel across the Schottky interface from ZnIn2 S4 to Mo2 TiC2 is established by the formed local nucleophilic/electrophilic region. The increased local electron density of Mo2 TiC2 inhibits the backflow of electrons, boosts the charge transfer and separation, and optimizes the hydrogen adsorption energy. Therefore, the ZnIn2 S4 /Mo2 TiC2 photocatalyst exhibits a superior PHE rate of 3.12 mmol g-1 h-1 under visible light, reaching 3.03 times that of the pristine ZnIn2 S4 . This work provides some insights and inspiration for preparing MXene-based Schottky catalysts to accelerate PHE kinetics.
RESUMEN
Thyroid autoimmunity (TAI) triggered by genetic and epigenetic variation occurs mostly in women of reproductive age. TAI is described mainly by positivity of anti-thyroid peroxidase antibody (TPO-Ab) and/or thyroglobulin antibody (TG-Ab). TPO-Ab, but not TG-Ab, was suggested to be associated with pregnancy outcome in euthyroid women undergoing assisted reproductive technology (ART), but their results are conflicting. This meta-analysis was performed to decide whether the presence of TPO-Ab-in a concentration dependent manner-correlates with the success of ART. A systematic literature search was performed in the PubMed, Web of Science, and EMBASE databases for relevant articles published from January 1999 to April 2022, and these studies focused on the effect of TAI on pregnancy outcomes of women who underwent in vitro fertilization, intracytoplasmic sperm injection and intrauterine insemination and met the inclusion criteria: (i) the studies were prospective or retrospective study; (ii) all patients undergoing ART were tested for thyroid-related antibodies; (iii) the assessed ART outcomes included miscarriage rate (MR) or delivery rate (DR). The exclusion criteria were: (i) female congenital uterine malformation, chromosomal diseases and other infectious diseases; (ii) overt hypothyroidism or pre-existing thyroid disease; (iii) thrombus tendency. We divided the included patients into three groups according to the TPO-Ab threshold they defined: (i) TPO-Ab (-), threshold <34 IU/mL; (ii) TPO-Ab-34, threshold >34 IU/mL; (iii) TPO-Ab-100, threshold >100 IU/mL. We then extracted necessary relevant data, including MR and DR. Egger's test was used to evaluate the risk of publication bias. This meta-analysis included a total of 7 literatures involving 7466 patients with TAI (-) and 965 patients with TAI (+) and revealed that there was no significant difference between group TPO-Ab-34 and group TPO-Ab (-) in MR [risk ratio (RR): 0.61 (0.35, 1.08), p = 0.09] and DR [RR: 0.97 (0.83, 1.13), p = 0.69]. By contrast, compared to TPO-Ab (-) group, TPO-Ab-100 patients showed markedly higher MR [RR: 2.12 (1.52, 2.96), p = 0.0046], and lower DR [RR: 0.66 (0.49, 0.88), p < 0.0001] with high degree of statistical significance. This meta-analysis suggests that, for euthyroid patients, high level of TPO-Ab (>100 IU/mL) could adversely influence the pregnancy outcome of ART.
Asunto(s)
Aborto Espontáneo , Resultado del Embarazo , Embarazo , Femenino , Humanos , Masculino , Estudios Retrospectivos , Estudios Prospectivos , Semen , Autoanticuerpos , Técnicas Reproductivas Asistidas , PeroxidasasRESUMEN
Even though Fe-based catalysts have been widely employed for CO2 hydrogenation into hydrocarbons, oxygenates, liquid fuels, etc., the precise regulation of their physicochemical properties is needed to enhance the catalytic performance. Herein, under the guidance of the traditional concept in heterogeneous catalysis-confinement effect, a core-shell structured catalyst Na-Fe3 O4 @C is constructed to boost the CO2 hydrogenation performance. Benefiting from the carbon-chain growth limitation, tailorable H2 /CO2 ratio on the catalytic interface, and unique electronic property that all endowed by the confinement effect, the selectivity and space-time yield of light olefins (C2 = -C4 = ) are as high as 47.4 % and 15.9â g molFe -1 â h-1 , respectively, which are all notably higher than that from the shell-less counterpart. The function mechanism of the confinement effect in Fe-based catalysts are clarified in detail by multiple characterization and density functional theory (DFT). This work may offer a new prospect for the rational design of CO2 hydrogenation catalyst.
RESUMEN
Even though the direct hydrogenation of CO2 into aromatics has been realized via a methanol-mediated pathway and multifunctional catalyst, few works have been focused on the simultaneously rational design of each component in multifunctional catalyst to improve the performance. Also, the structure-function relationship between aromatics synthesis performance and the different catalytic components (reducible metal oxide and acidic zeolite) has been rarely investigated. Herein, we increase the oxygen vacancy (Ov ) density in reducible Cr2 O3 by sequential carbonization and oxidation (SCO) treatments of Cr-based metal-organic frameworks. Thanks to the enriched Ov , Cr2 O3 -based catalyst affords high methanol selectivity of 98.1 % (without CO) at a CO2 conversion of 16.8 % under high reaction temperature (350 °C). Furthermore, after combining with the acidic zeolite H-ZSM-5, the multifunctional catalyst realizes the direct conversion of CO2 into aromatics with conversion and selectivity as high as 25.4 % and 80.1 % (without CO), respectively. The property of acid site in H-ZSM-5, especially the Al species that located at the intersection of straight and sinusoidal channels, plays a vital role in enhancing the aromatics selectivity, which can be precisely controlled by varying the hydrothermal synthesis conditions. Our work provides a synergistic strategy to boost the aromatics synthesis performance from CO2 hydrogenation.
RESUMEN
BACKGROUND: Ovarian cancer is a common cancer among women globally, and the assessment of lymph node metastasis plays a crucial role in the treatment of this malignancy. The primary objective of our study was to identify the risk factors associated with lymph node metastasis in patients with ovarian cancer and develop a predictive model to aid in the selection of the appropriate surgical procedure and treatment strategy. METHODS: We conducted a retrospective analysis of data from patients with ovarian cancer across three different medical centers between April 2014 and August 2022. Logistic regression analysis was employed to establish a prediction model for lymph node metastasis in patients with ovarian cancer. We evaluated the performance of the model using receiver operating characteristic (ROC) curves, calibration plots, and decision analysis curves. RESULTS: Our analysis revealed that among the 368 patients in the training set, 101 patients (27.4%) had undergone lymph node metastasis. Maximum tumor diameter, multifocal tumor, and Ki67 level were identified as independent risk factors for lymph node metastasis. The area under the curve (AUC) of the ROC curve in the training set was 0.837 (95% confidence interval [CI]: 0.792-0.881); in the validation set this value was 0.814 (95% CI: 0.744-0.884). Calibration plots and decision analysis curves revealed good calibration and clinical application value. CONCLUSIONS: We successfully developed a model for predicting lymph node metastasis in patients with ovarian cancer, based on ultrasound examination results and clinical data. Our model accurately identified patients at high risk of lymph node metastasis and may guide the selection of appropriate treatment strategies. This model has the potential to significantly enhance the precision and efficacy of clinical management in patients with ovarian cancer.
Asunto(s)
Nomogramas , Neoplasias Ováricas , Humanos , Femenino , Estudios Retrospectivos , Metástasis Linfática/diagnóstico por imagen , Metástasis Linfática/patología , Ganglios Linfáticos/diagnóstico por imagen , Ganglios Linfáticos/patología , Neoplasias Ováricas/diagnóstico por imagen , Neoplasias Ováricas/patología , UltrasonografíaRESUMEN
This study introduces an anisotropic interfacial potential that provides an accurate description of the van der Waals (vdW) interactions between water and hexagonal boron nitride (h-BN) at their interface. Benchmarked against the strongly constrained and appropriately normed functional, the developed force field demonstrates remarkable consistency with reference data sets, including binding energy curves and sliding potential energy surfaces for various configurations involving a water molecule adsorbed atop the h-BN surface. These findings highlight the significant improvement achieved by the developed force field in empirically describing the anisotropic vdW interactions of the water/h-BN heterointerfaces. Utilizing this anisotropic force field, molecular dynamics simulations demonstrate that atomically flat, pristine h-BN exhibits inherent hydrophobicity. However, when atomic-step surface roughness is introduced, the wettability of h-BN undergoes a significant change, leading to a hydrophilic nature. The calculated water contact angle (WCA) for the roughened h-BN surface is approximately 64°, which closely aligns with experimental WCA values ranging from 52° to 67°. These findings indicate the high probability of the presence of atomic steps on the surfaces of the experimental h-BN samples, emphasizing the need for further experimental verification. The development of the anisotropic interfacial force field for accurately describing interactions at the water/h-BN heterointerfaces is a significant advancement in accurately simulating the wettability of two-dimensional (2D) materials, offering a reliable tool for studying the dynamic and transport properties of water at these interfaces, with implications for materials science and nanotechnology.